Gaussian Process Methods in Machine Learning

Jonathan Scarlett
scarlett@comp.nus.edu.sg
Lecture 4: GP Methods in Non-Bayesian (RKHS) Settings

CS6216, Semester 1, AY2021/22

National University
of Singapore

Outline of Lectures

- Lecture 0: Bayesian Modeling and Regression
- Lecture 1: Gaussian Processes, Kernels, and Regression
- Lecture 2: Optimization with Gaussian Processes
- Lecture 3: Advanced Bayesian Optimization Methods
- Lecture 4: GP Methods in Non-Bayesian Settings

Outline: This Lecture

- This lecture

1. Kernels, feature maps, and the PSD property
2. Reproducing Kernel Hilbert Space (RKHS)
3. Kernel ridge regression and the representer theorem
4. Bayesian optimization with non-Bayesian modeling

Motivation for Non-Bayesian Modeling

- We looked at some Bayesian Optimization theory and algorithms under the assumption that f is drawn from a GP with a known kernel

Motivation for Non-Bayesian Modeling

- We looked at some Bayesian Optimization theory and algorithms under the assumption that f is drawn from a GP with a known kernel
- This lecture: We can still use the same Bayesian methods even under non-Bayesian modeling, with similar guarantees
- First, we return to the study of general kernel methods

Recap on Kernels in Machine Learning

- Recap on kernels in machine learning:
- Many machine learning algorithms depend on the data $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ only through the inner products $\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle$
- Example 1: Ridge regression
- Example 2: Dual form of Support Vector Machine (SVM)
- Example 3: Nearest-neighbor methods
- We know that moving to feature spaces can help, so we could map each $\mathbf{x}_{i} \rightarrow \phi\left(x_{i}\right)$ and apply the algorithm using $\left\langle\phi\left(\mathbf{x}_{i}\right), \phi\left(\mathbf{x}_{j}\right)\right\rangle$
- A kernel function $k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ can be thought of as an inner product in a possibly implicit feature space
- No need to explicitly map to feature space at all!
- The implicit space may be infinite-dimensional (e.g., SE and Matérn), so we could not explicitly map to it even if we wanted to

PSD Kernel: Definition and Theorem

- Definition. A function $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is said to be a positive semidefinite (PSD) kernel if (i) it is symmetric, i.e., $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=k\left(\mathbf{x}^{\prime}, \mathbf{x}\right)$; (ii) For any integer $m>0$ and any set of inputs $\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}$ in \mathbb{R}^{d}, the following matrix is positive semi-definite:

$$
\mathbf{K}=\left[\begin{array}{ccc}
k\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) & \cdots & k\left(\mathbf{x}_{1}, \mathbf{x}_{m}\right) \\
\vdots & \ddots & \vdots \\
k\left(\mathbf{x}_{m}, \mathbf{x}_{1}\right) & \cdots & k\left(\mathbf{x}_{m}, \mathbf{x}_{m}\right)
\end{array}\right] \succeq \mathbf{0}
$$

This matrix, with (i, j)-th entry equal to $k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$, is called the kernel matrix (you might also see it referred to as the Gram matrix).

PSD Kernel: Definition and Theorem

- Definition. A function $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is said to be a positive semidefinite (PSD) kernel if (i) it is symmetric, i.e., $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=k\left(\mathbf{x}^{\prime}, \mathbf{x}\right)$; (ii) For any integer $m>0$ and any set of inputs $\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}$ in \mathbb{R}^{d}, the following matrix is positive semi-definite:

$$
\mathbf{K}=\left[\begin{array}{ccc}
k\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) & \ldots & k\left(\mathbf{x}_{1}, \mathbf{x}_{m}\right) \\
\vdots & \ddots & \vdots \\
k\left(\mathbf{x}_{m}, \mathbf{x}_{1}\right) & \ldots & k\left(\mathbf{x}_{m}, \mathbf{x}_{m}\right)
\end{array}\right] \succeq \mathbf{0} .
$$

This matrix, with (i, j)-th entry equal to $k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$, is called the kernel matrix (you might also see it referred to as the Gram matrix).

