
CS3230 – Design and Analysis of Algorithms 
(S1 AY2024/25)

Lecture 3a: Proof of Correctness



Correctness of an algorithm

• Goal: For a given algorithm , prove that it is correct.
• Iterative algorithms.
• Recursive algorithms.

• If , return .
• Else, return .

• If 
• return 

• Else, 
• prev2 
• prev1 
• for to 

• temp prev1 
• prev1 prev1 prev2 
• prev2 temp 

• return prev1



Iterative algorithms

• Goal: For a given algorithm , prove that it is correct.

• Analysis of an iterative algorithm:
• Loop invariant:

• Some desirable conditions that should be satisfied at the start of each iteration.
• Initialization: 

• The loop invariant is true at the start of the first iteration.  
• Maintenance: 

• If the loop invariant is satisfied at the start of the current iteration, then the loop 
invariant must be satisfied at the start of the next iteration.

• Termination: 
• Loop invariant at the end of the last iteraƟon → The algorithm outputs a correct answer.

𝐖𝐡𝐢𝐥𝐞 ( some condition is met )
• 𝐃𝐨  some work 

𝐅𝐨𝐫 (𝑖 = 1, 2, … up to 𝑖 = 𝑛)
• 𝐃𝐨  some work 

Equivalently, the end of 
the current iteration.
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Iterative algorithms

• Goal: For a given algorithm , prove that it is correct.

• Analysis of an iterative algorithm:
• Loop invariant:

• Some desirable conditions that should be satisfied at the start of each iteration.
• Initialization: 

• The loop invariant is true at the start of the first iteration.  
• Maintenance: 

• If the loop invariant is satisfied at the start of the current iteration, then the loop 
invariant must be satisfied at the start of the next iteration.

• Termination: 
• Loop invariant at the end of the last iteraƟon → The algorithm outputs a correct answer.

Induction hypothesis

Base case

Inductive step

The proof by induction implies the correctness of the algorithm

𝐖𝐡𝐢𝐥𝐞 ( some condition is met )
• 𝐃𝐨  some work 

𝐅𝐨𝐫 (𝑖 = 1, 2, … up to 𝑖 = 𝑛)
• 𝐃𝐨  some work 



• If 
• return 

• Else, 
• prev2 
• prev1 
• for to 

• temp prev1 
• prev1 prev1 prev2 
• prev2 temp 

• return prev1

Fibonacci numbers

• Goal: For a given algorithm , prove that it is correct.

If 𝑛 ≤ 1, then the algorithm is correct.
• 𝐅𝐢𝐛 0 = 0
• 𝐅𝐢𝐛 1 = 1



Fibonacci numbers

• Goal: For a given algorithm , prove that it is correct.

• If 
• return 

• Else, 
• prev2 
• prev1 
• for to 

• temp prev1 
• prev1 prev1 prev2 
• prev2 temp 

• return prev1

Loop invariant:
• At the start of iteration 𝑖,

• prev2 = 𝐅𝐢𝐛 𝑖 − 2
• prev1 = 𝐅𝐢𝐛 𝑖 − 1

Now, consider the case of 𝑛 ≥ 2.
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• If 
• return 

• Else, 
• prev2 
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• for to 

• temp prev1 
• prev1 prev1 prev2 
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• return prev1

Loop invariant:
• At the start of iteration 𝑖,

• prev2 = 𝐅𝐢𝐛 𝑖 − 2
• prev1 = 𝐅𝐢𝐛 𝑖 − 1

Initialization:
• At the start of iteration 𝑖 = 2,

• prev2 = 𝐅𝐢𝐛 0 = 0
• prev1 = 𝐅𝐢𝐛 1 = 1

Now, consider the case of 𝑛 ≥ 2.



Fibonacci numbers

• Goal: For a given algorithm , prove that it is correct.

