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Outline of Lectures

• Lecture 0: Bayesian Modeling and Regression

• Lecture 1: Gaussian Processes, Kernels, and Regression

• Lecture 2: Optimization with Gaussian Processes

• Lecture 3: Advanced Bayesian Optimization Methods

• Lecture 4: GP Methods in Non-Bayesian Settings
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Outline: This Lecture

I This lecture
1. Kernels, feature maps, and the PSD property
2. Reproducing Kernel Hilbert Space (RKHS)
3. Kernel ridge regression and the representer theorem
4. Bayesian optimization with non-Bayesian modeling
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Motivation for Non-Bayesian Modeling

• We looked at some Bayesian Optimization theory and algorithms under the
assumption that f is drawn from a GP with a known kernel

• This lecture: We can still use the same Bayesian methods even under non-Bayesian
modeling, with similar guarantees

• First, we return to the study of general kernel methods
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Recap on Kernels in Machine Learning

• Recap on kernels in machine learning:
I Many machine learning algorithms depend on the data x1, . . . ,xn only through

the inner products 〈xi,xj〉
I Example 1: Ridge regression
I Example 2: Dual form of Support Vector Machine (SVM)
I Example 3: Nearest-neighbor methods

I We know that moving to feature spaces can help, so we could map each
xi → φ(xi) and apply the algorithm using 〈φ(xi), φ(xj)〉

I A kernel function k(xi,xj) can be thought of as an inner product in a possibly
implicit feature space
I No need to explicitly map to feature space at all!
I The implicit space may be infinite-dimensional (e.g., SE and Matérn), so we could not

explicitly map to it even if we wanted to
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PSD Kernel: Definition and Theorem

• Definition. A function k : Rd × Rd → R is said to be a positive semidefinite (PSD)
kernel if (i) it is symmetric, i.e., k(x,x′) = k(x′,x); (ii) For any integer m > 0 and
any set of inputs x1, . . . ,xm in Rd, the following matrix is positive semi-definite:

K =

 k(x1,x1) . . . k(x1,xm)
...

. . .
...

k(xm,x1) . . . k(xm,xm)

 � 0.

This matrix, with (i, j)-th entry equal to k(xi,xj), is called the kernel matrix (you
might also see it referred to as the Gram matrix).

• Theorem. A function k : Rd × Rd → R is a PSD kernel if and only if it equals an
inner product 〈φ(x), φ(x′)〉 for some (possibly infinite dimensional) map φ(x).
I Note: May not always be the “standard” inner product
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Proof of “if” part

• Proof of the “if” part:
I For simplicity, focus on the case that φ(·) has finite length and the inner product

is the standard one (the proof extends to the general case).
I The inner product is certainly symmetric, and the kernel matrix can be written as

K = ΦTΦ, where Φ ∈ Rdim(φ)×m contains the m feature vectors {φ(xt)}mt=1 as
columns.

I The matrix K = ΦTΦ is certainly positive semidefinite, since for any z we have
zTΦTΦz = (Φz)TΦz = ‖Φz‖2 ≥ 0.
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Proof of “only if” part

• Proof of the “only if” part – finite domain:
I Suppose that x can only take values in a finite set {x1, . . . ,xm}.
I The entire function is described by an m×m matrix Kfull with (i, j)-th entry
k(xi,xj).

I By assumption Kfull is a PSD matrix, and then it is known from linear algebra
that it admits an eigenvalue decomposition of the form Kfull =

∑m

j=1 λjvjv
T
j .

I This fact allows us to consider a length-m feature map with i-th entry given by
φ(xj) =

√
λi(vi)j , where (vi)j is the j-th entry of vi.

• Proof of the “only if” part – compact domain w/ mild continuity assumptions:
I The above approach can be extended to more general scenarios via Mercer’s

theorem, and provides an infinite-dimensional analog of the eigenvalue
decomposition. (See also Bochner’s theorem based on the Fourier transform.)

• Proof of the “only if” part – general case:
I Can be proved via the notion of a Reproducing Kernel Hilbert Space (RKHS),

which we will turn to shortly (but we won’t complete this proof).
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Operations that Preserve the PSD Kernel Property

• Claim. If k1 and k2 are kernels, then so are the following:
1. k(x,x′) = f(x)k1(x,x′)f(x′) for some function f
2. k(x,x′) = k1(x,x′) + k2(x,x′)
3. k(x,x′) = k1(x,x′)k2(x,x′)

These properties can be useful when trying to verify whether a given k(·, ·) is indeed a
PSD kernel

• Proof. See Lecture 5 at
https://www.comp.nus.edu.sg/~scarlett/CS5339_notes/
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Note:

To be rigorous/robust when applying the
kernel trick, the selected kernel should satisfy
the PSD property
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RKHS: Motivating Example
• For each c ∈ R, consider defining

kc(x) = e−(x−c)2
.

