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Outline of Lectures

Lecture 0: Bayesian Modeling and Regression

Lecture 1: Gaussian Processes, Kernels, and Regression

Lecture 2: Optimization with Gaussian Processes

Lecture 3: Advanced Bayesian Optimization Methods

Lecture 4: GP Methods in Non-Bayesian Settings
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Outline: This Lecture

» This lecture

1. Kernels, feature maps, and the PSD property

2. Reproducing Kernel Hilbert Space (RKHS)

3. Kernel ridge regression and the representer theorem
4. Bayesian optimization with non-Bayesian modeling
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Motivation for Non-Bayesian Modeling

e We looked at some Bayesian Optimization theory and algorithms under the
assumption that f is drawn from a GP with a known kernel
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Motivation for Non-Bayesian Modeling

e We looked at some Bayesian Optimization theory and algorithms under the
assumption that f is drawn from a GP with a known kernel

e This lecture: We can still use the same Bayesian methods even under non-Bayesian
modeling, with similar guarantees

e First, we return to the study of general kernel methods
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Recap on Kernels in Machine Learning

e Recap on kernels in machine learning:
> Many machine learning algorithms depend on the data x1,..., Xy, only through
the inner products (x;,X;)
> Example 1: Ridge regression

> Example 2: Dual form of Support Vector Machine (SVM)
> Example 3: Nearest-neighbor methods

> We know that moving to feature spaces can help, so we could map each
x; — ¢(x;) and apply the algorithm using (¢(x;), $(x;))

> A kernel function k(x;,x;) can be thought of as an inner product in a possibly
implicit feature space

> No need to explicitly map to feature space at all!

> The implicit space may be infinite-dimensional (e.g., SE and Matérn), so we could not
explicitly map to it even if we wanted to
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PSD Kernel: Definition and Theorem

o Definition. A function k : R¢ x R — R is said to be a positive semidefinite (PSD)
kernel if (i) it is symmetric, i.e., k(x,x’) = k(x’,x); (ii) For any integer m > 0 and

any set of inputs x1,...,Xy, in R4, the following matrix is positive semi-definite:
k(x1,%x1) ... k(x1,%xm)
K= : : > 0.
kE(Xm,x1) ... k(Xm,Xm)

This matrix, with (4, j)-th entry equal to k(x;,x;), is called the kernel matrix (you
might also see it referred to as the Gram matrix).

@NUS €S6216 Advanced Topics in Machine Learning | Jonathan Scarlett (scarlett@comp.nus.edu.sg) Slide 6/ 27



PSD Kernel: Definition and Theorem

o Definition. A function k : R¢ x R — R is said to be a positive semidefinite (PSD)
kernel if (i) it is symmetric, i.e., k(x,x’) = k(x’,x); (ii) For any integer m > 0 and

any set of inputs x1,...,Xy, in R4, the following matrix is positive semi-definite:
k(x1,%x1) ... k(x1,%xm)
K= : : > 0.
kE(Xm,x1) ... k(Xm,Xm)

This matrix, with (4, j)-th entry equal to k(x;,x;), is called the kernel matrix (you
might also see it referred to as the Gram matrix).

e Theorem. A function k : R% x R — R is a PSD kernel if and only if it equals an

inner product (¢(x), ¢(x’)) for some (possibly infinite dimensional) map ¢(x).

> Note: May not always be the “standard” inner product
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Proof of “if” part

e Proof of the “if” part:

> For simplicity, focus on the case that ¢(-) has finite length and the inner product
is the standard one (the proof extends to the general case).

> The inner product is certainly symmetric, and the kernel matrix can be written as
K = ®7®, where ® ¢ RUIM(#)X™ contains the m feature vectors {p(xt)} 2, as
columns.

> The matrix K = &7 ® is certainly positive semidefinite, since for any z we have
2T ®T &z = (®2)T @z = || ®z[> > 0.
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Proof of “only if” part

e Proof of the “only if” part — finite domain:
> Suppose that x can only take values in a finite set {x1,...,Xm}.
> The entire function is described by an m x m matrix Kg, with (4, 5)-th entry
k(xi,x;).
> By assumption Ky, is a PSD matrix, and then it is known from linear algebra

that it admits an eigenvalue decomposition of the form Ky, = Z;’;l )\jVjVJT.

This fact allows us to consider a length-m feature map with i-th entry given by
o(x5) = VAi(vi);, where (v;); is the j-th entry of v;.