• If 
• return 

• Else, 
• prev2 
• prev1 
• for to 

• temp prev1 
• prev1 prev1 prev2 
• prev2 temp 

• return prev1

Loop invariant:
• At the start of iteration 𝑖,

• prev2 = 𝐅𝐢𝐛 𝑖 − 2
• prev1 = 𝐅𝐢𝐛 𝑖 − 1

Initialization:
• At the start of iteration 𝑖 = 2,

• prev2 = 𝐅𝐢𝐛 0 = 0
• prev1 = 𝐅𝐢𝐛 1 = 1

Maintenance:
• Suppose at the start of iteration 𝑖,

• prev2 = 𝐅𝐢𝐛 𝑖 − 2
• prev1 = 𝐅𝐢𝐛 𝑖 − 1

• Then at the end of the iteration,
• prev2 = 𝐅𝐢𝐛 𝑖 − 1
• prev1 = 𝐅𝐢𝐛 𝑖

Now, consider the case of 𝑛 ≥ 2.

𝐅𝐢𝐛 𝑖 − 1
𝐅𝐢𝐛 𝑖 − 1

𝐅𝐢𝐛 𝑖 − 1 + 𝐅𝐢𝐛 𝑖 − 2

𝐅𝐢𝐛 𝑖 − 1
𝐅𝐢𝐛 𝑖

𝐅𝐢𝐛 𝑖 − 1



Fibonacci numbers

• Goal: For a given algorithm , prove that it is correct.

• If 
• return 

• Else, 
• prev2 
• prev1 
• for to 

• temp prev1 
• prev1 prev1 prev2 
• prev2 temp 

• return prev1

Loop invariant:
• At the start of iteration 𝑖,

• prev2 = 𝐅𝐢𝐛 𝑖 − 2
• prev1 = 𝐅𝐢𝐛 𝑖 − 1

Initialization:
• At the start of iteration 𝑖 = 2,

• prev2 = 𝐅𝐢𝐛 0 = 0
• prev1 = 𝐅𝐢𝐛 1 = 1

Maintenance:
• Suppose at the start of iteration 𝑖,

• prev2 = 𝐅𝐢𝐛 𝑖 − 2
• prev1 = 𝐅𝐢𝐛 𝑖 − 1

• Then at the end of the iteration,
• prev2 = 𝐅𝐢𝐛 𝑖 − 1
• prev1 = 𝐅𝐢𝐛 𝑖

Termination:
• The algorithm returns 𝐅𝐢𝐛(𝑛). 

Now, consider the case of 𝑛 ≥ 2.

𝑖 = 𝑛



Question 1 @ VisuAlgo online quiz

• What is a suitable loop invariant to analyze this sorting algorithm?

• is sorted.

• is sorted.

• for all and .

• ( is sorted) and ( for all and ).

• For to 
• Select so that is a smallest number in .
• Swap and .

VisuAlgo (Selection sort): https://visualgo.net/en/sorting?mode=Selection

at the start of iteration 𝑗



Weighted directed graphs

• Let be a directed graph.
• Each edge has a positive weight .

• If , then .
• If , then .

𝑠

𝑢 𝑣

𝑤

1 3

15

1



Single-source shortest paths

• Let be a directed graph.
• Each edge has a positive weight .

• If , then .
• If , then .

• Goal: Given a source , compute the shortest-path distance from 
to all vertices.