Imagine producing some f(x) as a weighted combination of these kc’s:

f(x) =
m∑
i=1

αikci (x)

for some α1, . . . , αm and c1, . . . , cm. What sorts of functions can we produce?

• Example function: (m = 3)

-5 0 5
-0.5

0

0.5

1

1.5

2

2.5

I Note: Each kci has a Gaussian shape, but their combination is more complex

• Idea: Treat the kc(·) as basis functions for a function space, and additionally define
geometric notions of inner product and norm in this function space.
I Perform regression (or classification / optimization) using functions from this

space.
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Hilbert Space
• Mathematically, a vector space is a set coupled with operations of addition and
scalar multiplication that obey natural axioms (e.g., adding any two elements of the
set produced another element of the set)

• A Hilbert space H is a vector space that additionally has a notion of inner product
〈·, ·〉H and a norm ‖ · ‖H, and satisfies a technical condition called completeness
(roughly regarding limits of elements of H being well-behaved, e.g., like the reals but
unlike the rationals)

• Example 1. For fixed d, the space Rd is a Hilbert space with the usual notions of
addition (u + v), scalar multiplication (cu), inner product (〈u,v〉), and norm (‖u‖).

• Example 2. Let H be the set of all functions f mapping [0, 1]→ R such that∫ 1
0 |f(x)|2dx <∞. Define the following operations:
I Adding f1 ∈ H and f2 ∈ H gives f = f1 + f2, where f(x) = f1(x) + f2(x).
I Scalar multiplication of c ∈ R by f0 ∈ H gives f = cf0, where f(x) = cf0(x).
I The inner product of f1 ∈ H and f2 ∈ H is

∫ 1
0 f1(x)f2(x)dx.

I The norm of f ∈ H is ‖f‖H =
√∫ 1

0 |f(x)|2dx.

This is an infinite-dimensional Hilbert space.
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RKHS: General Definition

Reproducing Kernel Hilbert Space (RKHS)
A Reproducing Kernel Hilbert Space (RKHS) H with respect to a kernel k is a Hilbert
space with inner product 〈·, ·〉k satisfying the following:
(i) For all x, H contains the function δx(·) defined as δx(x′) = k(x,x′).
(ii) The following reproducing property holds for all f ∈ H and all x:

〈f, δx〉k = f(x).

• Example: If H is Rd with the linear kernel k(x,x′) = 〈x,x′〉, then for a fixed
c ∈ Rd, we have δc(x) = 〈c,x〉 =

∑d

i=1 cixi. Then:
I Property (i) states that H contains all linear functions of x, i.e., fc(x) = 〈c,x〉
I Since the sum of linear functions is still linear, further combining these “basis”

functions doesn’t expand the space any further.
I Property (ii) holds under the RKHS inner product 〈δc, δc′ 〉k = 〈c, c′〉.

• Notes:
I See Lecture 3 of YouTube kernel lectures for a more sophisticated example
I Given a PSD kernel, the RKHS always exists and is unique
I Since δx(x′) is in the RKHS, so as any f of the form f(x′) =

∑
i
αiδxi (x′).
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RKHS Inner Product and Norm

• The RKHS inner product 〈·, ·〉k generalizes the normal “dot product” you are used
to, though not always in the most intuitive way.

• Given the RKHS inner product, 〈·, ·〉k, we can define the RKHS norm as
‖f‖k =

√
〈f, f〉k, which roughly measures the smoothness of f .

I Gaussian process priors encode statistical smoothness properties, but the RKHS
norm encodes deterministic smoothness properties

• The useful properties of inner product and norm still apply, e.g.:
I Linearity: 〈f1 + f2, g〉k = 〈f1, g〉k + 〈f2, g〉k
I Cauchy-Schwarz: |〈f, g〉k| ≤ ‖f‖k‖g‖k
I Triangle inequality: ‖f1 + f2‖k ≤ ‖f1‖k + ‖f2‖k
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RKHS Norm
• Example 1: As shown above, for linear kernels all functions can be written as
fc(x) = cTx, and the RKHS norm is given by ‖fc‖k = ‖c‖. Smaller c entries means
a smoother function (slower varying).

• Example 2: This function we saw earlier is smooth (low ‖f‖k) w.r.t. the RBF
kernel, but would become less so as we add more bumps, rapid fluctuations, etc.:

-5 0 5
-0.5

0

0.5

1

1.5

2

2.5

I Note: Even tiny changes (e.g., a sudden change in gradient) can make the RKHS
norm jump to +∞ (or more precisely, the function is no longer part of the RKHS)

• Fourier view: If you are familiar with Fourier analysis, it’s useful to know that for
stationary kernels (i.e., k(x,x′) only depends on x− x′), we can write the RKHS
norm in terms of Fourier transforms:

‖f‖2
k =

∫
|F (ξ)|2

K(ξ)
dξ,

where F (·) and K(·) are the Fourier transforms of the function and the kernel.
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Note:

Every PSD kernel has a unique RKHS that
provides a norm measuring the function’s
smoothness (according to that kernel).