\4
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Proof of “only if” part

e Proof of the “only if” part — finite domain:
> Suppose that x can only take values in a finite set {x1,...,Xm}.
> The entire function is described by an m x m matrix Kg, with (4, 5)-th entry
k(xi,x;).
> By assumption Ky, is a PSD matrix, and then it is known from linear algebra

that it admits an eigenvalue decomposition of the form Ky, = Z;’;l )\jVjVJT.

> This fact allows us to consider a length-m feature map with i-th entry given by
o(x5) = VAi(vi);, where (v;); is the j-th entry of v;.

o Proof of the “only if” part — compact domain w/ mild continuity assumptions:

> The above approach can be extended to more general scenarios via Mercer's
theorem, and provides an infinite-dimensional analog of the eigenvalue
decomposition. (See also Bochner’s theorem based on the Fourier transform.)
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Proof of “only if” part

e Proof of the “only if” part — finite domain:
> Suppose that x can only take values in a finite set {x1,...,Xm}.
> The entire function is described by an m x m matrix Kg, with (4, 5)-th entry
k(xi,x;).
> By assumption Ky, is a PSD matrix, and then it is known from linear algebra

that it admits an eigenvalue decomposition of the form Ky, = Z;’;l )\jVjVJT.

> This fact allows us to consider a length-m feature map with i-th entry given by
o(x5) = VAi(vi);, where (v;); is the j-th entry of v;.

o Proof of the “only if” part — compact domain w/ mild continuity assumptions:

> The above approach can be extended to more general scenarios via Mercer's
theorem, and provides an infinite-dimensional analog of the eigenvalue
decomposition. (See also Bochner’s theorem based on the Fourier transform.)

e Proof of the “only if” part — general case:

> Can be proved via the notion of a Reproducing Kernel Hilbert Space (RKHS),
which we will turn to shortly (but we won't complete this proof).
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Operations that Preserve the PSD Kernel Property

e Claim. If k1 and ko are kernels, then so are the following:

1. k(x,x") = f(x)k1(x,x") f(x') for some function f

2. k(x,x") = k1(x,x’) + ka(x,x")

3. k(x,x') = ki(x,x")ka(x,x")
These properties can be useful when trying to verify whether a given k(-,-) is indeed a
PSD kernel
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Operations that Preserve the PSD Kernel Property

e Claim. If k1 and ko are kernels, then so are the following:

1. k(x,x") = f(x)k1(x,x") f(x') for some function f

2. k(x,x") = k1(x,x’) + ka(x,x")

3. k(x,x') = ki(x,x")ka(x,x")
These properties can be useful when trying to verify whether a given k(-,-) is indeed a
PSD kernel

o Proof. See Lecture 5 at
https://www.comp.nus.edu.sg/~scarlett/CS5339_notes/
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Note:

To be rigorous/robust when applying the
kernel trick, the selected kernel should satisfy

the PSD property
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RKHS: Motivating Example
e For each ¢ € R, consider defining
ke(z) = e~ (@0,

Imagine producing some f(z) as a weighted combination of these k.'s:

f@) = aske, (@)
i=1

for some ai,...,am and c1,...,cm. What sorts of functions can we produce?

@NUS €S6216 Advanced Topics in Machine Learning | Jonathan Scarlett (scarlett@comp.nus.edu.sg) Slide 11/ 27



RKHS: Motivating Example
e For each ¢ € R, consider defining
ke(z) = e~ (@0,

Imagine producing some f(z) as a weighted combination of these k.'s:

f@) = aske, (@)
i=1

for some ai,...,am and c1,...,cm. What sorts of functions can we produce?

e Example function: (m = 3)

5 0 5

> Note: Each k¢, has a Gaussian shape, but their combination is more complex

e Idea: Treat the k.(-) as basis functions for a function space, and additionally define
geometric notions of inner product and norm in this function space.
> Perform regression (or classification / optimization) using functions from this
space.
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Hilbert Space

e Mathematically, a vector space is a set coupled with operations of addition and
scalar multiplication that obey natural axioms (e.g., adding any two elements of the
set produced another element of the set)

e A Hilbert space H is a vector space that additionally has a notion of inner product
(-y-) and a norm || - ||, and satisfies a technical condition called completeness
(roughly regarding limits of elements of H being well-behaved, e.g., like the reals but
unlike the rationals)
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Hilbert Space

e Mathematically, a vector space is a set coupled with operations of addition and
scalar multiplication that obey natural axioms (e.g., adding any two elements of the
set produced another element of the set)

e A Hilbert space H is a vector space that additionally has a notion of inner product
(-y-) and a norm || - ||, and satisfies a technical condition called completeness
(roughly regarding limits of elements of H being well-behaved, e.g., like the reals but
unlike the rationals)

e Example 1. For fixed d, the space R? is a Hilbert space with the usual notions of
addition (u + v), scalar multiplication (cu), inner product ((u,v)), and norm (||ul|).

e Example 2. Let H be the set of all functions f mapping [0,1] — R such that
fol |f(x)]?dz < co. Define the following operations:

> Adding f1 € H and fo € H gives f = f1 + f2, where f(z) = f1(z) + f2(z).
> Scalar multiplication of ¢ € R by fo € H gives f = cfy, where f(z) = cfo(z).

