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Outline of Lectures

• Lecture 0: Bayesian Modeling and Regression

• Lecture 1: Gaussian Processes, Kernels, and Regression

• Lecture 2: Optimization with Gaussian Processes

• Lecture 3: Advanced Bayesian Optimization Methods

• Lecture 4: GP Methods in Non-Bayesian Settings
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Outline: This Lecture

I This lecture
1. Practical twists on Bayesian optimization
2. Level-set estimation
3. One-step lookahead algorithms
4. Truncated variance reduction
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Recap 1: Black-Box Function Optimization

Black-box function optimization:

x? ∈ arg max
x∈D⊆Rd

f(x)

• Setting:

I Unknown “reward” function f
I Expensive evaluations of f
I Noisy evaluations
I Choose xt based on {(xt′ , yt′ )}t′<t

yt = f(xt) + zt

zt ∼ N(0, σ2)
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Recap 2: Bayesian Optimization (BO) Template

A general BO template [Shahriari et al., 2016]
1: for t = 1, 2, . . . , T do
2: choose new xt by optimizing an acquisition function α(·)

xt ∈ arg max
x∈D

α(x;Dt−1)

where Dt−1 is the data collected up to time t− 1
3: query objective function f to obtain yt = f(xt) + zt
4: augment data Dt = Dt−1 ∪ {(xt, yt)}
5: update the GP model
6: end for
7: make final recommendation x̂ (if considering simple regret)
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Twists

Practical variations along the same theme:

Pointwise costs: Choosing point x incurs a cost c(x) [Snoek et al., 2012]

I Examples: Advertising costs, sensor power consumption
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Twists

Practical variations along the same theme:

Heteroscedastic noise: Choosing point x incurs noise σ2(x) [Goldberg et al., 1997]

I Example: Different sensing quality
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Twists

Practical variations along the same theme:

Multi-fidelity: Alternative evaluations f1, . . . , fK related to f [Swersky et al., 2013]

I Example: Varying data set sizes in automated machine learning
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Another Twist: Level-Set Estimation

Level-set estimation: Estimate the super- and sub-level sets [Gotovos et al., 2013]

Ssuper(f) :=
{

x : f(x) > h
}
, Ssub(f) :=

{
x : f(x) < h

}
for some threshold h

I Example: Find all hotspots in environmental monitoring
Super-level set

Sub-level set

Threshold
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Accommodating the BO Twists: Lookahead Algorithms

• Mostly heuristic BO approaches

I Entropy search (ES): [Hennig et al., 2012]

xt ≈ arg min
xt∈D

Eyt
[
H(x? | {xi, yi}ti=1)

]
H: entropy function

I Minimum regret search (MRS): [Metzen, 2016]

xt ≈ arg min
x∈D

Eyt

[
Ex∗
[
regret

∣∣ {xi, yi}ti=1
]]

I Multi-step lookahead: approximation of the ideal lookahead loss function
[Osborne et al., 2009, Gonzalez et al., 2016]

Advantages: Versatility with point-wise costs, non-uniform noise, multi-fidelity
scenarios; can improve on baseline algorithms even without these twists.

Disadvantages: Expensive to compute; no theory; no LSE

CS6216 Advanced Topics in Machine Learning | Jonathan Scarlett (scarlett@comp.nus.edu.sg) Slide 8/ 38



Accommodating the BO Twists: Lookahead Algorithms

• Mostly heuristic BO approaches

I Entropy search (ES): [Hennig et al., 2012]

xt ≈ arg min
xt∈D

Eyt
[
H(x? | {xi, yi}ti=1)

]
H: entropy function

I Minimum regret search (MRS): [Metzen, 2016]

xt ≈ arg min
x∈D

Eyt

[
Ex∗
[
regret

∣∣ {xi, yi}ti=1
]]

I Multi-step lookahead: approximation of the ideal lookahead loss function
[Osborne et al., 2009, Gonzalez et al., 2016]

Advantages: Versatility with point-wise costs, non-uniform noise, multi-fidelity
scenarios; can improve on baseline algorithms even without these twists.

Disadvantages: Expensive to compute; no theory; no LSE

CS6216 Advanced Topics in Machine Learning | Jonathan Scarlett (scarlett@comp.nus.edu.sg) Slide 8/ 38



Accommodating the BO Twists: Lookahead Algorithms

• Mostly heuristic BO approaches

I Entropy search (ES): [Hennig et al., 2012]

xt ≈ arg min
xt∈D

Eyt
[
H(x? | {xi, yi}ti=1)

]
H: entropy function

I Minimum regret search (MRS): [Metzen, 2016]

xt ≈ arg min
x∈D

Eyt

[
Ex∗
[
regret

∣∣ {xi, yi}ti=1
]]

I Multi-step lookahead: approximation of the ideal lookahead loss function
[Osborne et al., 2009, Gonzalez et al., 2016]

Advantages: Versatility with point-wise costs, non-uniform noise, multi-fidelity
scenarios; can improve on baseline algorithms even without these twists.

