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Outline of Lectures

Lecture 0: Bayesian Modeling and Regression

Lecture 1: Gaussian Processes, Kernels, and Regression

Lecture 2: Optimization with Gaussian Processes

Lecture 3: Advanced Bayesian Optimization Methods

Lecture 4: GP Methods in Non-Bayesian Settings
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Outline: This Lecture

» This lecture

1
2
3.
4. Truncated variance reduction

Practical twists on Bayesian optimization
Level-set estimation
One-step lookahead algorithms
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Recap 1: Black-Box Function Optimization

Black-box function optimization:

x* € argmax f(x)

x€DCRY
e Setting:

» Unknown “reward” function

U f yt = f(x¢) + 2¢
> Expensive evaluations of

P f 2zt ~ N(0,02)

> Noisy evaluations
> Choose x; based on {(xy/,¥/) }e/ <t
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Recap 2: Bayesian Optimization (BO) Template

A general BO template [Shahriari et al., 2016]
1: fort =1,2,...,7 do
2:  choose new x; by optimizing an acquisition function o)

x¢ € argmax a(x; Di—1)
xeD
where D;_1 is the data collected up to time ¢t — 1
3:  query objective function f to obtain y: = f(x¢) + 2¢
4 augment data Dy = Dy U {(x¢,y¢)}
5.  update the GP model
6: end for
7: make final recommendation x (if considering simple regret)
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Twists

Practical variations along the same theme:

Pointwise costs: Choosing point x incurs a cost c¢(x) [Snoek et al., 2012]

> Examples: Advertising costs, sensor power consumption
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Twists

Practical variations along the same theme:

Heteroscedastic noise: Choosing point x incurs noise 0?(x)  [Goldberg et al., 1997]

> Example: Different sensing quality
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Twists

Practical variations along the same theme:

Multi-fidelity: Alternative evaluations f1, ..., fix related to f  [Swersky et al., 2013]

> Example: Varying data set sizes in automated machine learning
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Another Twist: Level-Set Estimation

Level-set estimation: Estimate the super- and sub-level sets [Gotovos et al., 2013]
Ssuper(f) = {x : f(x) > h‘}7 Ssub(f) = {x : f(x) < h}

for some threshold h

> Example: Find all hotspots in environmental monitoring

Super-level set
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Accommodating the BO Twists: Lookahead Algorithms
e Mostly heuristic BO approaches
> Entropy search (ES): [Hennig et al., 2012]

x¢ /& argminEy, [H(x* [ {x, yi}le)]
xtED

H: entropy function
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Accommodating the BO Twists: Lookahead Algorithms

e Mostly heuristic BO approaches

> Entropy search (ES): [Hennig et al., 2012]

x¢ /& argminEy, [H(x* [ {x, yi}le)]
xtED
H: entropy function

> Minimum regret search (MRS): [Metzen, 2016]

x¢ &~ argminEy, |:]Ex* [regret ‘ {xi,yi}ﬁzl]]
xeD
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e Mostly heuristic BO approaches

> Entropy search (ES): [Hennig et al., 2012]

x¢ /& argminEy, [H(x* [ {x, yi}le)]
xtED

H: entropy function
> Minimum regret search (MRS): [Metzen, 2016]

x¢ &~ argminEy, |:]Ex* [regret ‘ {xi,yi}ﬁzl]]
xeD

> Multi-step lookahead: approximation of the ideal lookahead loss function
[Osborne et al., 2009, Gonzalez et al., 2016]
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Accommodating the BO Twists: Lookahead Algorithms

e Mostly heuristic BO approaches

> Entropy search (ES): [Hennig et al., 2012]

x¢ /& argminEy, [H(x* [ {x, yi}le)]
xtED

H: entropy function
> Minimum regret search (MRS): [Metzen, 2016]

x¢ &~ argminEy, |:]Ex* [regret ‘ {xi,yi}ﬁzl]]
xeD

> Multi-step lookahead: approximation of the ideal lookahead loss function
[Osborne et al., 2009, Gonzalez et al., 2016]

Advantages: Versatility with point-wise costs, non-uniform noise, multi-fidelity
scenarios; can improve on baseline algorithms even without these twists.