𝑠

𝑢 𝑣

𝑤

1 3

15

1

𝐝𝐢𝐬𝐭 𝑠, 𝑠 = 0
𝐝𝐢𝐬𝐭 𝑠, 𝑢 = 1
𝐝𝐢𝐬𝐭 𝑠, 𝑣 = 2
𝐝𝐢𝐬𝐭 𝑠, 𝑤 = 3



Dijkstra’s algorithm

•
•
•

• Select to minimize 
௨∈ோ

•
௨∈ோ

• Add to 

𝑠

𝑢 𝑣

𝑤

1 3

15

1

𝐝𝐢𝐬𝐭 𝑠, 𝑠 = 0
𝐝𝐢𝐬𝐭 𝑠, 𝑢 = 1
𝐝𝐢𝐬𝐭 𝑠, 𝑣 = 2
𝐝𝐢𝐬𝐭 𝑠, 𝑤 = 3

𝟎

31

∞

VisuAlgo (Dijkstra): https://visualgo.net/en/sssp?slide=7



Dijkstra’s algorithm

𝑠

𝑢 𝑣

𝑤

1 3

15

1

𝐝𝐢𝐬𝐭 𝑠, 𝑠 = 0
𝐝𝐢𝐬𝐭 𝑠, 𝑢 = 1
𝐝𝐢𝐬𝐭 𝑠, 𝑣 = 2
𝐝𝐢𝐬𝐭 𝑠, 𝑤 = 3

𝟎

31

∞

𝑠

𝑢 𝑣

𝑤

1 3

15

1

𝟎

2𝟏

6

VisuAlgo (Dijkstra): https://visualgo.net/en/sssp?slide=7

•
•
•

• Select to minimize 
௨∈ோ

•
௨∈ோ

• Add to 



Dijkstra’s algorithm

𝑠

𝑢 𝑣

𝑤

1 3

15

1

𝐝𝐢𝐬𝐭 𝑠, 𝑠 = 0
𝐝𝐢𝐬𝐭 𝑠, 𝑢 = 1
𝐝𝐢𝐬𝐭 𝑠, 𝑣 = 2
𝐝𝐢𝐬𝐭 𝑠, 𝑤 = 3

𝟎

31

∞

𝑠

𝑢 𝑣

𝑤

1 3

15

1

𝟎

2𝟏

6

𝑠

𝑢 𝑣

𝑤

1 3

15

1

𝟎

𝟐𝟏

3

VisuAlgo (Dijkstra): https://visualgo.net/en/sssp?slide=7

•
•
•

• Select to minimize 
௨∈ோ

•
௨∈ோ

• Add to 



Dijkstra’s algorithm

𝑠

𝑢 𝑣

𝑤

1 3
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1
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𝐝𝐢𝐬𝐭 𝑠, 𝑣 = 2
𝐝𝐢𝐬𝐭 𝑠, 𝑤 = 3

𝟎

31

∞

𝑠

𝑢 𝑣

𝑤

1 3

15

1

𝟎

2𝟏

6

𝑠

𝑢 𝑣

𝑤

1 3

15

1

𝟎

𝟐𝟏

3

𝑠

𝑢 𝑣

𝑤

1 3

15

1

𝟎

𝟐𝟏

𝟑

VisuAlgo (Dijkstra): https://visualgo.net/en/sssp?slide=7

•
•
•

• Select to minimize 
௨∈ோ

•
௨∈ோ

• Add to 



Proof of correctness

𝑠

𝑢 𝑣

𝑤

1 3

15

1

𝐝𝐢𝐬𝐭 𝑠, 𝑠 = 0
𝐝𝐢𝐬𝐭 𝑠, 𝑢 = 1
𝐝𝐢𝐬𝐭 𝑠, 𝑣 = 2
𝐝𝐢𝐬𝐭 𝑠, 𝑤 = 3

𝟎

31

∞

𝑠

𝑢 𝑣

𝑤

1 3

15

1

𝟎

2𝟏

6

𝑠

𝑢 𝑣

𝑤

1 3

15

1

𝟎

𝟐𝟏

3

𝑠

𝑢 𝑣

𝑤

1 3

15

1

𝟎

𝟐𝟏

𝟑

VisuAlgo (Dijkstra): https://visualgo.net/en/sssp?slide=7

•
•
•

• Select to minimize 
௨∈ோ

•
௨∈ோ

• Add to 

Loop invariant:
• At the start of an iteration:

• ∀𝑢 ∈ 𝑅, 𝑑 𝑢 = 𝐝𝐢𝐬𝐭 𝑠, 𝑢

The computed 
distances are correct.



Proof of correctness

•
•
•

• Select to minimize 
௨∈ோ

•
௨∈ோ

• Add to 

Loop invariant:
• At the start of an iteration:

• ∀𝑢 ∈ 𝑅, 𝑑 𝑢 = 𝐝𝐢𝐬𝐭 𝑠, 𝑢

The computed 
distances are correct.

𝑑 𝑠 = 0 is correct.

✓ Initialization

✓ Maintenance

✓ Termination



Proof of correctness

•
•
•

• Select to minimize 
௨∈ோ

•
௨∈ோ

• Add to 

Loop invariant:
• At the start of an iteration:

• ∀𝑢 ∈ 𝑅, 𝑑 𝑢 = 𝐝𝐢𝐬𝐭 𝑠, 𝑢

The computed 
distances are correct.

At the end of the computation, 𝑅 = 𝑉

✓ Initialization

✓ Maintenance

✓ Termination



Proof of correctness

•
•
•

• Select to minimize 
௨∈ோ

•
௨∈ோ

• Add to 

Loop invariant:
• At the start of an iteration:

• ∀𝑢 ∈ 𝑅, 𝑑 𝑢 = 𝐝𝐢𝐬𝐭 𝑠, 𝑢

The computed 
distances are correct.

