
Finale

S. Halim YJ. Chang

School of Computing
National University of Singapore

CS3230 Lec13; Tue, 12 Nov 2024

Overview

Recap (plus a few extensions)
L01+02: Asymptotics and Recurrences
L03a: Proof of Correctness
L03b+04a: Divide and Conquer (D&C)
L04b+05: Randomized Algorithms
L06+07: Dynamic Programming (DP) vs Greedy Algorithm
L08: Amortized Analysis
L09+10: Problem Reduction and NP-completeness
L04+12: Lower Bound vs Linear-Time Sorting and Selection

Wrapping-Up

Recap: Asymptotics: O,Ω,Θ, o, ω

We say if ∃c , c1, c2, n0 > 0 such that ∀n ≥ n0
f (n) ∈ O(g(n)) 0 ≤ f (n) ≤ c · g(n)
f (n) ∈ Ω(g(n)) 0 ≤ c · g(n) ≤ f (n)
f (n) ∈ Θ(g(n)) 0 ≤ c1 · g(n) ≤ f (n) ≤ c2 · g(n)

We say ∀c > 0, ∃n0 > 0 such that ∀n ≥ n0
f (n) ∈ o(g(n)) 0 ≤ f (n) < c · g(n)
f (n) ∈ ω(g(n)) 0 ≤ c · g(n) < f (n)

Easiest with just these two limit tests:

▶ limn→∞
f (n)
g(n) = 0 ⇒ f (n) ∈ o(g(n))

▶ 0 < limn→∞
f (n)
g(n) < ∞ ⇒ f (n) ∈ Θ(g(n))

Asymptotics exercise

Assumption: Sort n integers in range [0..106].

▶ Give a sorting algorithm that runs in Θ(n2).

▶ Give a sorting algorithm that runs in ω(n2) and o(n3).

▶ Give a sorting algorithm that runs in Ω(n log n) and o(n1.5).

▶ Give a sorting algorithm that runs in O(n).

▶ Give a sorting algorithm that runs in o(n).

Recap: Recurrences (1)

Given T (n) = a · T (nb) + f (n), derive a tight asymptotic bound.

There are a few ways to solve recurrences.
Master theorem is the easiest: Let d = logb a.

1. Case 1: f (n) ∈ O(nd−ϵ) ⇒ T (n) ∈ Θ(nd).

2. Case 2: f (n) ∈ Θ(nd logk n) ⇒ T (n) ∈ Θ(nd logk+1 n).

3. Case 3: f (n) ∈ Ω(nd+ϵ) ⇒ T (n) ∈ Θ(f (n)).
(usually regular, e.g., on f (n) in this format: c · nd logk n).

Given a recurrence T (n) that is amenable to it,
use Telescoping to derive a tight asymptotic bound.

https://en.wikipedia.org/wiki/Telescoping_series

Recap: Recurrences (2)

When the given recurrence T (n) is ‘non-standard’,
we may need to use one of these two more general techniques:

We can draw the Recursion Tree (manually in final assessment),
e.g., by using https://visualgo.net/en/recursion,
and then analyze the height of the recursion tree and
the works done in each level in terms of n.
Depending on the shape of the recursion tree,
it is probably easier to show O and/or Ω separately.

We can also use Substitution method, where we ‘guess’ the
answer,
then use proof by induction on the base case and inductive case.
We have to show O and/or Ω separately.
This requires intuition (to guess ‘somewhat accurately’) and
also perseverance (to try several times until ‘the math works’).

https://visualgo.net/en/recursion

Question 1 at VisuAlgo Online Quiz

Given T (n) = T (n3) + T (2n3) + n, analyze its asymptotic bound.
PS: This is the median of medians selection with groups of 3.

A). T (n) ∈ Θ(n)

B). T (n) ∈ Ω(n log n)

Recap: Proof of Correctness

Two types:

▶ For iterative algorithm, we usually use loop invariant.
A condition which is TRUE at the start of EVERY iteration
We can then use invariant to show the correctness:

1. Initialization: The invariant is True before iteration 1
2. Maintenance: True at iteration x =⇒ True for iteration x + 1
3. Termination: True when the algorithm ends

▶ For recursive algorithm, we usually use proof by induction.
1. Show the recursion is (trivially) correct on its base case(s).
2. Inductive step: show that the recursive algorithm is correct,

assuming that the smaller cases are all correct.