Disadvantages: Expensive to compute; no theory; no LSE

CS6216 Advanced Topics in Machine Learning | Jonathan Scarlett (scarlett@comp.nus.edu.sg) Slide 8/ 38



Accommodating the BO Twists: Lookahead Algorithms

• Mostly heuristic BO approaches

I Entropy search (ES): [Hennig et al., 2012]

xt ≈ arg min
xt∈D

Eyt
[
H(x? | {xi, yi}ti=1)

]
H: entropy function

I Minimum regret search (MRS): [Metzen, 2016]

xt ≈ arg min
x∈D

Eyt

[
Ex∗
[
regret

∣∣ {xi, yi}ti=1
]]

I Multi-step lookahead: approximation of the ideal lookahead loss function
[Osborne et al., 2009, Gonzalez et al., 2016]

Advantages: Versatility with point-wise costs, non-uniform noise, multi-fidelity
scenarios; can improve on baseline algorithms even without these twists.

Disadvantages: Expensive to compute; no theory; no LSE

CS6216 Advanced Topics in Machine Learning | Jonathan Scarlett (scarlett@comp.nus.edu.sg) Slide 8/ 38



Note:

Lookahead algorithms tend to be more
versatile with respect to interesting twists on

the optimization problem

• Example.
I Minimize entropy ⇐⇒ maximize reduction in entropy
I Extension: Maximize reduction in entropy per unit cost
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More on Entropy Search

• Entropy search and its variants are particularly popular:

xt ≈ arg min
xt∈D

Eyt
[
H(x? | {xi, yi}ti=1)

]
H: entropy function

I Interpretation: Choose the point that makes us least uncertain (i.e., minimizes
entropy) about the optimizer x∗

• Difficulty. Cannot compute Eyt
[
H(x? | {xi, yi}ti=1)

]
exactly

I Need to approximate, typically using Monte Carlo methods
I Particularly difficult for higher dimensions, e.g., x ∈ Rd for d > 10

• Alternative: Max-value entropy search.

xt ≈ arg min
xt∈D

Eyt
[
H(f? | {xi, yi}ti=1)

]
I Intuition: Low uncertainty in f∗ = f(x∗) should mean we have found x∗

I Now approximating entropy is easier – only one-dimensional

CS6216 Advanced Topics in Machine Learning | Jonathan Scarlett (scarlett@comp.nus.edu.sg) Slide 10/ 38



More on Entropy Search

• Entropy search and its variants are particularly popular:

xt ≈ arg min
xt∈D

Eyt
[
H(x? | {xi, yi}ti=1)

]
H: entropy function

I Interpretation: Choose the point that makes us least uncertain (i.e., minimizes
entropy) about the optimizer x∗

• Difficulty. Cannot compute Eyt
[
H(x? | {xi, yi}ti=1)

]
exactly

I Need to approximate, typically using Monte Carlo methods
I Particularly difficult for higher dimensions, e.g., x ∈ Rd for d > 10

• Alternative: Max-value entropy search.

xt ≈ arg min
xt∈D

Eyt
[
H(f? | {xi, yi}ti=1)

]
I Intuition: Low uncertainty in f∗ = f(x∗) should mean we have found x∗

I Now approximating entropy is easier – only one-dimensional

CS6216 Advanced Topics in Machine Learning | Jonathan Scarlett (scarlett@comp.nus.edu.sg) Slide 10/ 38



More on Entropy Search

• Entropy search and its variants are particularly popular:

xt ≈ arg min
xt∈D

Eyt
[
H(x? | {xi, yi}ti=1)

]
H: entropy function

I Interpretation: Choose the point that makes us least uncertain (i.e., minimizes
entropy) about the optimizer x∗

• Difficulty. Cannot compute Eyt
[
H(x? | {xi, yi}ti=1)

]
exactly

I Need to approximate, typically using Monte Carlo methods
I Particularly difficult for higher dimensions, e.g., x ∈ Rd for d > 10

• Alternative: Max-value entropy search.

xt ≈ arg min
xt∈D

Eyt
[
H(f? | {xi, yi}ti=1)

]
I Intuition: Low uncertainty in f∗ = f(x∗) should mean we have found x∗

I Now approximating entropy is easier – only one-dimensional

CS6216 Advanced Topics in Machine Learning | Jonathan Scarlett (scarlett@comp.nus.edu.sg) Slide 10/ 38



Experimental Example

• Performance plots from [Metzen, 2016] for robot control task:
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Accommodating the Twists: Level-Set Estimation