- Theorem. A function $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a PSD kernel if and only if it equals an inner product $\left\langle\phi(\mathbf{x}), \phi\left(\mathbf{x}^{\prime}\right)\right\rangle$ for some (possibly infinite dimensional) map $\phi(\mathbf{x})$.
- Note: May not always be the "standard" inner product

Proof of "if" part

- Proof of the "if" part:
- For simplicity, focus on the case that $\phi(\cdot)$ has finite length and the inner product is the standard one (the proof extends to the general case).
- The inner product is certainly symmetric, and the kernel matrix can be written as $\mathbf{K}=\boldsymbol{\Phi}^{T} \boldsymbol{\Phi}$, where $\boldsymbol{\Phi} \in \mathbb{R}^{\operatorname{dim}(\phi) \times m}$ contains the m feature vectors $\left\{\phi\left(\mathbf{x}_{t}\right)\right\}_{t=1}^{m}$ as columns.
- The matrix $\mathbf{K}=\boldsymbol{\Phi}^{T} \boldsymbol{\Phi}$ is certainly positive semidefinite, since for any \mathbf{z} we have $\mathbf{z}^{T} \boldsymbol{\Phi}^{T} \mathbf{\Phi} \mathbf{z}=(\mathbf{\Phi} \mathbf{z})^{T} \mathbf{\Phi} \mathbf{z}=\|\boldsymbol{\Phi} \mathbf{z}\|^{2} \geq 0$.

Proof of "only if" part

- Proof of the "only if" part - finite domain:
- Suppose that \mathbf{x} can only take values in a finite set $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\}$.
- The entire function is described by an $m \times m$ matrix $\mathbf{K}_{\text {full }}$ with (i, j)-th entry $k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$.
- By assumption $\mathbf{K}_{\text {full }}$ is a PSD matrix, and then it is known from linear algebra that it admits an eigenvalue decomposition of the form $\mathbf{K}_{\text {full }}=\sum_{j=1}^{m} \lambda_{j} \mathbf{v}_{j} \mathbf{v}_{j}^{T}$.
- This fact allows us to consider a length- m feature map with i-th entry given by $\phi\left(\mathbf{x}_{j}\right)=\sqrt{\lambda_{i}}\left(\mathbf{v}_{i}\right)_{j}$, where $\left(\mathbf{v}_{i}\right)_{j}$ is the j-th entry of \mathbf{v}_{i}.

Proof of "only if" part

- Proof of the "only if" part - finite domain:
- Suppose that \mathbf{x} can only take values in a finite set $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\}$.
- The entire function is described by an $m \times m$ matrix $\mathbf{K}_{\text {full }}$ with (i, j)-th entry $k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$.
- By assumption $\mathbf{K}_{\text {full }}$ is a PSD matrix, and then it is known from linear algebra that it admits an eigenvalue decomposition of the form $\mathbf{K}_{\text {full }}=\sum_{j=1}^{m} \lambda_{j} \mathbf{v}_{j} \mathbf{v}_{j}^{T}$.
- This fact allows us to consider a length- m feature map with i-th entry given by $\phi\left(\mathbf{x}_{j}\right)=\sqrt{\lambda_{i}}\left(\mathbf{v}_{i}\right)_{j}$, where $\left(\mathbf{v}_{i}\right)_{j}$ is the j-th entry of \mathbf{v}_{i}.
- Proof of the "only if" part - compact domain w/ mild continuity assumptions:
- The above approach can be extended to more general scenarios via Mercer's theorem, and provides an infinite-dimensional analog of the eigenvalue decomposition. (See also Bochner's theorem based on the Fourier transform.)

Proof of "only if" part

- Proof of the "only if" part - finite domain:
- Suppose that \mathbf{x} can only take values in a finite set $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\}$.
- The entire function is described by an $m \times m$ matrix $\mathbf{K}_{\text {full }}$ with (i, j)-th entry $k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$.
- By assumption $\mathbf{K}_{\text {full }}$ is a PSD matrix, and then it is known from linear algebra that it admits an eigenvalue decomposition of the form $\mathbf{K}_{\text {full }}=\sum_{j=1}^{m} \lambda_{j} \mathbf{v}_{j} \mathbf{v}_{j}^{T}$.
- This fact allows us to consider a length- m feature map with i-th entry given by $\phi\left(\mathbf{x}_{j}\right)=\sqrt{\lambda_{i}}\left(\mathbf{v}_{i}\right)_{j}$, where $\left(\mathbf{v}_{i}\right)_{j}$ is the j-th entry of \mathbf{v}_{i}.
- Proof of the "only if" part - compact domain w/ mild continuity assumptions:
- The above approach can be extended to more general scenarios via Mercer's theorem, and provides an infinite-dimensional analog of the eigenvalue decomposition. (See also Bochner's theorem based on the Fourier transform.)
- Proof of the "only if" part - general case:
- Can be proved via the notion of a Reproducing Kernel Hilbert Space (RKHS), which we will turn to shortly (but we won't complete this proof).