Revisiting the SS Shortest Paths (SSSP) Problem

See https://visualgo.net/en/sssp?slide=1 for definition,
and then go to Exploration mode to (re-)try Dijkstra’s algorithm.

Earlier in lec03a, we have shown that (the iterative) Dijkstra’s
algorithm is correct using loop invariant.

We have also shown that Dijkstra’s algorithm can be implemented
in O((|V |+ |E |) log |V |) if the Priority Queue is implemented with
Binary Heap, or in asymptotically faster O(|E |+ |V | log |V |) if the
Priority Queue is implemented with Fibonacci Heap (as |E | ≥ |V |
in most graphs).

Question: How crucial is the non-negative weights for Dijkstra’s?

https://visualgo.net/en/sssp?slide=1
https://comp.nus.edu.sg/~stevenha/cs3230/lectures/lec03a.pdf

What if the edge weights are potentially negative?

There are two crucial facts that are exploited in Dijkstra’s:

1. The nearest neighbor is also the vertex nearest to s.

2. The optimal subpath property.

Question: Which of these two facts get violated if edge weights
are potentially negative?

Violation of Fact 1

Question: Can we be certain about the shortest path distances
from source s to nearest neighbor u (edge weights can be -ve)?

Violation of Fact 2 - Part 1

Consider any shortest path P(s, v).
Lemma: Every subpath of a shortest path is also a shortest path.

Can you prove this lemma?

Violation of Fact 2 - Part (2)

On non-negative weight graph,
the shortest path from s to x cannot pass through v .

Can you prove this?

Now what if the edge weight can potentially has negative weight,
e.g., what if edge v → x above has weight ≤ −10?

Violation of Fact 2 - Part (3)

Question: When can the shortest P(s, x) passes through v?
Hint: This diagram.

So, what are the implications?

Recap: D&C

Here are the usual steps for using Divide and Conquer (D&C)
problem solving paradigm for problems that are amenable to it:

1. Divide: Divide/break the original problem into a ≥ 1 smaller
sub-problems of size n

b (preferred) or n − c (not preferred).
PS: If a = 1, some people call this Decrease and Conquer,
still with the same D&C abbreviation.

2. Conquer: Conquer/solve the sub-problems recursively.

3. Combine: Optionally, for a > 1, combine the sub-problem
solutions to get the solution of the original problem.

Common algorithms: Binary Search, Merge Sort, Exponentiation
(by doubling), Strassen’s, Karatsuba’s (tut04), etc.

Recap: Randomized Algorithms

Techniques: linearity of expectations (E [X + Y] = E [X] + E [Y]),
indicator random variables (very useful),
union bound (Pr [A ∪ B] ≤ Pr [A] + Pr [B]),
Markov inequality,
principle of deferred decision,
amplification of success probability.

Algorithms: Freivalds’ algorithm (Monte Carlo),
(Randomized) Quick Sort (Las Vegas).

Balls&Bins: coupon collector (probability of no empty bin),
chain hashing (expected bin size).

There is a analysis of expected linear-time Quickselect in tut11.

Recap: Dynamic Programming (DP)

Key points:

▶ Expressing the solution recursively.

▶ There are only small (e.g., polynomial) number of
subproblems.

▶ But there is a huge overlap among the subproblems.
So the recursive algorithm may take exponential time.
(solving the same subproblem multiple times).

▶ So we compute the recursion with memoization (top-down),
or iteratively in a bottom-up fashion.
This avoids wastage of computation,
and leads to an efficient implementation.

DP Tips

The key to design a DP solution is in figuring out the optimal
substructure, i.e., how to find the optimal solution to your
problem from the optimal solution(s) to one or more subproblems.

Figure out how to index your subproblems. For example, if you
have a sequence a0, a1, . . . , an−1, trying the i-th subproblem being
the answer for the sequence from [0..i] is a good place to start.
If there are integers in the problem upper bounded by some integer
M, you probably need to index over every integer in [0..M].

See if any of those subproblems overlap
(showing at least one instance of overlap case is sufficient).

If you have (a lot of) time to practice,
you can use this URL (around 450+ DP exercises).

https://cpbook.net/methodstosolve?oj=both&topic=dp&quality=all

Introducing Bellman-Ford DP algorithm

Consider once again, a shortest path P(s, v).