(“smooth” for one kernel may be “non-smooth” for another kernel).
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Kernel Ridge Regression

• Previously we derived kernel ridge regression by finding the closed-form solution to
minθ

∑n

i=1(yi − θTxi)2 + λ‖θ‖2, expressing it in terms of inner products, and
replacing those by kernel evaluations.

• We are now in a position to take a different view based on the RKHS norm:

f̂ = arg min
f∈Hk

n∑
i=1

(yi − f(xi))2 + λ‖f‖2
k.

For the linear kernel k(x,x′) = 〈x,x′〉, it can be checked that this reduces to
standard ridge regression.

• Problem. Directly solving a minimization problem over f (lying in a Hilbert space)
is non-standard and difficult – how to proceed?
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Representer Theorem (I)

Representer Theorem:
Consider any minimization problem of the form

minimizef Ψ
(
f(x1), . . . , f(xn), ‖f‖2

k

)
for some function Ψ : Rn+1 → R. Then, if Ψ is a strictly increasing function with
respect to its final argument, the optimal solution can be expressed as

f(x) =
n∑
i=1

αik(xi,x)

for some α1, . . . , αn (i.e. f =
∑n

i=1 αiδxi ).

• Proof idea. We can decompose any f into fX + f⊥X , where fX lies in the space of
functions admitting the above form, and f⊥X lies in the orthogonal space. Then
replacing f⊥X by zero keeps every f(xi) identical, but reduces ‖f‖k.

• Implication: We can reduce an infinite-dimensional optimization over f to a
finite-dimensional optimization over α = [α1, . . . , αn]T
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Representer Theorem (II)

• To substitute f(x) =
∑n

i=1 αik(xi,x) into the original formulation of minimizing
Ψ
(
f(x1), . . . , f(xn), ‖f‖2

k

)
, we would like to express each f(xj) and ‖f‖2

k in terms
of α = [α1, . . . , αn]T .
I We will also make use of the n× n pairwise kernel matrix K

• For f(xj), we simply write

f(xj) =
n∑
i=1

αik(xi,xj) = [Kα]j ,

where [Kα]j is the j-th entry of the vector Kα ∈ Rn

• For ‖f‖2
k, substituting f and expanding the square gives

‖f‖2
k =

n∑
i=1

n∑
j=1

αiαjk(xi,xj) = αTKα.

• We will proceed with the ridge regression example, but this approach applies even to
methods without closed-form solutions (e.g., logistic regression)
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• For ‖f‖2
k, substituting f and expanding the square gives

‖f‖2
k =

n∑
i=1

n∑
j=1

αiαjk(xi,xj) = αTKα.

• We will proceed with the ridge regression example, but this approach applies even to
methods without closed-form solutions (e.g., logistic regression)
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Application to Ridge Regression

• Returning to the problem

f̂ = arg min
f

n∑
i=1

(yi − f(xi))2 + λ‖f‖2
k,

we can substitute the expressions on the previous slide to get the equivalent problem

α̂ = arg min
α∈Rn

(Kα− y)T (Kα− y) + αTKα.

• Since this is finite-dimensional, it can be solved using standard optimization solvers,
though this is also a rare case where we get a closed-form solution:

α̂ = (K + λI)−1y.

• We now apply f(x) =
∑n

i=1 αik(xi,x) one more time: Defining
k(x) = [k(x1,x), . . . , k(xn,x)]T yields f̂(x) = k(x)Tα, and substituting α̂ gives

f̂(x) = k(x)T (K + λI)−1y

which is exactly what we got via the kernel trick (or the Gaussian Process approach).
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Note:

The representer theorem reduces an
infinite-dimensional optimization problem to
a finite-dimensional one, and serves as a
useful alternative to the kernel trick for
applying kernel methods.
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Bayesian Optimization: Recap

black-box function optimization:

x? ∈ arg max
x∈D⊆Rd

f(x)

• Bayesian model: f is a (zero-mean) GP with kernel k

• Bayesian confidence bound: With probability at least 1− δ, it holds for all x ∈ D
and t > 0 that

µt−1(x)−
√
βtσt−1(x)︸                                ︷︷                                ︸

LCB

≤ f(x) ≤ µt−1(x) +
√
βtσt−1(x)︸                                ︷︷                                ︸

UCB

• GP-UCB algorithm: Choose xt to maximize the UCB (optimism under uncertainty)
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Bayesian Optimization with Non-Bayesian Modeling

• Non-Bayesian model: ‖f‖k ≤ B for some B > 0 (i.e., f is smooth w.r.t. the RKHS
norm – smaller B means more smooth)

