Gaussian Process Methods in Machine Learning

Jonathan Scarlett scarlett@comp.nus.edu.sg

Lecture 3: Advanced Bayesian Optimization Methods

CS6216, Semester 1, AY2021/22

Outline of Lectures

- Lecture 0: Bayesian Modeling and Regression
- Lecture 1: Gaussian Processes, Kernels, and Regression
- Lecture 2: Optimization with Gaussian Processes
- Lecture 3: Advanced Bayesian Optimization Methods
- Lecture 4: GP Methods in Non-Bayesian Settings

Outline: This Lecture

This lecture

- 1. Practical twists on Bayesian optimization
- 2. Level-set estimation
- 3. One-step lookahead algorithms
- 4. Truncated variance reduction

Recap 1: Black-Box Function Optimization

Black-box function optimization:

$$\mathbf{x}^{\star} \in \operatorname*{arg\,max}_{\mathbf{x} \in D \subseteq \mathbb{R}^d} f(\mathbf{x})$$

- Setting:
 - Unknown "reward" function f
 - Expensive evaluations of f
 - Noisy evaluations
 - Choose \mathbf{x}_t based on $\{(\mathbf{x}_{t'}, y_{t'})\}_{t' < t}$

$$y_t = f(\mathbf{x_t}) + z_t$$
$$z_t \sim N(0, \sigma^2)$$

Recap 2: Bayesian Optimization (BO) Template

A general BO template

[Shahriari et al., 2016]

- 1: for t = 1, 2, ..., T do
- 2: choose new \mathbf{x}_t by optimizing an *acquisition function* $\alpha(\cdot)$

$$\mathbf{x}_t \in \operatorname*{arg\,max}_{\mathbf{x}\in D} \alpha(\mathbf{x}; \mathcal{D}_{t-1})$$

where \mathcal{D}_{t-1} is the data collected up to time t-1

- 3: query objective function f to obtain $y_t = f(\mathbf{x}_t) + z_t$
- 4: augment data $\mathcal{D}_t = \mathcal{D}_{t-1} \cup \{(\mathbf{x}_t, y_t)\}$
- 5: update the GP model
- 6: end for
- 7: make final recommendation $\hat{\mathbf{x}}$ (if considering simple regret)

Twists

Practical variations along the same theme:

Pointwise costs: Choosing point \mathbf{x} incurs a cost $c(\mathbf{x})$ [Snoek *et al.*, 2012]

Examples: Advertising costs, sensor power consumption

Twists

Practical variations along the same theme:

Heteroscedastic noise: Choosing point x incurs noise $\sigma^2(x)$ [Goldberg et al., 1997]

Example: Different sensing quality

Twists

Practical variations along the same theme:

Multi-fidelity: Alternative evaluations f_1, \ldots, f_K related to f [Swersky et al., 2013]

Example: Varying data set sizes in automated machine learning

Another Twist: Level-Set Estimation

Level-set estimation: Estimate the super- and sub-level sets [Gotovos et al., 2013]

$$S_{\text{super}}(f) := \left\{ \mathbf{x} \, : \, f(\mathbf{x}) > h \right\}, \qquad S_{\text{sub}}(f) := \left\{ \mathbf{x} \, : \, f(\mathbf{x}) < h \right\}$$

for some threshold \boldsymbol{h}

Example: Find all hotspots in environmental monitoring

- Mostly heuristic BO approaches
 - Entropy search (ES):

[Hennig et al., 2012]

$$\mathbf{x}_t \approx \operatorname*{arg\,min}_{\mathbf{x}_t \in D} \mathbb{E}_{y_t} \left[H(\mathbf{x}^{\star} \mid \{\mathbf{x}_i, y_i\}_{i=1}^t) \right]$$

H: entropy function

- Mostly heuristic BO approaches
 - Entropy search (ES):

[Hennig et al., 2012]

$$\mathbf{x}_t \approx \operatorname*{arg\,min}_{\mathbf{x}_t \in D} \mathbb{E}_{y_t} \left[H(\mathbf{x}^{\star} \mid \{\mathbf{x}_i, y_i\}_{i=1}^t) \right]$$

- *H*: entropy function
- Minimum regret search (MRS):