> The inner product of fi € H and fo € H is fol f1(z) f2(x)dz.

> The norm of f € His || f|ln = fol |f(z)|>dz.

This is an infinite-dimensional Hilbert space.
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RKHS: General Definition

Reproducing Kernel Hilbert Space (RKHS)

A Reproducing Kernel Hilbert Space (RKHS) H with respect to a kernel k is a Hilbert
space with inner product (-, ) satisfying the following:

(i) For all x, H contains the function dx(-) defined as dx(x’) = k(x,x’).

(if) The following reproducing property holds for all f € H and all x:

<f7 6x>k = f(X)
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RKHS: General Definition

Reproducing Kernel Hilbert Space (RKHS)

A Reproducing Kernel Hilbert Space (RKHS) H with respect to a kernel k is a Hilbert
space with inner product (-, ) satisfying the following:

(i) For all x, H contains the function dx(-) defined as dx(x’) = k(x,x’).

(if) The following reproducing property holds for all f € H and all x:

<f7 6x>k = f(x)

o Example: If 7 is R? with the linear kernel k(x,x’) = (x,x’), then for a fixed
c € R%, we have 6c(x) = (e,x) = Z?:l cixzi. Then:
> Property (i) states that H contains all linear functions of x, i.e., fe(x) = (c, x)
> Since the sum of linear functions is still linear, further combining these “basis”
functions doesn’t expand the space any further.
> Property (ii) holds under the RKHS inner product (dc, d¢/ )k = (c,c’).

o Notes:
> See Lecture 3 of YouTube kernel lectures for a more sophisticated example
> Given a PSD kernel, the RKHS always exists and is unique
> Since 6x(x’) is in the RKHS, so as any f of the form f(x') = ZZ b, (x').
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RKHS Inner Product and Norm

e The RKHS inner product (-, -)x generalizes the normal “dot product” you are used
to, though not always in the most intuitive way.

e Given the RKHS inner product, (-, )k, we can define the RKHS norm as
Il = +/{f, Yk, which roughly measures the smoothness of f.

> Gaussian process priors encode statistical smoothness properties, but the RKHS
norm encodes deterministic smoothness properties

e The useful properties of inner product and norm still apply, e.g.:

> Linearity: (f1 + f2,9)kx = (f1, 9k + (f2, )&
> Cauchy-Schwarz: [(f, )| < [|fllxllgllx
> Triangle inequality: ||f1 + f2llx < [If1llx + lIf2llx
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RKHS Norm

. Example 1: As shown above, for linear kernels all functions can be written as

fe(x) = cTx, and the RKHS norm is given by || fc|lx = ||c||. Smaller ¢ entries means
a smoother function (slower varying).

e Example 2: This function we saw earlier is smooth (low || f||x) w.r.t. the RBF
kernel, but would become less so as we add more bumps, rapid fluctuations, etc.:

5 0 5

> Note: Even tiny changes (e.g., a sudden change in gradient) can make the RKHS
norm jump to 400 (or more precisely, the function is no longer part of the RKHS)
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RKHS Norm

. Example 1: As shown above, for linear kernels all functions can be written as

fe(x) = cT'x, and the RKHS norm is given by || fc||x = ||c||. Smaller ¢ entries means
a smoother function (slower varying).

e Example 2: This function we saw earlier is smooth (low || f||x) w.r.t. the RBF
kernel, but would become less so as we add more bumps, rapid fluctuations, etc.:

5 0 5

> Note: Even tiny changes (e.g., a sudden change in gradient) can make the RKHS
norm jump to 400 (or more precisely, the function is no longer part of the RKHS)

e Fourier view: If you are familiar with Fourier analysis, it's useful to know that for
stationary kernels (i.e., k(x,x’) only depends on x — x’), we can write the RKHS
norm in terms of Fourier transforms:

_ [1FeP
||f||£—/ R, %

where F'(-) and K (-) are the Fourier transforms of the function and the kernel.
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Note:

Every PSD kernel has a unique RKHS that
provides a norm measuring the function's
smoothness (according to that kernel).