• Limited literature

I Confidence-bound based LSE algorithm: [Gotovos et al., 2013]

xt = arg max
x∈Mt−1

min
{
ut(x)− h, h− `t(x)

}
ut/lt: upper/lower confidence bounds
Mt: the set of unclassified points
h: the level-set threshold

I Analogous to, but distinct from, the GP-UCB algorithm for BO
I Intuition: Resolve uncertainty of points whose confidence interval crosses h

I Straddle heuristic: [Bryan et al., 2006]

xt = arg max
x∈D

1.96σt−1(x)− |µt−1(x)− h|

Advantages: Versatility in the sense of handling level-set estimation

Disadvantages: No theory (Straddle); lacking in other versatility (costs, non-uniform
noise, multi-fidelity)
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Accommodating the Twists with Guarantees: TruVaR

Truncated Variance Reduction (TruVaR) algorithm: [Bogunovic et al., 2016]
I Unified BO and LSE
I Versatility to handle all of the above twists
I Theoretical guarantees
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TruVaR Intuition (for optimization):

• Use confidence bounds to keep track of
potential maximizers

• Choose points that shrink their uncertainty
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Modified Template for Choosing xt Based on {(xt′ , yt′)}t′<t

A general TruVaR template:

I Choose xt to shrink the posterior variance within1 Mt below a target η

I For each point chosen,

1. Update Mt via confidence bounds

2. If the target η is reached within Mt, then set η ← η
const.

1Mt: potential maximizers (BO) or unclassified points (LSE)
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TruVaR: Intution

Confidence
Target

Selected point

Potential maximizers

Max. lower bound
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TruVaR: Intution
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TruVaR: Acquisition Function

• Acquisition function based on variance reduction per cost

arg max
x∈D

∑
x∈Mt−1

max{β(i)σ
2
t−1(x), η2

(i)} −
∑

x∈Mt−1
max{β(i)σ

2
t−1|x(x), η2

(i)}

c(x)

σ2
t−1|x: posterior variance given all points up to time t− 1, and x
β(i): exploration parameter

The set of potential maximizers Mt

• BO
Mt =

{
x ∈Mt−1 : ut(x) ≥ max

x∈Mt−1
`t(x)

}
ut(x)/lt(x): upper/lower confidence bounds

• LSE
Mt =

{
x ∈Mt−1 : ut(x) ≥ h and `t(x) ≤ h

}
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Numerical Evidence

• Real and synthetic data

• Acronyms

LSE Level-set estimation algorithm [Gotovos et al., 2013]

STR Straddle heuristic [Bryan et al., 2006]

VAR Maximum variance rule [Gotovos et al., 2013]

EI Expected improvement [Mockus et al., 1978]

GP-UCB Gaussian process upper confidence bound [Srinivas et al., 2012]
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Numerical Evidence 1: Level-Set Estimation (I)

• Lake Zürich chlorophyll concentration via an autonomous vehicle:

0 400 800 1200
Length (m)

20

15

10

5

0

D
ep

th
 (m

)

1.86

h = 1.5

0

• Evaluate performance with the F1 score:

F1 =
#true positives

#true positives + 1
2

(
#false positives + #false negatives

) ∈ [0, 1]
where “positive” means above the level-set h.
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Numerical Evidence 1: Level-Set Estimation (II)

• Classification performance (unit-cost):

Time
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Numerical Evidence 1: Level-Set Estimation (III)

• Cost function: (i) Penalizes distance traveled; (ii) Penalizes deeper measurements

LSE algorithm [Gotovos et al., 2013]: TruVaR:
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Numerical Evidence 1: Level-Set Estimation (IV)

• Classification performance (non-unit cost):

Cost (×104)
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Numerical Evidence 2: Level-Set Estimation (I)

• Twist: Choice of the noise level

I Noise levels {10−6, 10−3, 0.05}

I Corresponding costs {15, 10, 2}

• Synthetic simulation

I Function drawn from GP with squared-exponential kernel

I True kernel used in algorithms
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Numerical Evidence 2: Level-Set Estimation (II)

• Synthetic function drawn from GP:
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Numerical Evidence 2: Level-Set Estimation (III)

• Oracle-level classification performance:

Cost (×104)
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Numerical Evidence 2: Level-Set Estimation (IV)
• Cost incurred for each noise level:

• TruVaR gradually switches between different levels:

high noise / low cost =⇒ medium noise / cost =⇒ low noise / high cost
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Numerical Evidence 3: Bayesian Optimization

• Hyper-parameter tuning: SVM on grid dataset [Snoek et al., 2012]

I Tuning 3 hyperparameters for SVM algorithm

I GP kernel estimated online using maximum-likelihood

• Generalization error:
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TruVaR – Batch Setting