[Metzen, 2016]

$$\mathbf{x}_{t} \approx \operatorname*{arg\,min}_{\mathbf{x} \in D} \mathbb{E}_{y_{t}} \left[\mathbb{E}_{\mathbf{x}^{*}} \left[\mathsf{regret} \mid \{\mathbf{x}_{i}, y_{i}\}_{i=1}^{t} \right] \right]$$

- Mostly heuristic BO approaches
 - Entropy search (ES):

[Hennig et al., 2012]

$$\mathbf{x}_t \approx \operatorname*{arg\,min}_{\mathbf{x}_t \in D} \mathbb{E}_{y_t} \left[H(\mathbf{x}^{\star} \mid \{\mathbf{x}_i, y_i\}_{i=1}^t) \right]$$

- *H*: entropy function
- Minimum regret search (MRS):

[Metzen, 2016]

$$\mathbf{x}_{t} \approx \operatorname*{arg\,min}_{\mathbf{x} \in D} \mathbb{E}_{y_{t}} \left[\mathbb{E}_{\mathbf{x}^{*}} \left[\mathsf{regret} \mid \{\mathbf{x}_{i}, y_{i}\}_{i=1}^{t} \right] \right]$$

 Multi-step lookahead: approximation of the ideal lookahead loss function [Osborne et al., 2009, Gonzalez et al., 2016]

- Mostly heuristic BO approaches
 - Entropy search (ES):

[Hennig et al., 2012]

$$\mathbf{x}_t \approx \operatorname*{arg\,min}_{\mathbf{x}_t \in D} \mathbb{E}_{y_t} \left[H(\mathbf{x}^{\star} \mid \{\mathbf{x}_i, y_i\}_{i=1}^t) \right]$$

- *H*: entropy function
- Minimum regret search (MRS):

[Metzen, 2016]

$$\mathbf{x}_{t} \approx \operatorname*{arg\,min}_{\mathbf{x} \in D} \mathbb{E}_{y_{t}} \left[\mathbb{E}_{\mathbf{x}^{*}} \left[\mathsf{regret} \mid \{\mathbf{x}_{i}, y_{i}\}_{i=1}^{t} \right] \right]$$

 Multi-step lookahead: approximation of the ideal lookahead loss function [Osborne et al., 2009, Gonzalez et al., 2016]

Advantages: Versatility with point-wise costs, non-uniform noise, multi-fidelity scenarios; can improve on baseline algorithms even without these twists.

Disadvantages: Expensive to compute; no theory; no LSE

Note:

Lookahead algorithms tend to be more versatile with respect to interesting twists on the optimization problem

• Example.

- Extension: Maximize reduction in entropy per unit cost

CS6216 Advanced Topics in Machine Learning | Jonathan Scarlett (scarlett@comp.nus.edu.sg)

More on Entropy Search

• Entropy search and its variants are particularly popular:

$$\mathbf{x}_t \approx \operatorname*{arg\,min}_{\mathbf{x}_t \in D} \mathbb{E}_{y_t} \left[H(\mathbf{x}^{\star} \,|\, \{\mathbf{x}_i, y_i\}_{i=1}^t) \right]$$

- H: entropy function

More on Entropy Search

• Entropy search and its variants are particularly popular:

$$\mathbf{x}_t \approx \operatorname*{arg\,min}_{\mathbf{x}_t \in D} \mathbb{E}_{y_t} \left[H(\mathbf{x}^{\star} \,|\, \{\mathbf{x}_i, y_i\}_{i=1}^t) \right]$$

- *H*: entropy function
- Difficulty. Cannot compute $\mathbb{E}_{y_t}\left[H(\mathbf{x}^\star \,|\, \{\mathbf{x}_i, y_i\}_{i=1}^t)\right]$ exactly
 - Need to approximate, typically using Monte Carlo methods
 - ▶ Particularly difficult for higher dimensions, e.g., $\mathbf{x} \in \mathbb{R}^d$ for d > 10

More on Entropy Search

• Entropy search and its variants are particularly popular:

$$\mathbf{x}_t \approx \operatorname*{arg\,min}_{\mathbf{x}_t \in D} \mathbb{E}_{y_t} \left[H(\mathbf{x}^{\star} \,|\, \{\mathbf{x}_i, y_i\}_{i=1}^t) \right]$$