• Non-Bayesian confidence bound (simplified version): If

β
1/2
t = B +

√
2(γt−1 + ln(1/δ)),

then with probability at least 1− δ, it holds that

µt−1(x)−
√
βtσt−1(x)︸                                ︷︷                                ︸

LCB

≤ f(x) ≤ µt−1(x) +
√
βtσt−1(x)︸                                ︷︷                                ︸

UCB

(Same formula as before, but different βt)
I Definitions: γt−1 is the maximum information gain we introduced previously
I Note: We are using Bayesian update equations (µt and σt) even though the

model is non-Bayesian

• GP-UCB algorithm: As before, just use the new βt instead!
I Similar regret bounds as the Bayesian case then follow
I Caveat: βt is now a lot larger for (e.g.) the Matérn kernel; improvements exist

CS6216 Advanced Topics in Machine Learning | Jonathan Scarlett (scarlett@comp.nus.edu.sg) Slide 23/ 27



Bayesian Optimization with Non-Bayesian Modeling

• Non-Bayesian model: ‖f‖k ≤ B for some B > 0 (i.e., f is smooth w.r.t. the RKHS
norm – smaller B means more smooth)

• Non-Bayesian confidence bound (simplified version): If

β
1/2
t = B +

√
2(γt−1 + ln(1/δ)),

then with probability at least 1− δ, it holds that

µt−1(x)−
√
βtσt−1(x)︸                                ︷︷                                ︸

LCB

≤ f(x) ≤ µt−1(x) +
√
βtσt−1(x)︸                                ︷︷                                ︸

UCB

(Same formula as before, but different βt)
I Definitions: γt−1 is the maximum information gain we introduced previously
I Note: We are using Bayesian update equations (µt and σt) even though the

model is non-Bayesian

• GP-UCB algorithm: As before, just use the new βt instead!
I Similar regret bounds as the Bayesian case then follow
I Caveat: βt is now a lot larger for (e.g.) the Matérn kernel; improvements exist

CS6216 Advanced Topics in Machine Learning | Jonathan Scarlett (scarlett@comp.nus.edu.sg) Slide 23/ 27



Bayesian Optimization with Non-Bayesian Modeling

• Non-Bayesian model: ‖f‖k ≤ B for some B > 0 (i.e., f is smooth w.r.t. the RKHS
norm – smaller B means more smooth)

• Non-Bayesian confidence bound (simplified version): If

β
1/2
t = B +

√
2(γt−1 + ln(1/δ)),

then with probability at least 1− δ, it holds that

µt−1(x)−
√
βtσt−1(x)︸                                ︷︷                                ︸

LCB

≤ f(x) ≤ µt−1(x) +
√
βtσt−1(x)︸                                ︷︷                                ︸

UCB

(Same formula as before, but different βt)
I Definitions: γt−1 is the maximum information gain we introduced previously
I Note: We are using Bayesian update equations (µt and σt) even though the

model is non-Bayesian

• GP-UCB algorithm: As before, just use the new βt instead!
I Similar regret bounds as the Bayesian case then follow
I Caveat: βt is now a lot larger for (e.g.) the Matérn kernel; improvements exist

CS6216 Advanced Topics in Machine Learning | Jonathan Scarlett (scarlett@comp.nus.edu.sg) Slide 23/ 27



Summary:
I The RKHS associated with k is a (Hilbert) space of functions
I The RKHS norm ‖f‖k measures the level of smoothness of f , where

the precise meaning of “smoothness” is dictated by the kernel k

I This gives another viewpoint on kernel ridge regression, and provides
many other kernelized algorithms (not covered here)

I With only minor changes, the same Bayesian Optimization algorithms
work with rigorous guarantees even under non-Bayesian (RKHS)
modeling assumptions (namely, that f is any function with ‖f‖k

below some threshold)
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Further Results and Problem Settings

• Apart from nicely complementing the Bayesian theoretical results and giving useful
general tools for kernel methods, the RKHS-based model has been found to be more
amenable to various theoretical studies and problem settings.

• Example 1: Algorithm-independent lower bounds (arXiv:1706.00090)

• Example 2: Reinforcement learning (arXiv:1805.08052)

• Example 3: Safety constraints (http://proceedings.mlr.press/v37/sui15.html)
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Useful Materials

• Full YouTube course on kernel methods (including RKHS):
I Lecturers: Julien Mairal and Jean-Philippe
I Link: https://www.youtube.com/channel/UCotztBOmGVl9pPGIN4YqcRw/videos

• Other resources on kernel methods:
I Mathematical introduction: From Zero to Reproducing Kernel Hilbert Spaces in

Twelve Pages or Less
I Comprehensive textbook: Kernel Methods in Machine Learning (Hofmann,

Schölkopf, and Smola)
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