Operations that Preserve the PSD Kernel Property

- Claim. If k_{1} and k_{2} are kernels, then so are the following:

1. $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=f(\mathbf{x}) k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) f\left(\mathbf{x}^{\prime}\right)$ for some function f
2. $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+k_{2}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$
3. $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) k_{2}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$

These properties can be useful when trying to verify whether a given $k(\cdot, \cdot)$ is indeed a PSD kernel

Operations that Preserve the PSD Kernel Property

- Claim. If k_{1} and k_{2} are kernels, then so are the following:

1. $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=f(\mathbf{x}) k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) f\left(\mathbf{x}^{\prime}\right)$ for some function f
2. $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+k_{2}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$
3. $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) k_{2}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$

These properties can be useful when trying to verify whether a given $k(\cdot, \cdot)$ is indeed a PSD kernel

- Proof. See Lecture 5 at
https://www.comp.nus.edu.sg/~scarlett/CS5339_notes/

Note:

To be rigorous/robust when applying the kernel trick, the selected kernel should satisfy the PSD property

RKHS: Motivating Example

- For each $c \in \mathbb{R}$, consider defining

$$
k_{c}(x)=e^{-(x-c)^{2}}
$$

Imagine producing some $f(x)$ as a weighted combination of these k_{c} 's:

$$
f(x)=\sum_{i=1}^{m} \alpha_{i} k_{c_{i}}(x)
$$

for some $\alpha_{1}, \ldots, \alpha_{m}$ and c_{1}, \ldots, c_{m}. What sorts of functions can we produce?

RKHS: Motivating Example

- For each $c \in \mathbb{R}$, consider defining

$$
k_{c}(x)=e^{-(x-c)^{2}}
$$

Imagine producing some $f(x)$ as a weighted combination of these k_{c} 's:

$$
f(x)=\sum_{i=1}^{m} \alpha_{i} k_{c_{i}}(x)
$$

for some $\alpha_{1}, \ldots, \alpha_{m}$ and c_{1}, \ldots, c_{m}. What sorts of functions can we produce?

- Example function: $(m=3)$

- Note: Each $k_{c_{i}}$ has a Gaussian shape, but their combination is more complex
- Idea: Treat the $k_{c}(\cdot)$ as basis functions for a function space, and additionally define geometric notions of inner product and norm in this function space.
- Perform regression (or classification / optimization) using functions from this space.

Hilbert Space

- Mathematically, a vector space is a set coupled with operations of addition and scalar multiplication that obey natural axioms (e.g., adding any two elements of the set produced another element of the set)
- A Hilbert space \mathcal{H} is a vector space that additionally has a notion of inner product $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ and a norm $\|\cdot\|_{\mathcal{H}}$, and satisfies a technical condition called completeness (roughly regarding limits of elements of \mathcal{H} being well-behaved, e.g., like the reals but unlike the rationals)

Hilbert Space

- Mathematically, a vector space is a set coupled with operations of addition and scalar multiplication that obey natural axioms (e.g., adding any two elements of the set produced another element of the set)
- A Hilbert space \mathcal{H} is a vector space that additionally has a notion of inner product $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ and a norm $\|\cdot\|_{\mathcal{H}}$, and satisfies a technical condition called completeness (roughly regarding limits of elements of \mathcal{H} being well-behaved, e.g., like the reals but unlike the rationals)
- Example 1. For fixed d, the space \mathbb{R}^{d} is a Hilbert space with the usual notions of addition $(\mathbf{u}+\mathbf{v})$, scalar multiplication (cu), inner product ($\langle\mathbf{u}, \mathbf{v}\rangle$), and norm $(\|\mathbf{u}\|)$.
- Example 2. Let \mathcal{H} be the set of all functions f mapping $[0,1] \rightarrow \mathbb{R}$ such that $\int_{0}^{1}|f(x)|^{2} d x<\infty$. Define the following operations:
- Adding $f_{1} \in \mathcal{H}$ and $f_{2} \in \mathcal{H}$ gives $f=f_{1}+f_{2}$, where $f(x)=f_{1}(x)+f_{2}(x)$.
- Scalar multiplication of $c \in \mathbb{R}$ by $f_{0} \in \mathcal{H}$ gives $f=c f_{0}$, where $f(x)=c f_{0}(x)$.
- The inner product of $f_{1} \in \mathcal{H}$ and $f_{2} \in \mathcal{H}$ is $\int_{0}^{1} f_{1}(x) f_{2}(x) d x$.
- The norm of $f \in \mathcal{H}$ is $\|f\|_{\mathcal{H}}=\sqrt{\int_{0}^{1}|f(x)|^{2} d x}$.