- *H*: entropy function
- Difficulty. Cannot compute $\mathbb{E}_{y_t}\left[H(\mathbf{x}^\star \,|\, \{\mathbf{x}_i, y_i\}_{i=1}^t)\right]$ exactly
 - Need to approximate, typically using Monte Carlo methods
 - ▶ Particularly difficult for higher dimensions, e.g., $\mathbf{x} \in \mathbb{R}^d$ for d > 10
- Alternative: Max-value entropy search.

$$\mathbf{x}_t \approx \operatorname*{arg\,min}_{\mathbf{x}_t \in D} \mathbb{E}_{y_t} \left[H(f^\star \,|\, \{\mathbf{x}_i, y_i\}_{i=1}^t) \right]$$

- Intuition: Low uncertainty in $f^* = f(\mathbf{x}^*)$ should mean we have found \mathbf{x}^*
- Now approximating entropy is easier only one-dimensional

Experimental Example

• Performance plots from [Metzen, 2016] for robot control task:

Accommodating the Twists: Level-Set Estimation

- Limited literature
 - Confidence-bound based LSE algorithm:

[Gotovos et al., 2013]

$$\mathbf{x}_{t} = \operatorname*{arg\,max\,min}_{\mathbf{x} \in M_{t-1}} \left\{ u_{t}(\mathbf{x}) - h, h - \ell_{t}(\mathbf{x}) \right\}$$

- u_t/l_t : upper/lower confidence bounds M_t : the set of unclassified points

 - h the level-set threshold
- Analogous to, but distinct from, the GP-UCB algorithm for BO
- Intuition: Resolve uncertainty of points whose confidence interval crosses h

Accommodating the Twists: Level-Set Estimation

- Limited literature
 - Confidence-bound based LSE algorithm:

[Gotovos et al., 2013]

$$\mathbf{x}_{t} = \operatorname*{arg\,max\,min}_{\mathbf{x} \in M_{t-1}} \left\{ u_{t}(\mathbf{x}) - h, h - \ell_{t}(\mathbf{x}) \right\}$$

- u_t/l_t : upper/lower confidence bounds M_t : the set of unclassified points h: the level-set threshold
- Analogous to, but distinct from, the GP-UCB algorithm for BO
- \blacktriangleright Intuition: Resolve uncertainty of points whose confidence interval crosses h
- Straddle heuristic:

[Bryan et al., 2006]

$$\mathbf{x}_{t} = \operatorname*{arg\,max}_{\mathbf{x}\in D} 1.96\sigma_{t-1}(\mathbf{x}) - |\mu_{t-1}(\mathbf{x}) - h|$$

Accommodating the Twists: Level-Set Estimation

- Limited literature
 - Confidence-bound based LSE algorithm:

[Gotovos et al., 2013]

$$\mathbf{x}_{t} = \operatorname*{arg\,max\,min}_{\mathbf{x} \in M_{t-1}} \left\{ u_{t}(\mathbf{x}) - h, h - \ell_{t}(\mathbf{x}) \right\}$$

- $\begin{array}{rl} u_t/l_t\colon & {\rm upper/lower\ confidence\ bounds}\\ M_t\colon & {\rm the\ set\ of\ unclassified\ points}\\ h\colon & {\rm the\ level-set\ threshold} \end{array}$
- Analogous to, but distinct from, the GP-UCB algorithm for BO
- \blacktriangleright Intuition: Resolve uncertainty of points whose confidence interval crosses h
- Straddle heuristic:

[Bryan et al., 2006]

$$\mathbf{x}_t = \operatorname*{arg\,max}_{\mathbf{x}\in D} 1.96\sigma_{t-1}(\mathbf{x}) - |\mu_{t-1}(\mathbf{x}) - h|$$

Advantages: Versatility in the sense of handling level-set estimation

Disadvantages: No theory (Straddle); lacking in other versatility (costs, non-uniform noise, multi-fidelity)

Accommodating the Twists with Guarantees: TruVaR

Truncated Variance Reduction (TruVaR) algorithm:

- Unified BO and LSE
- Versatility to handle all of the above twists
- Theoretical guarantees

[Bogunovic et al., 2016]

TruVaR Intuition (for optimization):

- Use confidence bounds to keep track of potential maximizers
- Choose points that shrink their uncertainty

A general TruVaR template:

- Choose \mathbf{x}_t to shrink the posterior variance within¹ M_t below a target η
- For each point chosen,
 - 1. Update M_t via confidence bounds
 - 2. If the target η is reached within M_t , then set $\eta \leftarrow \frac{\eta}{\text{const.}}$