Disadvantages: Expensive to compute; no theory; no LSE
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Note:

Lookahead algorithms tend to be more
versatile with respect to interesting twists on
the optimization problem

e Example.
> Minimize entropy <= maximize reduction in entropy

> Extension: Maximize reduction in entropy per unit cost
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More on Entropy Search

e Entropy search and its variants are particularly popular:

x¢ A argminEy, [H(x* \ {xi,yi}le)]
D

Xt €
H: entropy function

> Interpretation: Choose the point that makes us least uncertain (i.e., minimizes
entropy) about the optimizer x*
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More on Entropy Search

e Entropy search and its variants are particularly popular:

x¢ A argminEy, [H(x* \ {xi,yi}le)]
D

Xt €
H: entropy function

> Interpretation: Choose the point that makes us least uncertain (i.e., minimizes
entropy) about the optimizer x*

e Difficulty. Cannot compute E,, [H(x* | {xi, yi}le)] exactly
> Need to approximate, typically using Monte Carlo methods
> Particularly difficult for higher dimensions, e.g., x € R? for d > 10
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More on Entropy Search

e Entropy search and its variants are particularly popular:

x¢ A argminEy, [H(x* \ {xi,yi}le)]
D

Xt €
H: entropy function

> Interpretation: Choose the point that makes us least uncertain (i.e., minimizes
entropy) about the optimizer x*

e Difficulty. Cannot compute E,, [H(x* | {xi, yi}le)] exactly
> Need to approximate, typically using Monte Carlo methods
> Particularly difficult for higher dimensions, e.g., x € R? for d > 10

e Alternative: Max-value entropy search.
x¢ ~ argminEy, [H(f* [ {x, yi}§:1)]
xtED

> Intuition: Low uncertainty in f* = f(x*) should mean we have found x*

> Now approximating entropy is easier — only one-dimensional
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Experimental Example

e Performance plots from [Metzen, 2016] for robot control task:
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Accommodating the Twists: Level-Set Estimation

o Limited literature
> Confidence-bound based LSE algorithm: [Gotovos et al., 2013]

X¢ = arg max min {ut(x) —h,h — Et(x)}
xEM;

ut/ly: upper/lower confidence bounds
My:  the set of unclassified points
h:  the level-set threshold

> Analogous to, but distinct from, the GP-UCB algorithm for BO
> Intuition: Resolve uncertainty of points whose confidence interval crosses h
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Accommodating the Twists: Level-Set Estimation

o Limited literature
> Confidence-bound based LSE algorithm: [Gotovos et al., 2013]

X¢ = arg max min {ut(x) —h,h — Et(x)}
xEM;

ut/ly: upper/lower confidence bounds
My:  the set of unclassified points
h:  the level-set threshold

> Analogous to, but distinct from, the GP-UCB algorithm for BO
> Intuition: Resolve uncertainty of points whose confidence interval crosses h

> Straddle heuristic: [Bryan et al., 2006]

x¢ = argmax 1.960+—1(x) — |ue—1(x) — h|
xeD
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Accommodating the Twists: Level-Set Estimation

o Limited literature
> Confidence-bound based LSE algorithm: [Gotovos et al., 2013]

X¢ = arg max min {ut(x) —h,h — Et(x)}
xEM;

ut/ly: upper/lower confidence bounds
My:  the set of unclassified points
h:  the level-set threshold

> Analogous to, but distinct from, the GP-UCB algorithm for BO
> Intuition: Resolve uncertainty of points whose confidence interval crosses h

> Straddle heuristic: [Bryan et al., 2006]

x¢ = argmax 1.960+—1(x) — |ue—1(x) — h|
x€ED

Advantages: Versatility in the sense of handling level-set estimation

Disadvantages: No theory (Straddle); lacking in other versatility (costs, non-uniform
noise, multi-fidelity)
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Accommodating the Twists with Guarantees: TruVaR

Truncated Variance Reduction (TruVaR) algorithm: [Bogunovic et al., 2016]
> Unified BO and LSE
> Versatility to handle all of the above twists

> Theoretical guarantees
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TruVaR Intuition (for optimization):

e Use confidence bounds to keep track of
potential maximizers

e Choose points that shrink their uncertainty
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Modified Template for Choosing x; Based on {(x¢/,y: )}t <t

A general TruVaR template:

> Choose x;¢ to shrink the posterior variance withinl M; below a target n

> For each point chosen,
1. Update M, via confidence bounds

2. If the target n is reached within M, then set n <

n
const.