✓ Initialization

✓ Maintenance

✓ Termination

Claim: For the selected vertex 𝑣:
• 𝐝𝐢𝐬𝐭 𝑠, 𝑣 = 𝐦𝐢𝐧

௨∈ோ
𝑑 𝑢 + 𝑤 𝑢, 𝑣



Proof of correctness

•
•
•

• Select to minimize 
௨∈ோ

•
௨∈ோ

• Add to 

Loop invariant:
• At the start of an iteration:

• ∀𝑢 ∈ 𝑅, 𝑑 𝑢 = 𝐝𝐢𝐬𝐭 𝑠, 𝑢

The computed 
distances are correct.

✓ Initialization

✓ Maintenance

✓ Termination

Claim: For the selected vertex 𝑣:
• 𝐝𝐢𝐬𝐭 𝑠, 𝑣 = 𝐦𝐢𝐧

௨∈ோ
𝑑 𝑢 + 𝑤 𝑢, 𝑣

All vertices in 𝑃 ∖ 𝑣 must be in 𝑅.
• Otherwise, we should have selected the first vertex that is not in 𝑅.

Proof: Consider a shortest path 𝑃 from 𝑠 to 𝑣.
𝑠 𝑣



Proof of correctness

•
•
•

• Select to minimize 
௨∈ோ

•
௨∈ோ

• Add to 

Loop invariant:
• At the start of an iteration:

• ∀𝑢 ∈ 𝑅, 𝑑 𝑢 = 𝐝𝐢𝐬𝐭 𝑠, 𝑢

The computed 
distances are correct.

✓ Initialization

✓ Maintenance

✓ Termination

Claim: For the selected vertex 𝑣:
• 𝐝𝐢𝐬𝐭 𝑠, 𝑣 = 𝐦𝐢𝐧

௨∈ோ
𝑑 𝑢 + 𝑤 𝑢, 𝑣

All vertices in 𝑃 ∖ 𝑣 must be in 𝑅.
• Otherwise, we should have selected the first vertex that is not in 𝑅.

Proof: Consider a shortest path 𝑃 from 𝑠 to 𝑣.
𝑠 𝑣𝑥

𝑥

𝐦𝐢𝐧
௨∈ோ

𝑑 𝑢 + 𝑤 𝑢, 𝑣 ≥ 𝐝𝐢𝐬𝐭 𝑠, 𝑣 > 𝐝𝐢𝐬𝐭 𝑠, 𝑥 = 𝑑 𝑦 + 𝑤 𝑦, 𝑥 ≥ 𝐦𝐢𝐧
௨∈ோ

𝑑 𝑢 + 𝑤 𝑢, 𝑥

𝑦

𝐝𝐢𝐬𝐭 𝑠, 𝑢 𝐝𝐢𝐬𝐭 𝑠, 𝑦



Proof of correctness

•
•
•

• Select to minimize 
௨∈ோ

•
௨∈ோ

• Add to 

Loop invariant:
• At the start of an iteration:

• ∀𝑢 ∈ 𝑅, 𝑑 𝑢 = 𝐝𝐢𝐬𝐭 𝑠, 𝑢

The computed 
distances are correct.

✓ Initialization

✓ Maintenance

✓ Termination

Claim: For the selected vertex 𝑣:
• 𝐝𝐢𝐬𝐭 𝑠, 𝑣 = 𝐦𝐢𝐧

௨∈ோ
𝑑 𝑢 + 𝑤 𝑢, 𝑣

Proof: Consider a shortest path 𝑃 from 𝑠 to 𝑣.
𝑠 𝑣𝑢′

𝐦𝐢𝐧
௨∈ோ

𝑑 𝑢 + 𝑤 𝑢, 𝑣 ≥ 𝐝𝐢𝐬𝐭 𝑠, 𝑣 = 𝑑 𝑢′ + 𝑤 𝑢′, 𝑣 ≥ 𝐦𝐢𝐧
௨∈ோ

𝑑 𝑢 + 𝑤 𝑢, 𝑣

𝐝𝐢𝐬𝐭 𝑠, 𝑢

All vertices in 𝑃 ∖ 𝑣 must be in 𝑅.