Question: If P(s, v) has i edges and (x , v) is the last edge,
what can we infer about the subpath P(s, x)?
PS: No negative weight cycle!!

Recursive formulation for L(v , i)

Let L(v , i) = weight of the shortest path P(s, v) with ≤ i edges.

We aim to compute L(v , n − 1),∀v ∈ V , why?

There are two cases:

1. For L(v , < i), then L(v , i) = L(v , i − 1).

2. L(v , i) = min(x ,v)∈E L(x , i − 1) + ω(x , v).

Note: Case 2 assumes optimal substructure property of L(v , i).

Prove the optimal substructure of L(v , i)

Proof by contradiction: Suppose the path corresponding to
L(x , i − 1) passes through v , but we have L(x , i − 1) < z .

Question: What can we say about L(x , i − 1) in this case?
Hint: This similar diagram and non-negative edge weights.

Bellman-Ford implementation

let L[v, 0] = inf for all v in V, except L[s, 0] = 0

for i = 1 to n-1 do

for each v in V do // the next two loops sum to |E|

L[v, i] = L[v, i-1] // at least from column i-1

for each (x, v) in E do

L[v, i] = min(L[v, i], L[x, i-1] + w(x, v))

The cell L(v , i) in our 2-D DP table stores the weight of the
shortest path from s to v with ≤ i edges. Proof: It is the
implementation of the recurrence earlier.

Theorem: Given a directed graph G = (V ,E) with ω : E → R and
s ∈ V , if there is no negative cycle, then we can compute the
shortest paths from s to all vertices reachable from s in G in
O(|V | · |E |) time and using O(|V |2) space.

Bellman-Ford (real) implementation

We can reduce the space complexity to O(|V |),
by realizing that we only need the last column at each iteration.

let L[v] = inf for all v in V, except L[s] = 0

for i = 1 to n-1 do

// for each v in V do // the next two loops sum to |E|

// L[v, i] = L[v, i-1] is now implied

// for each (x, v) in E do

// L[v] = min(L[v], L[x] + w(x, v))

for each edge (u, v) in E do // clearly |E|

L[v] = min(L[v], L[u] + w(u, v))

See this algorithm live at https://visualgo.net/en/sssp.

https://visualgo.net/en/sssp

Other remarks of SSSP

There is a further improvement to Bellman-Ford algorithm,
called the Bellman-Ford-Moore algorithm.

The Single-Source Shortest Paths (SSSP) problem and the SSSP
algorithms that have been presented so far (e.g., Dijkstra’s
(Greedy) algorithm for graphs with non-negative weights and
Bellman-Ford (DP) algorithm for graphs with no negative weight
cycle) only works if there is only one source vertex.

There is a variant of Shortest Paths problem that considers
shortest paths between all pairs of vertices in a directed weighted
graph. This variant is called the All-Pairs Shortest Paths (APSP)
problem. An algorithm to solve APSP is O(|V |3) Floyd-Warshall
algorithm, which interestingly, is also a DP algorithm.

https://en.wikipedia.org/wiki/Floyd–Warshall_algorithm

Recap: Greedy Algorithm Paradigm

1. Cast the problem where we have to make a greedy choice
and are left with one subproblem to solve.

2. Prove, via exchange argument, that there is always an optimal
solution to the original problem that makes the greedy choice,
so the greedy choice is safe.

3. Use optimal substructure to show that we can combine an
optimal solution to the subproblem with the greedy choice to
get an optimal solution to the original problem.

Revisiting the Min Spanning Tree (MST) Problem

See https://visualgo.net/en/mst?slide=1 for definition,
and then go to Exploration mode to try Prim’s algorithm.

For the analysis, we assume that all edge weights are distinct.

https://visualgo.net/en/mst?slide=1

Optimal substructure of MST

Use any MST T shown by VisuAlgo on any valid test case.

Given an MST T of a graph G = (V ,E), if we remove any edge
(u, v) ∈ T , then T is partitioned into two subtrees T1 and T2.

Theorem: The subtree T1 is also an MST of G1 = (V1,E1),
the subgraph of G induced by the vertices of T1 where
V1 is the set of vertices of T1 and E1 = {(x , y) ∈ E : x , y ∈ V 1}.
Note: We can define similarly for T2.
Can you prove this?

https://visualgo.net/en/mst

Use DP?