Scs216 Advanced Topics in Machine Learning | Jonathan Scarlett (scarlett@comp.nus.edu.sg)

 $^{{}^{1}}M_{t}$: potential maximizers (BO) or unclassified points (LSE)

TruVaR: Acquisition Function

• Acquisition function based on variance reduction per cost

$$\underset{x \in D}{\operatorname{arg\,max}} \frac{\sum_{\overline{\mathbf{x}} \in M_{t-1}} \max\{\beta_{(i)}\sigma_{t-1}^2(\overline{\mathbf{x}}), \eta_{(i)}^2\} - \sum_{\overline{\mathbf{x}} \in M_{t-1}} \max\{\beta_{(i)}\sigma_{t-1|\mathbf{x}}^2(\overline{\mathbf{x}}), \eta_{(i)}^2\}}{c(\mathbf{x})}$$

 $\begin{array}{l} \sigma_{t-1|\mathbf{x}}^2 \colon & \text{posterior variance given all points up to time } t-1 \text{, and } \mathbf{x} \\ \beta_{(i)} \colon & \text{exploration parameter} \end{array}$

The set of potential maximizers M_t

• BO

$$M_t = \left\{ \mathbf{x} \in M_{t-1} : u_t(\mathbf{x}) \ge \max_{\overline{\mathbf{x}} \in M_{t-1}} \ell_t(\overline{\mathbf{x}}) \right\}$$

 $u_t(\mathbf{x})/l_t(\mathbf{x})$: upper/lower confidence bounds

• LSE

$$M_t = \left\{ \mathbf{x} \in M_{t-1} \, : \, u_t(\mathbf{x}) \geq h \text{ and } \ell_t(\mathbf{x}) \leq h \right\}$$

Numerical Evidence

- Real and synthetic data
- Acronyms

LSE	Level-set estimation algorithm	[Gotovos <i>et al.</i> , 2013]
STR	Straddle heuristic	[Bryan <i>et al.</i> , 2006]
VAR	Maximum variance rule	[Gotovos <i>et al.</i> , 2013]
EI	Expected improvement	[Mockus <i>et al.</i> , 1978]
GP-UCB	Gaussian process upper confidence bound	[Srinivas <i>et al.</i> , 2012]

Numerical Evidence 1: Level-Set Estimation (I)

• Lake Zürich chlorophyll concentration via an autonomous vehicle:

• Evaluate performance with the F_1 score:

 $F_1 = \frac{\# \text{true positives}}{\# \text{true positives} + \frac{1}{2} (\# \text{false positives} + \# \text{false negatives})} \in \left[0, 1\right]$

where "positive" means above the level-set h.

Numerical Evidence 1: Level-Set Estimation (II)

• Classification performance (unit-cost):

Numerical Evidence 1: Level-Set Estimation (III)

• Cost function: (i) Penalizes distance traveled; (ii) Penalizes deeper measurements

Numerical Evidence 1: Level-Set Estimation (IV)

• Classification performance (non-unit cost):

Numerical Evidence 2: Level-Set Estimation (I)

- Twist: Choice of the noise level
 - Noise levels $\{10^{-6}, 10^{-3}, 0.05\}$
 - Corresponding costs {15, 10, 2}
- Synthetic simulation
 - Function drawn from GP with squared-exponential kernel
 - True kernel used in algorithms

Numerical Evidence 2: Level-Set Estimation (II)

• Synthetic function drawn from GP:

Numerical Evidence 2: Level-Set Estimation (III)

• **Oracle-level** classification performance:

Numerical Evidence 2: Level-Set Estimation (IV)

• Cost incurred for each noise level:

• TruVaR gradually switches between different levels:

high noise / low cost \implies medium noise / cost \implies low noise / high cost

Numerical Evidence 3: Bayesian Optimization

- Hyper-parameter tuning: SVM on grid dataset
 - Tuning 3 hyperparameters for SVM algorithm
 - GP kernel estimated online using maximum-likelihood
- Generalization error:

MUS

[Snoek et al., 2012]

TruVaR – Batch Setting

• In the batch setting, we choose B > 1 points at each time, evaluate them in parallel, and observe the B observations [Azimi *et al.*, 2010]

- Example 1: Equipment allows running scientific experiments in parallel
- Example 2: f is a computation, and we have multiple computing cores