• In the batch setting, we choose B > 1 points at each time, evaluate them in
parallel, and observe the B observations [Azimi et al., 2010]
I Example 1: Equipment allows running scientific experiments in parallel
I Example 2: f is a computation, and we have multiple computing cores

• With B = 1, we can interpret TruVaR as greedily minimizing∑
x∈Mt−1

max{β(i)σ
2
t−1|x(x), η2

(i)}

with respect to x

• A simple batch extension: In each round, run B steps of the greedy algorithm
minimizing this function
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Epilogue: Theoretical Performance

Definition: Numerical ε-accuracy

I (BO) The reported point after T rounds satisfies f(x̂T ) ≥ f(x?)− ε

I (LSE) The classification after T rounds is correct for points at least ε
2 -far from h
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Epilogue: Theoretical Performance (I)

• Generalize the canonical notion of rounds T to costs C to shrink variance:

C∗(ξ,M) = min
S

{
c(S) : max

x∈M
σS(x) ≤ ξ

}
,

σ2
S : posterior variance given points in S

Theorem
For a finite domain D, under a submodularity assumption, if TruVaR is run until the
cumulative cost reaches

Cε =
∑

i : 4η(i−1)>ε

C∗
( η(i)

β
1/2
(i)

,M(i−1)

)
log
|M(i−1)|β(i)

η2
(i)

,

for suitable β(i), then with probability at least 1− δ we have ε-accuracy.
In the cumulative cost, the outer bounds on Mt are defined as

M(i) :=
{

x : f(x) ≥ f(x?)− 4η(i)
}

(BO)

M(i) :=
{

x : |f(x)− h| ≤ 2η(i)
}

(LSE)
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Epilogue: Theoretical Performance (II)

Corollary
There exist β(i) such that we have ε-accuracy with probability at least 1− δ once

T ≥ O∗
(σ2γT

ε2
+
C1γT
σ2

)
where C1 = 1

log(1+σ−2) , and

γT = max
S : |S|=T

I(f ; yS)

is the maximum amount of information yS = (y1, . . . , yT ) can reveal about f upon
querying points S = (x1, . . . ,xT )

• New: Improved dependence on the noise level in BO

I For small σ and ε� σ, existing bound (GP-UCB): T ≥ O∗
(
C1γT
ε2

)
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Epilogue: Theoretical Performance (III)

• Multi-noise setup:
I noise levels σ2(1), . . . , σ2(K)
I sampling costs c(1), . . . , c(k)

Corollary
For each k = 1, · · · ,K, let T ∗(k) denote the smallest value of T such that

T ≥ Ω∗
(σ(k)2γT

ε2
+
C1(k)γT
σ(k)2

)
where C1 = 1

log(1+σ(k)−2) .

There exist choices of β(i) such that we have ε-accuracy with probability at least 1− δ
once the cumulative cost reaches

min
k
c(k)T ∗(k)

• As good as sticking to any fixed noise/cost pair a posteriori!
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Epilogue: Theoretical Performance (IV)

• Recall: Minimum cost required to shrink variance

C∗(ξ,M) = min
S

{
c(S) : max

x∈M
σS(x) ≤ ξ

}
,

σ2
S : posterior variance given points in S

• In a single epoch, TruVaR greedily maximizes a submodular set function

g(S) = −
∑

x∈Mt−1

max{β(i)σ
2
t−1|S(x), η2

(i)}

• By submodularity, our incurred cost is within a logarithmic factor of the optimum:

C(i) ≤ C∗
( η(i)

β
1/2
(i)

,M(i−1)

)
log
|M(i−1)|β(i)

η2
(i)

• Sum over the epochs i to obtain the theory
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Further Reading

• Tutorials/classes:
I Taking the Human Out of the Loop: A Review of Bayesian Optimization

(Shahriari et al., 2016)
I A Tutorial on Bayesian Optimization of Expensive Cost Functions, with

Application to Active User Modeling and Hierarchical Reinforcement Learning
(Brochu et al., 2010)

I Lectures on Gaussian Processes & Bayesian optimization by Nando de Freitas
(available on YouTube)

• Other:
I Various papers referenced at the end of each set of slides (this & previous ones)
I Popular GP book: Gaussian Processes for Machine Learning (Rasmussen, 2006)
I My papers: http://www.comp.nus.edu.sg/~scarlett/
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Useful Programming Packages

• Useful libraries:
I Python packages (some with other methods beyonds GPs):

I GPy and GPyOpt
I Spearmint
I BayesianOptimization
I PyBo
I HyperOpt
I MOE

I Packages for other languages:
I GPML for MATLAB
I GPFit and rBayesianOptimization for R
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