This is an infinite-dimensional Hilbert space.

RKHS: General Definition

Reproducing Kernel Hilbert Space (RKHS)

A Reproducing Kernel Hilbert Space (RKHS) \mathcal{H} with respect to a kernel k is a Hilbert space with inner product $\langle\cdot, \cdot\rangle_{k}$ satisfying the following:
(i) For all \mathbf{x}, \mathcal{H} contains the function $\delta_{\mathbf{x}}(\cdot)$ defined as $\delta_{\mathbf{x}}\left(\mathbf{x}^{\prime}\right)=k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$.
(ii) The following reproducing property holds for all $f \in \mathcal{H}$ and all \mathbf{x} :

$$
\left\langle f, \delta_{\mathbf{x}}\right\rangle_{k}=f(\mathbf{x})
$$

RKHS: General Definition

Reproducing Kernel Hilbert Space (RKHS)

A Reproducing Kernel Hilbert Space (RKHS) \mathcal{H} with respect to a kernel k is a Hilbert space with inner product $\langle\cdot, \cdot\rangle_{k}$ satisfying the following:
(i) For all \mathbf{x}, \mathcal{H} contains the function $\delta_{\mathbf{x}}(\cdot)$ defined as $\delta_{\mathbf{x}}\left(\mathbf{x}^{\prime}\right)=k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$.
(ii) The following reproducing property holds for all $f \in \mathcal{H}$ and all \mathbf{x} :

$$
\left\langle f, \delta_{\mathbf{x}}\right\rangle_{k}=f(\mathbf{x})
$$

- Example: If \mathcal{H} is \mathbb{R}^{d} with the linear kernel $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle$, then for a fixed $\mathbf{c} \in \mathbb{R}^{d}$, we have $\delta_{\mathbf{c}}(\mathbf{x})=\langle\mathbf{c}, \mathbf{x}\rangle=\sum_{i=1}^{d} c_{i} x_{i}$. Then:
- Property (i) states that \mathcal{H} contains all linear functions of \mathbf{x}, i.e., $f_{\mathbf{c}}(\mathbf{x})=\langle\mathbf{c}, \mathbf{x}\rangle$
- Since the sum of linear functions is still linear, further combining these "basis" functions doesn't expand the space any further.
- Property (ii) holds under the RKHS inner product $\left\langle\delta_{\mathbf{c}}, \delta_{\mathbf{c}^{\prime}}\right\rangle_{k}=\left\langle\mathbf{c}, \mathbf{c}^{\prime}\right\rangle$.
- Notes:
- See Lecture 3 of YouTube kernel lectures for a more sophisticated example
- Given a PSD kernel, the RKHS always exists and is unique
- Since $\delta_{\mathbf{x}}\left(\mathbf{x}^{\prime}\right)$ is in the RKHS, so as any f of the form $f\left(\mathbf{x}^{\prime}\right)=\sum_{i} \alpha_{i} \delta_{\mathbf{x}_{i}}\left(\mathbf{x}^{\prime}\right)$.

RKHS Inner Product and Norm

- The RKHS inner product $\langle\cdot, \cdot\rangle_{k}$ generalizes the normal "dot product" you are used to, though not always in the most intuitive way.
- Given the RKHS inner product, $\langle\cdot, \cdot\rangle_{k}$, we can define the RKHS norm as
$\|f\|_{k}=\sqrt{\langle f, f\rangle_{k}}$, which roughly measures the smoothness of f.
- Gaussian process priors encode statistical smoothness properties, but the RKHS norm encodes deterministic smoothness properties
- The useful properties of inner product and norm still apply, e.g.:
- Linearity: $\left\langle f_{1}+f_{2}, g\right\rangle_{k}=\left\langle f_{1}, g\right\rangle_{k}+\left\langle f_{2}, g\right\rangle_{k}$
- Cauchy-Schwarz: $\left|\langle f, g\rangle_{k}\right| \leq\|f\|_{k}\|g\|_{k}$
- Triangle inequality: $\left\|f_{1}+f_{2}\right\|_{k} \leq\left\|f_{1}\right\|_{k}+\left\|f_{2}\right\|_{k}$

RKHS Norm

- Example 1: As shown above, for linear kernels all functions can be written as $f_{\mathbf{c}}(\mathbf{x})=\mathbf{c}^{T} \mathbf{x}$, and the RKHS norm is given by $\left\|f_{\mathbf{c}}\right\|_{k}=\|\mathbf{c}\|$. Smaller \mathbf{c} entries means a smoother function (slower varying).
- Example 2: This function we saw earlier is smooth (low $\|f\|_{k}$) w.r.t. the RBF kernel, but would become less so as we add more bumps, rapid fluctuations, etc.:

- Note: Even tiny changes (e.g., a sudden change in gradient) can make the RKHS norm jump to $+\infty$ (or more precisely, the function is no longer part of the RKHS)

RKHS Norm

- Example 1: As shown above, for linear kernels all functions can be written as $f_{\mathbf{c}}(\mathbf{x})=\mathbf{c}^{T} \mathbf{x}$, and the RKHS norm is given by $\left\|f_{\mathbf{c}}\right\|_{k}=\|\mathbf{c}\|$. Smaller \mathbf{c} entries means a smoother function (slower varying).
- Example 2: This function we saw earlier is smooth (low $\|f\|_{k}$) w.r.t. the RBF kernel, but would become less so as we add more bumps, rapid fluctuations, etc.:

- Note: Even tiny changes (e.g., a sudden change in gradient) can make the RKHS norm jump to $+\infty$ (or more precisely, the function is no longer part of the RKHS)
- Fourier view: If you are familiar with Fourier analysis, it's useful to know that for stationary kernels (i.e., $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ only depends on $\left.\mathbf{x}-\mathbf{x}^{\prime}\right)$, we can write the RKHS norm in terms of Fourier transforms:

$$
\|f\|_{k}^{2}=\int \frac{|F(\boldsymbol{\xi})|^{2}}{K(\boldsymbol{\xi})} d \boldsymbol{\xi}
$$

where $F(\cdot)$ and $K(\cdot)$ are the Fourier transforms of the function and the kernel.

Note:

Every PSD kernel has a unique RKHS that provides a norm measuring the function's smoothness (according to that kernel).

("smooth" for one kernel may be "non-smooth" for another kernel).

Kernel Ridge Regression

- Previously we derived kernel ridge regression by finding the closed-form solution to $\min _{\boldsymbol{\theta}} \sum_{i=1}^{n}\left(y_{i}-\boldsymbol{\theta}^{T} \mathbf{x}_{i}\right)^{2}+\lambda\|\boldsymbol{\theta}\|^{2}$, expressing it in terms of inner products, and replacing those by kernel evaluations.
- We are now in a position to take a different view based on the RKHS norm:

$$
\hat{f}=\underset{f \in \mathcal{H}_{k}}{\arg \min } \sum_{i=1}^{n}\left(y_{i}-f\left(\mathbf{x}_{i}\right)\right)^{2}+\lambda\|f\|_{k}^{2}
$$

For the linear kernel $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle$, it can be checked that this reduces to standard ridge regression.

- Problem. Directly solving a minimization problem over f (lying in a Hilbert space) is non-standard and difficult - how to proceed?

Representer Theorem (I)

Representer Theorem:

Consider any minimization problem of the form

$$
\operatorname{minimize}_{f} \Psi\left(f\left(\mathbf{x}_{1}\right), \ldots, f\left(\mathbf{x}_{n}\right),\|f\|_{k}^{2}\right)
$$

for some function $\Psi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$. Then, if Ψ is a strictly increasing function with respect to its final argument, the optimal solution can be expressed as

$$
f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)
$$

for some $\alpha_{1}, \ldots, \alpha_{n}$ (i.e. $f=\sum_{i=1}^{n} \alpha_{i} \delta_{\mathbf{x}_{i}}$).

Representer Theorem (1)

Representer Theorem:

Consider any minimization problem of the form

$$
\operatorname{minimize}_{f} \Psi\left(f\left(\mathbf{x}_{1}\right), \ldots, f\left(\mathbf{x}_{n}\right),\|f\|_{k}^{2}\right)
$$

for some function $\Psi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$. Then, if Ψ is a strictly increasing function with respect to its final argument, the optimal solution can be expressed as

$$
f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)
$$

for some $\alpha_{1}, \ldots, \alpha_{n}$ (i.e. $f=\sum_{i=1}^{n} \alpha_{i} \delta_{\mathbf{x}_{i}}$).