TruVaR – Batch Setting

• In the batch setting, we choose B > 1 points at each time, evaluate them in parallel, and observe the B observations [Azimi *et al.*, 2010]

- Example 1: Equipment allows running scientific experiments in parallel
- Example 2: f is a computation, and we have multiple computing cores
- With B = 1, we can interpret $T_{RU}VAR$ as greedily minimizing

$$\sum_{\overline{\mathbf{x}} \in M_{t-1}} \max\{\beta_{(i)} \sigma_{t-1|\mathbf{x}}^2(\overline{\mathbf{x}}), \eta_{(i)}^2\}$$

with respect to \mathbf{x}

 \bullet A simple batch extension: In each round, run B steps of the greedy algorithm minimizing this function

Definition: Numerical ϵ -accuracy

- ▶ (BO) The reported point after T rounds satisfies $f(\hat{\mathbf{x}}_T) \ge f(\mathbf{x}^*) \epsilon$
- ▶ (LSE) The classification after T rounds is correct for points at least $\frac{\epsilon}{2}$ -far from h

Epilogue: Theoretical Performance (I)

 \bullet Generalize the canonical notion of rounds T to costs C to shrink variance:

$$C^*(\xi, M) = \min_{S} \left\{ c(S) : \max_{\overline{x} \in M} \sigma_S(\overline{x}) \le \xi \right\},\$$

 σ_S^2 : posterior variance given points in S

Theorem

For a finite domain D, under a submodularity assumption, if ${\rm TruVAR}$ is run until the cumulative cost reaches

$$C_{\epsilon} = \sum_{\substack{i: 4\eta_{(i-1)} > \epsilon}} C^* \left(\frac{\eta_{(i)}}{\beta_{(i)}^{1/2}}, \overline{M}_{(i-1)} \right) \log \frac{|\overline{M}_{(i-1)}|\beta_{(i)}}{\eta_{(i)}^2},$$

for suitable $\beta_{(i)}$, then with probability at least $1-\delta$ we have ϵ -accuracy. In the cumulative cost, the outer bounds on M_t are defined as

$$\overline{M}_{(i)} := \left\{ \mathbf{x} : f(\mathbf{x}) \ge f(\mathbf{x}^{\star}) - 4\eta_{(i)} \right\}$$
(BO)

$$\overline{M}_{(i)} := \left\{ \mathbf{x} \, : \, |f(\mathbf{x}) - h| \le 2\eta_{(i)} \right\} \tag{LSE}$$

Epilogue: Theoretical Performance (II)

Corollary

There exist $\beta_{(i)}$ such that we have ϵ -accuracy with probability at least $1 - \delta$ once

$$T \ge O^* \left(\frac{\sigma^2 \gamma_T}{\epsilon^2} + \frac{C_1 \gamma_T}{\sigma^2} \right)$$

where $C_1 = \frac{1}{\log(1 + \sigma^{-2})}$, and

$$\gamma_T = \max_{S : |S|=T} I(f; \mathbf{y}_S)$$

is the maximum amount of information $\mathbf{y}_S = (y_1, \dots, y_T)$ can reveal about f upon querying points $S = (\mathbf{x}_1, \ldots, \mathbf{x}_T)$

- New: Improved dependence on the noise level in BO
 - $T \ge O^* \left(\frac{C_1 \gamma_T}{c^2} \right)$ For small σ and $\epsilon \ll \sigma$, existing bound (GP-UCB):

Epilogue: Theoretical Performance (III)

- Multi-noise setup:
 - noise levels $\sigma^2(1), \ldots, \sigma^2(K)$
 - sampling costs $c(1), \ldots, c(k)$

Corollary

For each $k = 1, \dots, K$, let $T^*(k)$ denote the smallest value of T such that

$$T \ge \Omega^* \Big(\frac{\sigma(k)^2 \gamma_T}{\epsilon^2} + \frac{C_1(k) \gamma_T}{\sigma(k)^2} \Big)$$

where $C_1 = \frac{1}{\log(1 + \sigma(k)^{-2})}$.

There exist choices of $\beta_{(i)}$ such that we have ϵ -accuracy with probability at least $1-\delta$ once the cumulative cost reaches

$$\min_k c(k)T^*(k)$$

• As good as sticking to any fixed noise/cost pair a posteriori!