We can use Dynamic Programming (DP)...

The DP algorithm would search for which edge (u, v) to add,
and then recurse on the two subproblems T1 and T2

(avoiding overlapping subproblems).
Can you show the overlapping subproblems?

But should we use DP?

Hallmark for ‘greedy’ algorithms

Greedy-choice: A locally optimal choice is globally optimal.

Theorem: Let T be a MST of G = (V ,E), and let A be any
subset of vertices. Suppose that (u, v) ∈ E is the least-weight
edge connecting A to V \ A. Then, (u, v) ∈ T .

Proof: Suppose (u, v) /∈ T . We can use exchange argument.

Suppose there is an MST T that does not use (u, v). Consider the
unique simple path from u to v in T . If we swap (u, v) with the
first edge on this path that connects a vertex in A to a vertex in
V \ A, a lighter weight (as all edge weights are distinct) spanning
tree than T results. Contradiction.

Prim’s algorithm implementation – with Decrease-Key

We can now implement this greedy algorithm.
Idea: Maintain V \ A as a Priority Queue PQ.
We key each vertex in PQ with the weight of the least weight
edge that connects that vertex to a vertex in A.

PQ = V

key[v] = inf for all v in V, except key[s] = 0

while PQ != empty

u = PQ.extractMin()

for each v in AL[u] // use Adjacency List

if v in PQ and w(u, v) < key[v]

key[v] = w(u, v) // Decrease-Key of PQ <- tedious

pi[v] = u // the MST

Unless you have a ready PQ implementation with Decrease-Key,
it is rather tedious to use Prim’s implementation.

Prim’s algorithm implementation – with lazy deletion

Idea: Maintain V \ A as a Priority Queue PQ with lazy deletion.
We key each edge in PQ with the weight of the edge that
connects a vertex u in A to a vertex in V \ A.
The least weight edge will be nearer to the front of PQ
than the other heavier edges (that will cause cycle if added).

PQ.enqueue((w,s,u) for all edge (s,u) with weight w)

vis[u] = False for all u in V, except vis[s] = True

while PQ != empty

w,u,v = PQ.extractMin()

if vis[u] continue // (w,u,v) was an old info

vis[u] = True

pi[v] = u // the MST

for each v in AL[u] // use Adjacency List

if not vis[v]

PQ.enqueue((w,u,v)) // no Decrease-Key!!

Example run of Prim’s algorithm

Click here to open VisuAlgo MST page to see a sample run of
Prim’s algorithm implementation – with lazy deletion – on a
specific test case of connected undirected distinct-weighted graph.

https://visualgo.net/en/mst?create={"vl":{"0":{"x":480,"y":200},"1":{"x":480,"y":120},"2":{"x":560,"y":120},"3":{"x":560,"y":200},"4":{"x":380,"y":200},"5":{"x":280,"y":200},"6":{"x":280,"y":120},"7":{"x":380,"y":40}},"el":{"0":{"v":4,"u":5,"w":"3"},"1":{"v":1,"u":6,"w":"5"},"2":{"v":6,"u":7,"w":"6"},"3":{"u":0,"v":1,"w":"7"},"4":{"v":4,"u":6,"w":"8"},"5":{"u":1,"v":2,"w":"9"},"6":{"v":0,"u":4,"w":"10"},"7":{"v":1,"u":7,"w":"12"},"8":{"v":5,"u":6,"w":"14"},"9":{"u":0,"v":3,"w":"15"}}}

Analysis of Prim’s algorithm

PQ.enqueue((w,s,u) for all edge (s,u) with weight w)

vis[u] = False for all u in V, except vis[s] = True

while PQ != empty

w,u,v = PQ.extractMin() // |E| times, each O(log |E|)

if vis[u] continue // (w,u,v) was an old info

vis[u] = True // each vertex is processed once

pi[v] = u

for each v in AL[u] // overall |E| times

if not vis[v]

PQ.enqueue((w,u,v)) // each O(log |E|)

In this Prim’s implementation, each edge is enqueued to PQ once.
Once an edge is extracted out from PQ, it will never re-enter PQ.
Each enqueue and extractMin cost up to O(log |E |).
In simple graph, |E | ∈ O(|V |2), so O(log |E |) = O(log |V |).
Overall, O(|E | log |V |).