- Proof idea. We can decompose any f into $f_{\mathbf{X}}+f_{\mathbf{X}}^{\perp}$, where $f_{\mathbf{X}}$ lies in the space of functions admitting the above form, and $f_{\mathbf{X}}^{\perp}$ lies in the orthogonal space. Then replacing $f_{\mathbf{X}}^{\perp}$ by zero keeps every $f\left(\mathbf{x}_{i}\right)$ identical, but reduces $\|f\|_{k}$.
- Implication: We can reduce an infinite-dimensional optimization over f to a finite-dimensional optimization over $\boldsymbol{\alpha}=\left[\alpha_{1}, \ldots, \alpha_{n}\right]^{T}$

Representer Theorem (II)

- To substitute $f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)$ into the original formulation of minimizing $\Psi\left(f\left(\mathbf{x}_{1}\right), \ldots, f\left(\mathbf{x}_{n}\right),\|f\|_{k}^{2}\right)$, we would like to express each $f\left(\mathbf{x}_{j}\right)$ and $\|f\|_{k}^{2}$ in terms of $\boldsymbol{\alpha}=\left[\alpha_{1}, \ldots, \alpha_{n}\right]^{T}$.
- We will also make use of the $n \times n$ pairwise kernel matrix \mathbf{K}

Representer Theorem (II)

- To substitute $f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)$ into the original formulation of minimizing $\Psi\left(f\left(\mathbf{x}_{1}\right), \ldots, f\left(\mathbf{x}_{n}\right),\|f\|_{k}^{2}\right)$, we would like to express each $f\left(\mathbf{x}_{j}\right)$ and $\|f\|_{k}^{2}$ in terms of $\boldsymbol{\alpha}=\left[\alpha_{1}, \ldots, \alpha_{n}\right]^{T}$.
- We will also make use of the $n \times n$ pairwise kernel matrix \mathbf{K}
- For $f\left(\mathbf{x}_{j}\right)$, we simply write

$$
f\left(\mathbf{x}_{j}\right)=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=[\mathbf{K} \boldsymbol{\alpha}]_{j}
$$

where $[\mathbf{K} \boldsymbol{\alpha}]_{j}$ is the j-th entry of the vector $\mathbf{K} \boldsymbol{\alpha} \in \mathbb{R}^{n}$

- For $\|f\|_{k}^{2}$, substituting f and expanding the square gives

$$
\|f\|_{k}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\boldsymbol{\alpha}^{T} \mathbf{K} \boldsymbol{\alpha}
$$

Representer Theorem (II)

- To substitute $f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)$ into the original formulation of minimizing $\Psi\left(f\left(\mathbf{x}_{1}\right), \ldots, f\left(\mathbf{x}_{n}\right),\|f\|_{k}^{2}\right)$, we would like to express each $f\left(\mathbf{x}_{j}\right)$ and $\|f\|_{k}^{2}$ in terms of $\boldsymbol{\alpha}=\left[\alpha_{1}, \ldots, \alpha_{n}\right]^{T}$.
- We will also make use of the $n \times n$ pairwise kernel matrix \mathbf{K}
- For $f\left(\mathbf{x}_{j}\right)$, we simply write

$$
f\left(\mathbf{x}_{j}\right)=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=[\mathbf{K} \boldsymbol{\alpha}]_{j}
$$

where $[\mathbf{K} \boldsymbol{\alpha}]_{j}$ is the j-th entry of the vector $\mathbf{K} \boldsymbol{\alpha} \in \mathbb{R}^{n}$

- For $\|f\|_{k}^{2}$, substituting f and expanding the square gives

$$
\|f\|_{k}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\boldsymbol{\alpha}^{T} \mathbf{K} \boldsymbol{\alpha}
$$

- We will proceed with the ridge regression example, but this approach applies even to methods without closed-form solutions (e.g., logistic regression)

Application to Ridge Regression

- Returning to the problem

$$
\hat{f}=\underset{f}{\arg \min } \sum_{i=1}^{n}\left(y_{i}-f\left(\mathbf{x}_{i}\right)\right)^{2}+\lambda\|f\|_{k}^{2},
$$

we can substitute the expressions on the previous slide to get the equivalent problem

$$
\hat{\boldsymbol{\alpha}}=\underset{\boldsymbol{\alpha} \in \mathbb{R}^{n}}{\arg \min }(\mathbf{K} \boldsymbol{\alpha}-\mathbf{y})^{T}(\mathbf{K} \boldsymbol{\alpha}-\mathbf{y})+\boldsymbol{\alpha}^{T} \mathbf{K} \boldsymbol{\alpha} .
$$