Epilogue: Theoretical Performance (IV)

• Recall: Minimum cost required to shrink variance

$$C^*(\xi, M) = \min_{S} \left\{ c(S) : \max_{\overline{\mathbf{x}} \in M} \sigma_S(\overline{\mathbf{x}}) \le \xi \right\},\$$

 σ_S^2 : posterior variance given points in S

• In a single epoch, TruVaR greedily maximizes a submodular set function

$$g(S) = -\sum_{\overline{\mathbf{x}} \in M_{t-1}} \max\{\beta_{(i)}\sigma_{t-1|S}^2(\overline{\mathbf{x}}), \eta_{(i)}^2\}$$

• By submodularity, our incurred cost is within a logarithmic factor of the optimum:

$$C_{(i)} \leq C^* \left(\frac{\eta_{(i)}}{\beta_{(i)}^{1/2}}, \overline{M}_{(i-1)} \right) \log \frac{|\overline{M}_{(i-1)}| \beta_{(i)}}{\eta_{(i)}^2}$$

• Sum over the epochs *i* to obtain the theory

Further Reading

- Tutorials/classes:
 - Taking the Human Out of the Loop: A Review of Bayesian Optimization (Shahriari et al., 2016)
 - A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning (Brochu et al., 2010)
 - Lectures on Gaussian Processes & Bayesian optimization by Nando de Freitas (available on YouTube)
- Other:
 - Various papers referenced at the end of each set of slides (this & previous ones)
 - Popular GP book: Gaussian Processes for Machine Learning (Rasmussen, 2006)
 - My papers: http://www.comp.nus.edu.sg/~scarlett/

Useful Programming Packages

• Useful libraries:

- Python packages (some with other methods beyonds GPs):
 - GPy and GPyOpt
 - Spearmint
 - BayesianOptimization
 - PyBo
 - HyperOpt
 - MOE
- Packages for other languages:
 - GPML for MATLAB
 - GPFit and rBayesianOptimization for R

References |

[1] Ilija Bogunovic, Jonathan Scarlett, Andreas Krause, and Volkan Cevher.

Truncated variance reduction: A unified approach to Bayesian optimization and level-set estimation.

In Conf. Neur. Inf. Proc. Sys. (NIPS), 2016.

[2] Eric Brochu, Vlad M. Cora, and Nando de Freitas.

A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning.

http://arxiv.org/abs/1012.2599, 2010.

[3] Brent Bryan, Robert C Nichol, Christopher R Genovese, Jeff Schneider, Christopher J Miller, and Larry Wasserman.

Active learning for identifying function threshold boundaries.

In Conf. Neur. Inf. Proc. Sys. (NIPS), pages 163-170, 2006.

- [4] Paul W Goldberg, Christopher KI Williams, and Christopher M Bishop. Regression with input-dependent noise: A Gaussian process treatment. Adv. Neur. Inf. Proc. Sys. (NIPS), 10:493–499, 1997.
- [5] Alkis Gotovos, Nathalie Casati, Gregory Hitz, and Andreas Krause. Active learning for level set estimation.

In Int. Joint. Conf. Art. Intel., 2013.

References II

[6] Philipp Hennig and Christian J Schuler.

Entropy search for information-efficient global optimization.

J. Mach. Learn. Research, 13(1):1809-1837, 2012.

[7] Jan Hendrik Metzen.

Minimum regret search for single-and multi-task optimization. In Int. Conf. Mach. Learn. (ICML), 2016.

[8] J Moćkus, V Tiesis, and A Źilinskas.

The application of Bayesian methods for seeking the extremum. vol. 2, 1978.

[9] Carl Edward Rasmussen.

Gaussian processes for machine learning. MIT Press, 2006.

- [10] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando de Freitas. Taking the human out of the loop: A review of Bayesian optimization. *Proc. IEEE*, 104(1):148–175, 2016.
- Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
 Practical Bayesian optimization of machine learning algorithms.

In Adv. Neur. Inf. Proc. Sys. 2012.

[12] N. Srinivas, A. Krause, S.M. Kakade, and M. Seeger.

Information-theoretic regret bounds for Gaussian process optimization in the bandit setting. *IEEE Trans. Inf. Theory*, 58(5):3250–3265, May 2012.

[13] Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task Bayesian optimization.

In Adv. Neur. Inf. Proc. Sys. (NIPS), pages 2004-2012, 2013.