✓

𝐝𝐢𝐬𝐭 𝑠, 𝑢′



Proof of correctness

•
•
•

• Select to minimize 
௨∈ோ

•
௨∈ோ

• Add to 

Loop invariant:
• At the start of an iteration:

• ∀𝑢 ∈ 𝑅, 𝑑 𝑢 = 𝐝𝐢𝐬𝐭 𝑠, 𝑢

The computed 
distances are correct.

✓ Initialization

✓ Maintenance

✓ Termination

Claim: For the selected vertex 𝑣:
• 𝐝𝐢𝐬𝐭 𝑠, 𝑣 = 𝐦𝐢𝐧

௨∈ோ
𝑑 𝑢 + 𝑤 𝑢, 𝑣✓



Who is the Master of Algorithms pictured below?

• Stephen Cook

• Edsger Dijkstra

• Robert Tarjan

• Avi Wigderson

Question 2 @ VisuAlgo online quiz



Efficiency

•
•
•

• Select to minimize 
௨∈ோ

•
௨∈ோ

• Add to 



Efficiency

•
•
•

• Select to minimize 
௨∈ோ

•
௨∈ோ

• Add to 

𝑣 𝑣

Adding 𝑣 to 𝑅 can only affect the 𝑥-value of these vertices.
• 𝑥 𝑧 ← 𝐦𝐢𝐧 𝑥 𝑧 , 𝑑 𝑣 + 𝑤 𝑣, 𝑧 𝑧

Observation: No need to compute 
𝑥 𝑣 = 𝐦𝐢𝐧

௨∈ோ
𝑑 𝑢 + 𝑤 𝑢, 𝑣

from scratch for every iteration.

9

𝟓
2

𝟓 𝟕𝟕
2

8 8 𝟗
1

13 10

113 𝟗 110

𝑧



Efficiency

𝐃𝐢𝐣𝐤𝐬𝐭𝐫𝐚 𝐺 = 𝑉, 𝐸 , 𝑠 ∈ 𝑉
• 𝑑 𝑠 = 0
• 𝑥 𝑣 = ∞ for all 𝑣 ∈ 𝑉 ∖ 𝑠
• 𝑅 = 𝑠
• For all 𝑧 ∈ 𝑉 such that 𝑠, 𝑧 ∈ 𝐸

• 𝑥 𝑧 = 𝐦𝐢𝐧 𝑥 𝑧 , 𝑑 𝑠 + 𝑤 𝑠, 𝑧
• 𝐖𝐡𝐢𝐥𝐞 𝑅 ≠ 𝑉

• Select 𝑣 ∈ 𝑉 ∖ 𝑅 to minimize 𝑥 𝑣
• 𝑑 𝑣 = 𝑥 𝑣
• Add 𝑣 to 𝑅
• For all 𝑧 ∈ 𝑉 ∖ 𝑅 such that 𝑣, 𝑧 ∈ 𝐸

• 𝑥 𝑧 = 𝐦𝐢𝐧 𝑥 𝑧 , 𝑑 𝑣 + 𝑤 𝑣, 𝑧

•
•
•

• Select to minimize 
௨∈ோ

•
௨∈ோ

• Add to 

Observation: No need to compute 
𝑥 𝑣 = 𝐦𝐢𝐧
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from scratch for every iteration.
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Observation: No need to compute 
𝑥 𝑣 = 𝐦𝐢𝐧

௨∈ோ
𝑑 𝑢 + 𝑤 𝑢, 𝑣

from scratch for every iteration.
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• The algorithm can be implemented using a priority queue.

𝑉 insert

𝑉 extract-min

At most 𝐸 decrease-key
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𝐃𝐢𝐣𝐤𝐬𝐭𝐫𝐚 𝐺 = 𝑉, 𝐸 , 𝑠 ∈ 𝑉
• 𝑅 = ∅
• 𝑥 𝑣 = ∞ for all 𝑣 ∈ 𝑉 ∖ 𝑠
• 𝑥 𝑠 = 0
• 𝐖𝐡𝐢𝐥𝐞 𝑅 ≠ 𝑉

• Select 𝑣 ∈ 𝑉 ∖ 𝑅 to minimize 𝑥 𝑣
• 𝑑 𝑣 = 𝑥 𝑣
• Add 𝑣 to 𝑅
• For all 𝑧 ∈ 𝑉 ∖ 𝑅 such that 𝑣, 𝑧 ∈ 𝐸

• 𝑥 𝑧 = 𝐦𝐢𝐧 𝑥 𝑧 , 𝑑 𝑣 + 𝑤 𝑣, 𝑧

• The algorithm can be implemented using a priority queue.