Application to Ridge Regression

- Returning to the problem

$$
\hat{f}=\underset{f}{\arg \min } \sum_{i=1}^{n}\left(y_{i}-f\left(\mathbf{x}_{i}\right)\right)^{2}+\lambda\|f\|_{k}^{2},
$$

we can substitute the expressions on the previous slide to get the equivalent problem

$$
\hat{\boldsymbol{\alpha}}=\underset{\boldsymbol{\alpha} \in \mathbb{R}^{n}}{\arg \min }(\mathbf{K} \boldsymbol{\alpha}-\mathbf{y})^{T}(\mathbf{K} \boldsymbol{\alpha}-\mathbf{y})+\boldsymbol{\alpha}^{T} \mathbf{K} \boldsymbol{\alpha} .
$$

- Since this is finite-dimensional, it can be solved using standard optimization solvers, though this is also a rare case where we get a closed-form solution:

$$
\hat{\boldsymbol{\alpha}}=(\mathbf{K}+\lambda \mathbf{I})^{-1} \mathbf{y} .
$$

Application to Ridge Regression

- Returning to the problem

$$
\hat{f}=\underset{f}{\arg \min } \sum_{i=1}^{n}\left(y_{i}-f\left(\mathbf{x}_{i}\right)\right)^{2}+\lambda\|f\|_{k}^{2},
$$

we can substitute the expressions on the previous slide to get the equivalent problem

$$
\hat{\boldsymbol{\alpha}}=\underset{\alpha \in \mathbb{R}^{n}}{\arg \min }(\mathbf{K} \boldsymbol{\alpha}-\mathbf{y})^{T}(\mathbf{K} \boldsymbol{\alpha}-\mathbf{y})+\boldsymbol{\alpha}^{T} \mathbf{K} \boldsymbol{\alpha} .
$$

- Since this is finite-dimensional, it can be solved using standard optimization solvers, though this is also a rare case where we get a closed-form solution:

$$
\hat{\boldsymbol{\alpha}}=(\mathbf{K}+\lambda \mathbf{I})^{-1} \mathbf{y} .
$$

- We now apply $f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)$ one more time: Defining $\mathbf{k}(\mathbf{x})=\left[k\left(\mathbf{x}_{1}, \mathbf{x}\right), \ldots, k\left(\mathbf{x}_{n}, \mathbf{x}\right)\right]^{T}$ yields $\hat{f}(\mathbf{x})=\mathbf{k}(\mathbf{x})^{T} \boldsymbol{\alpha}$, and substituting $\hat{\boldsymbol{\alpha}}$ gives

$$
\hat{f}(\mathbf{x})=\mathbf{k}(\mathbf{x})^{T}(\mathbf{K}+\lambda \mathbf{I})^{-1} \mathbf{y}
$$

which is exactly what we got via the kernel trick (or the Gaussian Process approach).

Note:

The representer theorem reduces an infinite-dimensional optimization problem to a finite-dimensional one, and serves as a useful alternative to the kernel trick for applying kernel methods.

Bayesian Optimization: Recap

black-box function optimization:

$$
\mathbf{x}^{\star} \in \underset{x \in D \subseteq \mathbb{R}^{d}}{\arg \max } f(\mathbf{x})
$$

- Bayesian model: f is a (zero-mean) GP with kernel k
- Bayesian confidence bound: With probability at least $1-\delta$, it holds for all $\mathbf{x} \in D$ and $t>0$ that

$$
\underbrace{\mu_{t-1}(\mathbf{x})-\sqrt{\beta_{t}} \sigma_{t-1}(\mathbf{x})}_{\text {LCB }} \leq f(\mathbf{x}) \leq \underbrace{\mu_{t-1}(\mathbf{x})+\sqrt{\beta_{t}} \sigma_{t-1}(\mathbf{x})}_{\text {UCB }}
$$

- GP-UCB algorithm: Choose \mathbf{x}_{t} to maximize the UCB (optimism under uncertainty)

Bayesian Optimization with Non－Bayesian Modeling

－Non－Bayesian model：$\|f\|_{k} \leq B$ for some $B>0$（i．e．，f is smooth w．r．t．the RKHS norm－smaller B means more smooth）

Bayesian Optimization with Non-Bayesian Modeling

- Non-Bayesian model: $\|f\|_{k} \leq B$ for some $B>0$ (i.e., f is smooth w.r.t. the RKHS norm - smaller B means more smooth)
- Non-Bayesian confidence bound (simplified version): If

$$
\beta_{t}^{1 / 2}=B+\sqrt{2\left(\gamma_{t-1}+\ln (1 / \delta)\right)}
$$

then with probability at least $1-\delta$, it holds that

$$
\underbrace{\mu_{t-1}(\mathbf{x})-\sqrt{\beta_{t}} \sigma_{t-1}(\mathbf{x})}_{\mathrm{LCB}} \leq f(\mathbf{x}) \leq \underbrace{\mu_{t-1}(\mathbf{x})+\sqrt{\beta_{t}} \sigma_{t-1}(\mathbf{x})}_{\mathrm{UCB}}
$$