Other remarks of MST

O(|E | log |V |) time complexity is Prim’s algorithm implementation
using Binary Min Heap Priority Queue and with lazy deletion.

As with Dijkstra’s, Prim’s can run in O(|E |+ |V | log |V |),
if the Priority Queue is implemented with Fibonacci heap...
But this data structure is more complicated than Binary Heap.

There are other MST algorithms, e.g., Kruskal’s (in VisuAlgo) and
Boruvka’s (not in VisuAlgo). Both run in O(|E | log |V |).

But, the best algorithm to date is Karger, Klein, and Tarjan [1993].
It is a randomized algorithm with expected O(|V |+ |E |) time, i.e.,
linear in terms of |V | and |E |, which extends Boruvka’s algorithm.

https://en.wikipedia.org/wiki/Expected_linear_time_MST_algorithm

Which one to use?

Heuristic design steps for solving optimization problem:

1. Identify the optimal substructure (common first step)
Then, formulate the recurrence (the recursive equation)

2. If no overlapping substructure, just run the recursion verbatim
e.g., Binary Search.
otherwise, run Dynamic Programming.
e.g., 0/1-Knapsack, Coin Change (tricky cases).

3. Try to find some greedy choice (or local optimal choice).
Use exchange argument to see if it leads to a global optimal.
If yes, give the faster and usually simpler Greedy Algorithm.
e.g., Frac Knapsack, Coin Change (on some denominations).
otherwise, stay with step 2 decision earlier.

Recap: Amortized Analysis

There are three common amortization arguments:

1. Aggregate method (less flexible for mixed operations)
Steps: Compute overall cost, divide by n operations

2. Accounting (or Banker’s) method
Heuristics: save on frequent but cheap operations
Use your savings on rare but expensive operations

3. Potential method
Heuristics: Carefully observe the costly operation
Is there some quantity that is ‘decreasing’?

Which analysis method to choose/learn/focus on?

For some papers, we tell you to use one (to simplify grading).

For some other papers, use the following heuristics:

Aggregate method is the easiest to use, if the analysis involves just
one operation (e.g., Binary Counter with only increment).
But if there are two or more conflicting operations (insert vs
delete; enqueue vs dequeue; push vs pop, etc), use the other two.

Between accounting versus potential method, they are ≈ equal.
Therefore, use one that you are more confident with.

Practice on one very recent past paper task in tut11!

Recap: Problem Reduction

We call this polynomial time reduction (or Karp’s reduction) if
both sub-functions above (translate A to B and translate B to A)
runs in polynomial time, and we denote this process as A ≤p B.

If B has a polynomial time algorithm, then so does A.

If A is ‘hard’, then so is B.

Recap: P, NP, NP-hard, NP-complete

In CS3230, we learn the following classes of problems:

▶ P: ... can be solved in polynomial time

▶ NP: ... can be verified in polynomial time

▶ NP-hard: ... can be p-time reduced from all problems in NP

▶ NP-complete: ... is both in NP and is NP-hard

Proving NP-completeness

To prove SOMETHING is NP-complete, we need to show that:

1. Prove SOMETHING is in NP
Verify the ‘Yes’ instance in polynomial time via a certificate.
State the certificate,
then show it verifies the ‘Yes’ instance in polynomial time.

2. Prove SOMETHING is NP-hard
Show that it is as hard as any pre-existing NP-hard problem
Show that A-PROVEN-NP-HARD-PROBLEM ≤p SOMETHING

The classic NP-complete reductions

Partially digitized at https://visualgo.net/en/reductions.
The compendium will grow over time :).

If you did WA3, task 1 was the NP-complete proof from last sem.

https://visualgo.net/en/reductions

Recap: Linear-Time Sorting

Back in lec04a, we have used Decision Tree model to show that
any comparison-based sorting requires Ω(n log n) to sort n
elements by comparing them.