𝑉 insert

𝑉 extract-min

At most 𝐸 decrease-key

Time complexity of 
Dijkstra’s algorithm

Decrease-keyExtract-minInsert

𝑂 𝐸 + 𝑉 log 𝑉𝑂 log 𝑛𝑂 log 𝑛𝑂 log 𝑛Binary heap

𝑂 𝐸 + 𝑉 log 𝑉𝑂 1 amortized𝑂 log 𝑛 amortized𝑂 1Fibonacci heap

https://en.wikipedia.org/wiki/Priority_queue

Amortized = average over 𝑛 operations.



Recursive algorithms

• Goal: For a given algorithm , prove that it is correct.

• Analysis of a recursive algorithm:
• Base case:

• Show that the algorithm is correct for the base case.
• Inductive step: 

• Assume that the algorithm is correct for any input of size smaller than . 
• Show that the algorithm is correct for any input of size .

• If , return .
• Else, return .

without any recursive calls

with recursive calls
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Recursive algorithms

• Goal: For a given algorithm , prove that it is correct.

• Analysis of a recursive algorithm:
• Base case:

• Show that the algorithm is correct for the base case.
• Inductive step: 

• Assume that the algorithm is correct for any input of size smaller than . 
• Show that the algorithm is correct for any input of size .

• If , return .
• Else, return .

If , the algorithm is correct:
•
•

If , the algorithm is correct:
•



Searching in a sorted array

• Input:
• A sorted array .
• Two indices:

• (lower bound) 
• (upper bound)

• A number .

• Goal:
• Decide if If , the answer is NO.



Searching in a sorted array

• Input:
• A sorted array .
• Two indices:

• (lower bound) 
• (upper bound)

• A number .

• Goal:
• Decide if 

• If , return NO.
• Else

•
୪ୠା୳ୠ

ଶ
.

• If , return YES.
• If , .
• If , .



Searching in a sorted array

2   7   14   33   41   50   77   80   82

2   7   14   33   41   50   77   80   82

2   7   14   33   41   50   77   80   82

mid = 5

ub = 9

mid = 2

mid = 3

lb = 1

lb = 1 ub = 4

lb = 3 ub = 4

𝑥 = 14

YES

• If , return NO.
• Else

•
୪ୠା୳ୠ

ଶ
.

• If , return YES.
• If , .
• If , .



Proof of correctness

• Induction on the array size:
• • If , return NO.

• Else
•

୪ୠା୳ୠ

ଶ
.

• If , return YES.
• If , .
• If , .



Proof of correctness

• Induction on the array size:
•

• Base case:
• If , the algorithm 

correctly returns NO.

• If , return NO.
• Else

•
୪ୠା୳ୠ

ଶ
.

• If , return YES.
• If , .
• If , .



Proof of correctness

• Induction on the array size:
•

• Inductive step:
• Assume the algorithm works 

correctly for any input of size 
smaller than .

• If , return NO.
• Else

•
୪ୠା୳ୠ

ଶ
.

• If , return YES.
• If , .
• If , .

If 𝑥 = 𝐴 mid , the answer must be YES. 

If 𝑥 > 𝐴 mid , then:
• 𝑥 ∈ 𝐴 lb. . ub  if and only if 𝑥 ∈ 𝐴 mid + 1. . ub .
• Therefore, the answer must be 𝐁𝐢𝐧𝐚𝐫𝐲𝐒𝐞𝐚𝐫𝐜𝐡 𝐴, mid + 1, ub, 𝑥 .

The case of 𝑥 < 𝐴 mid  is similar.

Induction hypothesis
𝐴 is sorted



Efficiency

• Input size: 
•

• Subproblem input size:
•

• Depth of recursion:
•

• Time complexity: 
•

• If , return NO.
• Else

•
୪ୠା୳ୠ

ଶ
.

• If , return YES.
• If , .
• If , .
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