1 My: potential maximizers (BO) or unclassified points (LSE)
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TruVaR: Intution

3 Confidence :€—Selected point
2 + Target ;
1 ¢ i Max. lower bound

31 Potential maximizers:

0.0 0.2 0.4 0.6 0.8 1.0
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TruVaR: Intution
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TruVaR: Intution

N
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TruVaR: Intution
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TruVaR: Acquisition Function

e Acquisition function based on variance reduction per cost

Ziel\,ﬁ71 max{ﬁ(i)agfl (i)r 77(21)} - ZieMt,] maX{B(i)Uf_”x(i)v 77(27)}
arg max

€D c(x)

2 .
Utfl\x'
B:):  exploration parameter

posterior variance given all points up to time ¢ — 1, and x

The set of potential maximizers M;

e BO
M; = {x € Mi—1 : ug(x) >  max Et(i)}
XEM;_1
u¢(x)/1t(x):  upper/lower confidence bounds
e LSE

M = {X e My : ut(x) > h and Kt(x) < h}
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Numerical Evidence

e Real and synthetic data

e Acronyms

LSE Level-set estimation algorithm [Gotovos et al., 2013]
STR  Straddle heuristic [Bryan et al., 2006]
VAR  Maximum variance rule [Gotovos et al., 2013]

El  Expected improvement [Mockus et al., 1978]

GP-UCB  Gaussian process upper confidence bound [Srinivas et al., 2012]
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Numerical Evidence 1: Level-Set Estimation (1)

e Lake Ziirich chlorophyll concentration via an autonomous vehicle:

|
%))

Depth (m)
|
=

|
-

|
]
(=}

(=)

400 800 1200
Length (m)

e Evaluate performance with the F} score:

P Ftrue positives
Y =
#£true positives + %(#false positives 4 #false negatives)

€ [0,1]
where “positive” means above the level-set h.
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3

NUS

Numerical Evidence 1: Level-Set Estimation (1)

o Classification performance (unit-cost):

F} score

Time

€S6216 Advanced Topics in Machine Learning | Jonathan Scarlett (scarlett@comp.nus.edu.sg)

Slide 20/ 38



Numerical Evidence 1: Level-Set Estimation (l11)

e Cost function: (i) Penalizes distance traveled; (ii) Penalizes deeper measurements

LSE algorithm [Gotovos et al., 2013]: TruVaR:
Opeeeee P

Depth (m)
Depth (m)

400 800 o 300 800 1200
Length (m) Length (m)
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Numerical Evidence 1: Level-Set Estimation (V)

o Classification performance (non-unit cost):

Fi score

—%—LSE

0 ‘ ‘ ‘
0 0.5 1 1.5 2
Cost (x10%)
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Numerical Evidence 2: Level-Set Estimation (1)

e Twist: Choice of the noise level

> Noise levels {107%,1073,0.05}
> Corresponding costs {15,10, 2}

e Synthetic simulation

> Function drawn from GP with squared-exponential kernel

> True kernel used in algorithms
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Numerical Evidence 2: Level-Set Estimation (1)

e Synthetic function drawn from GP:

L9 m3.75
08

h=225
0.6
0.4 0
0.2 Jﬁ

2.44

0 02 04 06 os 10
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Numerical Evidence 2: Level-Set Estimation (lI1)

e Oracle-level classification performance:

o
%

F} score

o
2

—@—TruVaR
—¢— LSE high noise 1
—p— LSE medium noise

—<&— LSE small noise

01 015 02 025 03 035 04
Cost (x10%)

e
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Numerical Evidence 2: Level-Set Estimation (V)

e Cost incurred for each noise level:

0.05 —

0.001 —_

le-06 -

0 50 100 150 200 250 300 350 400 450
Cost

e TruVaR gradually switches between different levels:

high noise / low cost = medium noise / cost = low noise / high cost
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Numerical Evidence 3: Bayesian Optimization

e Hyper-parameter tuning: SVM on grid dataset

> Tuning 3 hyperparameters for SVM algorithm

> GP kernel estimated online using maximume-likelihood

e Generalization error:

[Snoek et al., 2012]

027 ‘ ‘ : :
—A—TruVaR
—o—FI
‘ —%—GP-UCB
20261 ]
[€a)
3
2
5
=025+ 1
=
X
0.24 | ‘
0 20 40 60 80 100

Time
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TruVaR — Batch Setting

e In the batch setting, we choose B > 1 points at each time, evaluate them in
parallel, and observe the B observations [Azimi et al., 2010]

> Example 1: Equipment allows running scientific experiments in parallel

> Example 2: f is a computation, and we have multiple computing cores
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TruVaR — Batch Setting

e In the batch setting, we choose B > 1 points at each time, evaluate them in
parallel, and observe the B observations [Azimi et al., 2010]