(“smooth” for one kernel may be “non-smooth” for another kernel).
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Kernel Ridge Regression

e Previously we derived kernel ridge regression by finding the closed-form solution to
ming Z?:l(yi —07x;)? 4 \||0]|?, expressing it in terms of inner products, and
replacing those by kernel evaluations.

e We are now in a position to take a different view based on the RKHS norm:

n

f=argminy (i — f(x:)* + M1

i=1

For the linear kernel k(x,x’) = (x,x’), it can be checked that this reduces to
standard ridge regression.

e Problem. Directly solving a minimization problem over f (lying in a Hilbert space)
is non-standard and difficult — how to proceed?
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Representer Theorem (1)

Representer Theorem:

Consider any minimization problem of the form
S 2
minimize \I/(f(xl), cooy f(xn), ||f||k)

for some function ¥ : R?*1 — R. Then, if ¥ is a strictly increasing function with
respect to its final argument, the optimal solution can be expressed as

f(x) = Z a;k(xi,x)
=1

for some ai,...,an (i.e. f= Z:.L:l ;lx; ).
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Representer Theorem (1)

Representer Theorem:

Consider any minimization problem of the form
S 2
minimize \I/(f(xl), cooy f(xn), ||f||k)

for some function ¥ : R?*1 — R. Then, if ¥ is a strictly increasing function with
respect to its final argument, the optimal solution can be expressed as

) =Y aik(xi, x)
=1

for some ai,...,an (i.e. f= Z:.L:l ;lx; ).

e Proof idea. We can decompose any f into fx + fj(-, where fx lies in the space of
functions admitting the above form, and f)J(- lies in the orthogonal space. Then
replacing fj(- by zero keeps every f(x;) identical, but reduces || f/|x.

e Implication: We can reduce an infinite-dimensional optimization over f to a
finite-dimensional optimization over a = [a, . .., an]T
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Representer Theorem (1)

e To substitute f(x) = Z?:l a;k(x;,x) into the original formulation of minimizing
\I/(f(x1), cooy f(xn), Hf||i>, we would like to express each f(x;) and || f||2 in terms

of a = [a1,...,05]T

> We will also make use of the n x n pairwise kernel matrix K
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Representer Theorem (1)

n

e To substitute f(x) = Zi:
\I/(f(x1), cooy f(xn), Hf||i>, we would like to express each f(x;) and || f||2 in terms

of a = [a1,...,an]T.

1 a;k(x;,x) into the original formulation of minimizing

> We will also make use of the n x n pairwise kernel matrix K
o For f(x;), we simply write
n
o) =Y ask(xi x;) = [Kal,
i=1

where [Ka]; is the j-th entry of the vector Ka € R™

o For ||f||2, substituting f and expanding the square gives

n n
71 = " aiagk(xi,x;) = o Ka.

i=1 j=1
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RENUS

Representer Theorem (1)

n

e To substitute f(x) =

i=

1 a;k(x;,x) into the original formulation of minimizing

\I/(f(x1), cooy f(xn), Hf||i>, we would like to express each f(x;) and || f||2 in terms

of a = [a1,...,05]T

> We will also make use of the n x n pairwise kernel matrix K

o For f(x;), we simply write
Fixj) = Y aik(xi,x;) = [Kal;,
i=1

where [Ka]; is the j-th entry of the vector Ka € R™

o For ||f||2, substituting f and expanding the square gives

n n
71 = " aiagk(xi,x;) = o Ka.

i=1 j=1

e We will proceed with the ridge regression example, but this approach applies even to

methods without closed-form solutions (e.g., logistic regression)
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Application to Ridge Regression

e Returning to the problem

f= argfminZ(yi — Fe))? + AR

i=1
we can substitute the expressions on the previous slide to get the equivalent problem

& =argmin (Ka —y)T (Ka —y) + a’Ka.
acR™
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Application to Ridge Regression

e Returning to the problem

f= argfminZ(yi — Fe))? + AR

i=1
we can substitute the expressions on the previous slide to get the equivalent problem

& =argmin (Ka —y)T (Ka —y) + a’Ka.
acR™

e Since this is finite-dimensional, it can be solved using standard optimization solvers,
though this is also a rare case where we get a closed-form solution:

a= K+ y.
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Application to Ridge Regression

e Returning to the problem

—argmmZ(yz Fo)?+ ISR,

we can substitute the expressions on the previous slide to get the equivalent problem