(Same formula as before, but different β_{t})

- Definitions: γ_{t-1} is the maximum information gain we introduced previously
- Note: We are using Bayesian update equations (μ_{t} and σ_{t}) even though the model is non-Bayesian

Bayesian Optimization with Non-Bayesian Modeling

- Non-Bayesian model: $\|f\|_{k} \leq B$ for some $B>0$ (i.e., f is smooth w.r.t. the RKHS norm - smaller B means more smooth)
- Non-Bayesian confidence bound (simplified version): If

$$
\beta_{t}^{1 / 2}=B+\sqrt{2\left(\gamma_{t-1}+\ln (1 / \delta)\right)}
$$

then with probability at least $1-\delta$, it holds that

$$
\underbrace{\mu_{t-1}(\mathbf{x})-\sqrt{\beta_{t}} \sigma_{t-1}(\mathbf{x})}_{\mathrm{LCB}} \leq f(\mathbf{x}) \leq \underbrace{\mu_{t-1}(\mathbf{x})+\sqrt{\beta_{t}} \sigma_{t-1}(\mathbf{x})}_{\mathrm{UCB}}
$$

(Same formula as before, but different β_{t})

- Definitions: γ_{t-1} is the maximum information gain we introduced previously
- Note: We are using Bayesian update equations (μ_{t} and σ_{t}) even though the model is non-Bayesian
- GP-UCB algorithm: As before, just use the new β_{t} instead!
- Similar regret bounds as the Bayesian case then follow
- Caveat: β_{t} is now a lot larger for (e.g.) the Matérn kernel; improvements exist

Summary:

- The RKHS associated with k is a (Hilbert) space of functions
- The RKHS norm $\|f\|_{k}$ measures the level of smoothness of f, where the precise meaning of "smoothness" is dictated by the kernel k
- This gives another viewpoint on kernel ridge regression, and provides many other kernelized algorithms (not covered here)
- With only minor changes, the same Bayesian Optimization algorithms work with rigorous guarantees even under non-Bayesian (RKHS) modeling assumptions (namely, that f is any function with $\|f\|_{k}$ below some threshold)

Further Results and Problem Settings

- Apart from nicely complementing the Bayesian theoretical results and giving useful general tools for kernel methods, the RKHS-based model has been found to be more amenable to various theoretical studies and problem settings.
- Example 1: Algorithm-independent lower bounds (arXiv:1706.00090)
- Example 2: Reinforcement learning (arXiv:1805.08052)
- Example 3: Safety constraints (http://proceedings.mlr.press/v37/sui15.html)

Useful Materials

- Full YouTube course on kernel methods (including RKHS):
- Lecturers: Julien Mairal and Jean-Philippe
- Link: https://www.youtube.com/channel/UCotztBOmGV19pPGIN4YqcRw/videos
- Other resources on kernel methods:
- Mathematical introduction: From Zero to Reproducing Kernel Hilbert Spaces in Twelve Pages or Less
- Comprehensive textbook: Kernel Methods in Machine Learning (Hofmann, Schölkopf, and Smola)

References I

[1] Sayak Ray Chowdhury and Aditya Gopalan.
On kernelized multi-armed bandits.
In International Conference on Machine Learning, 2017.
[2] Sayak Ray Chowdhury and Aditya Gopalan.
Online learning in kernelized markov decision processes.
In Int. Conf. Art. Intel. Stats. (AISTATS), pages 3197-3205, 2019.
[3] David Janz, David Burt, and Javier González.
Bandit optimisation of functions in the matérn kernel rkhs.
In International Conference on Artificial Intelligence and Statistics, pages 2486-2495. PMLR, 2020.
[4] Jonathan Scarlett, Ilija Bogunovic, and Volkan Cevher.
Lower bounds on regret for noisy Gaussian process bandit optimization.
In Conf. Learn. Theory (COLT). 2017.
[5] N. Srinivas, A. Krause, S.M. Kakade, and M. Seeger.
Information-theoretic regret bounds for Gaussian process optimization in the bandit setting. IEEE Trans. Inf. Theory, 58(5):3250-3265, May 2012.
[6] Yanan Sui, Alkis Gotovos, Joel Burdick, and Andreas Krause. Safe exploration for optimization with Gaussian processes.
In Proc. Int. Conf. Mach. Learn., 2015.