> Example 1: Equipment allows running scientific experiments in parallel

> Example 2: f is a computation, and we have multiple computing cores

e With B =1, we can interpret TRUVAR as greedily minimizing

Z maX{5(¢>0t271|x(§)’77<2i)}

XeEM; 1

with respect to x

e A simple batch extension: In each round, run B steps of the greedy algorithm
minimizing this function
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Epilogue: Theoretical Performance

Definition: Numerical e-accuracy
> (BO) The reported point after T rounds satisfies f(xr) > f(x*) —€

> (LSE) The classification after T' rounds is correct for points at least 5-far from h
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Epilogue: Theoretical Performance (1)

e Generalize the canonical notion of rounds T' to costs C to shrink variance:

€ (¢ M) = min { <(5) - max 5 (7) < e},

cr%: posterior variance given points in S

Theorem

For a finite domain D, under a submodularity assumption, if TRUVAR, is run until the
cumulative cost reaches

«f NG == \M i—1) B
Ce = Z C (1(7/>27M(7,—1)) lOg%v
iidn;_1)>e ﬁ(z) (%)

for suitable B(;), then with probability at least 1 — & we have e-accuracy.
In the cumulative cost, the outer bounds on M} are defined as

My o= {x : f(x) > f(x*) — dng;) } (BO)
My = {x : |f(x) = h| < 2n0;) } (LSE)
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Epilogue: Theoretical Performance (1)

Corollary

There exist B(;) such that we have e-accuracy with probability at least 1 — § once

o*yr | Ciyr
T>0"(——
20" (5 + =7 )
_ 1

where C1 = og(ito=2)" and

yr = _max I(f;ys)

S:|S|

is the maximum amount of information ys = (y1,...,yr) can reveal about f upon
querying points S = (X1,...,XT)

e New: Improved dependence on the noise level in BO

> For small o and € < o, existing bound (GP-UCB): T >O0* (cl#)
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Epilogue: Theoretical Performance (l11)

o Multi-noise setup:
> noise levels 02(1),...,02(K)

> sampling costs ¢(1), ..., c(k)

Corollary
Foreachk=1,--- , K, let T*(k) denote the smallest value of T such that

o(k)*yr o Ci(k)yr )

= Q*( €2 o(k)2

_ 1
where C1 = G

There exist choices of (B(;) such that we have e-accuracy with probability at least 1 — ¢
once the cumulative cost reaches

mkin c(k)T* (k)

e As good as sticking to any fixed noise/cost pair a posterioril
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Epilogue: Theoretical Performance (1V)

e Recall: Minimum cost required to shrink variance

C*(&, M) = m;n{c(S) : gga;v;os(i) < 5},

O’%Z posterior variance given points in S
e In a single epoch, TruVaR greedily maximizes a submodular set function
2 : 2 =\ 2
g(s) = - max{ﬁ(i)ot,us(x)an(i)}
XEMy—1

e By submodularity, our incurred cost is within a logarithmic factor of the optimum:

W G — IM ;—1)|B¢)
Cay<C (Tm’M(i—l)) log —= 53—
B ®

e Sum over the epochs ¢ to obtain the theory

FINUS 56216 Advanced Topics in Machine Learning | Jonathan Scarlett (scarlett@comp.nus.edu.sg) Slide 33/ 38



Further Reading

e Tutorials/classes:

> Taking the Human Out of the Loop: A Review of Bayesian Optimization
(Shahriari et al., 2016)

> A Tutorial on Bayesian Optimization of Expensive Cost Functions, with
Application to Active User Modeling and Hierarchical Reinforcement Learning
(Brochu et al., 2010)

> Lectures on Gaussian Processes & Bayesian optimization by Nando de Freitas
(available on YouTube)

e Other:
> Various papers referenced at the end of each set of slides (this & previous ones)
> Popular GP book: Gaussian Processes for Machine Learning (Rasmussen, 2006)

> My papers: http://www.comp.nus.edu.sg/~scarlett/
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RENUS

Useful Programming Packages

e Useful libraries:

> Python packages (some with other methods beyonds GPs):
> GPy and GPyOpt

Spearmint

BayesianOptimization

PyBo

HyperOpt

MOE

> Packages for other languages:

> GPML for MATLAB
> GPFit and rBayesianOptimization for R

YyVYyVYYVYY
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