& =argmin (Ka —y)T (Ka —y) + a’Ka.
acR™

e Since this is finite-dimensional, it can be solved using standard optimization solvers,
though this is also a rare case where we get a closed-form solution:

&= (K+ )~

e We now apply f(x) = Z?:l a;k(x;,%x) one more time: Defining
k(x) = [k(x1,%), ..., k(xn,x)]T yields f(x) = k(x)T a, and substituting & gives

f0) =k(x)T(K+ 2Dy

which is exactly what we got via the kernel trick (or the Gaussian Process approach).
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Note:

The representer theorem reduces an
infinite-dimensional optimization problem to
a finite-dimensional one, and serves as a
useful alternative to the kernel trick for
applying kernel methods.
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Bayesian Optimization: Recap

black-box function optimization:

x* € argmax f(x)
z€DCRA

e Bayesian model: f is a (zero-mean) GP with kernel k

e Bayesian confidence bound: With probability at least 1 — 4, it holds for all x € D
and ¢t > 0 that

pe—1(x) — \/Eﬁtq(x) < f(x) < pp—1(x) + \/l?to'tfl(x)

LCB UCB

e GP-UCB algorithm: Choose x; to maximize the UCB (optimism under uncertainty)
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Bayesian Optimization with Non-Bayesian Modeling

o Non-Bayesian model: || f||; < B for some B > 0 (i.e., f is smooth w.r.t. the RKHS
norm — smaller B means more smooth)
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Bayesian Optimization with Non-Bayesian Modeling

o Non-Bayesian model: || f||; < B for some B > 0 (i.e., f is smooth w.r.t. the RKHS
norm — smaller B means more smooth)

o Non-Bayesian confidence bound (simplified version): If

12— B4+ \/2(vi—1 + In(1/5)),

then with probability at least 1 — 4, it holds that

pe—1(x) — \/Eﬂtq(x) < f(x) < pp—1(x) + \/Egtfl(x)

LCB UCB

(Same formula as before, but different ;)
> Definitions: ~+—1 is the maximum information gain we introduced previously

> Note: We are using Bayesian update equations (u+ and o¢) even though the
model is non-Bayesian
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Bayesian Optimization with Non-Bayesian Modeling

o Non-Bayesian model: || f||; < B for some B > 0 (i.e., f is smooth w.r.t. the RKHS
norm — smaller B means more smooth)

o Non-Bayesian confidence bound (simplified version): If

12— B4+ \/2(vi—1 + In(1/5)),

then with probability at least 1 — 4, it holds that

pe—1(x) — \/E%&(X) < f(x) < pp—1(x) + \/Egtfl(x)

LCB UCB

(Same formula as before, but different ;)
> Definitions: ~+—1 is the maximum information gain we introduced previously

> Note: We are using Bayesian update equations (u+ and o¢) even though the
model is non-Bayesian

e GP-UCB algorithm: As before, just use the new (3; instead!
> Similar regret bounds as the Bayesian case then follow

> Caveat: 3; is now a lot larger for (e.g.) the Matérn kernel; improvements exist
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Summary:

> The RKHS associated with & is a (Hilbert) space of functions

> The RKHS norm || f|| measures the level of smoothness of f, where
the precise meaning of “smoothness” is dictated by the kernel k

» This gives another viewpoint on kernel ridge regression, and provides
many other kernelized algorithms (not covered here)

> With only minor changes, the same Bayesian Optimization algorithms
work with rigorous guarantees even under non-Bayesian (RKHS)
modeling assumptions (namely, that f is any function with || f]|%
below some threshold)
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Further Results and Problem Settings

e Apart from nicely complementing the Bayesian theoretical results and giving useful
general tools for kernel methods, the RKHS-based model has been found to be more
amenable to various theoretical studies and problem settings.

e Example 1: Algorithm-independent lower bounds (arXiv:1706.00090)
e Example 2: Reinforcement learning (arXiv:1805.08052)

e Example 3: Safety constraints (http://proceedings.mlr.press/v37/suil5.html)
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Useful Materials

e Full YouTube course on kernel methods (including RKHS):
> Lecturers: Julien Mairal and Jean-Philippe
> Link: https://www.youtube.com/channel/UCotztBOmGV19pPGIN4YqcRw/videos

e Other resources on kernel methods:

> Mathematical introduction: From Zero to Reproducing Kernel Hilbert Spaces in
Twelve Pages or Less

> Comprehensive textbook: Kernel Methods in Machine Learning (Hofmann,
Schélkopf, and Smola)
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