However, we can break this lower bound if we do not compare
elements (terms and conditions apply). We learn two algorithms:

1. Counting Sort, simple and stable version
Runs in O(n + k) on small range of integers in [0..k − 1]

2. Radix Sort, iterated stable Counting sort
from Least Significant Digit to Most Significant Digit
Runs in O(d · (n + k)) if there are d digits in range [0..k − 1]
Runs in O(br · (n + 2r)) on b-bit integers in base 2r

Actual time complexity depends on the setup

Recap: Linear-Time Selection

We also learn Selection (Order Statistics) problem: Given an
unsorted array, find the i-th smallest element in that array.

Assuming that we can only compare, i.e., we cannot use Counting
and/or Radix sort, we can use:

1. The ‘median of medians’ selection algorithm that spend some
computation time just to find a ‘good pivot’ x .
By partitioning the array around x , we can design a Divide
and Conquer algorithm that It runs in worst-case linear-time.
But, this algorithm is not practical in real-life.

2. The Quickselect algorithm.
We can partition the array around a random pivot.
It runs in expected linear-time and is much practical.

You will spend some time in tut11 to analyze Quickselect.

Other remarks of Selection Problem

The worst-case and the expected linear-time selection algorithms
are rarely used per se (but they are very good problems to be used
in Design and Analysis algorithm course like this).

In practice, selection is rarely asked just once (i.e., on multiple
queries) and the underlying array is unlikely to remain static (i.e.,
data added/deleted/updated). On such Dynamic Order Statistics
problem, we probably need augmented balanced Binary Search
Tree (bBST), sometimes called as the Order Statistics Tree (OST).

But take note that to build the bBST of n elements itself,
we already need Ω(n log n).

https://visualgo.net/en/avl

The CS3230 course ends here...

Thanks a lot for

▶ Giving us an opportunity to share
the joy of algorithm design and analysis.

▶ For sparing your precious time listening to us.
(especially the (regular) live attendees).

We look forward to your official feedback/criticism in the NUS
official student feedback (the non-official ones at NUSmods
(or NUSwhispers) are generally read with a grain of salt).

The teaching team of S1 AY24/25 will share what work and what
did not work to our S2 AY24/25 colleagues, so that the quality of
the course will gradually improve over time.

ADS

Some recommended courses for interested students:

▶ CS3233 Competitive Programming
PS: needs minimum CodeForces rating of ≥ 1400.

▶ CS4231 Parallel and Distributed Algorithms

▶ CS4234 Optimisation Algorithms

▶ CS5230 Computational Complexity

▶ CS5234 Algorithms at Scale

▶ CS5330 Randomized Algorithms

We hope that we have prepared you for these courses.

Credits

Special thanks to all the TAs of S1 AY24/25, namely:

1. Dominic Berzin Chua

2. Kale Aprup Vinay

3. Tan Wei Seng

4. Stanve Avrilium Widjaja

5. Bryan Chan Kah Hoe

6. Prof Chang Yi-Jun

7. Chen Yanyu

8. NUSOne (could be grp 08)

9. NUSOne (could be grp 09)

10. NUSOne (could be grp 10)

11. Teow Hua Jun

12. Ling Yan Hao

13. Huang Xing Chen

14. Nguyen Doan Phuong Anh

15. Ramanathan Kumarappan

16. Wong Kai Jie

17. Juan Carlo Vieri

18. Alvin Yan Hong Yao

19. Teoh Jun Jie

20. Agrawal Naman

Question 3 at VisuAlgo Online Quiz

What is your expectation for final assessment, Fri, 29 Nov 2024?

A). A+, A, or at least A- :)

B). I have a feeling I am around average, so B+, B, at least B-

C). I just want to pass..., i.e., > F

Acknowledgement

The slides are modified from previous editions of this course and
similar course elsewhere.

List of credits: Erik D. Demaine, Charles E. Leiserson, Surender
Baswana, Leong Hon Wai, Lee Wee Sun, Ken Sung, Arnab
Battacharya, Diptarka Chakraborty, Steven Halim, Sanjay Jain,
Chang Yi-Jun.

	Recap (plus a few extensions)
	L01+02: Asymptotics and Recurrences
	L03a: Proof of Correctness
	L03b+04a: Divide and Conquer (D&C)
	L04b+05: Randomized Algorithms
	L06+07: Dynamic Programming (DP) vs Greedy Algorithm
	L08: Amortized Analysis
	L09+10: Problem Reduction and NP-completeness
	L04+12: Lower Bound vs Linear-Time Sorting and Selection

	Wrapping-Up

