
CS3230 Semester 1 2024/2025

Design and Analysis of Algorithms

Tutorial 01

Introduction and Asymptotic Analysis

For Week 02

Document is last modified on: July 24, 2024

1 Notes

CS3230 tutorial format is as follows: We will consider a few questions per tutorial. Some questions

are revealed beforehand (on Canvas), some are hidden and will only be discussed on the spot.

For each question, we will ask a student to solve it. A reasonable attempt for that question will

earn the student one participation point (1%). The limit is maximum 3 points (3%) for a student

for the whole semester. TA will try to ensure that each student do at least one question throughout

the semester.

Note that since this is the first tutorial, your TA will start the session with a short icebreaker.

2 Lecture Review: Asymptotic Analysis

We say f ∈ O(g) or f = O(g) or f(n) = O(g(n)) if ∃c, n0 > 0 such that ∀n ≥ n0, 0 ≤ f(n) ≤ c× g(n).

Informally, we say (function) g is an upperbound on (function) f . This is the most popular Big O

worst-case time complexity analysis that we have learned since earlier course, i.e., from CS2040/C/S.

Copy-pasting similar mathematical statement four other times for the other asymptotic notations

Ω,Θ, o, ω is probably less clear compared to the following tabular summary:

We say if ∃c, c1, c2, n0 > 0 such that ∀n ≥ n0 In other words

f(n) = O(g(n)) 0 ≤ f(n) ≤ c× g(n) g is an upper bound on f

f(n) = Ω(g(n)) 0 ≤ c× g(n) ≤ f(n) g is a lower bound on f

f(n) = Θ(g(n)) 0 ≤ c1 × g(n) ≤ f(n)× c2 × f(n) g is a tight bound on f

f(n) = o(g(n)) 0 ≤ f(n) < c× g(n) g is a strict upper bound on f

f(n) = ω(g(n)) 0 ≤ c× g(n) < f(n) g is a strict lower bound on f

1



3 Tutorial 01 Questions

Q1). Assume f(n), g(n) > 0, show:

• limn→∞
f(n)
g(n) = 0 ⇒ f(n) = o(g(n))

• limn→∞
f(n)
g(n) < ∞ ⇒ f(n) = O(g(n))

• 0 < limn→∞
f(n)
g(n) < ∞ ⇒ f(n) = Θ(g(n))

• limn→∞
f(n)
g(n) > 0 ⇒ f(n) = Ω(g(n))

• limn→∞
f(n)
g(n) = ∞ ⇒ f(n) = ω(g(n))

Q2). Assume f(n), g(n) > 0, show:

• Reflexivity

– f(n) = O(f(n))

– f(n) = Ω(f(n))

– f(n) = Θ(f(n))

• Transitivity

– f(n) = O(g(n)) and g(n) = O(h(n) implies f(n) = O(h(n))

– Do the same for Ω, Θ, o, ω

• Symmetry

– f(n) = Θ(g(n)) iff g(n) = Θ(f(n))

• Complementarity

– f(n) = O(g(n)) iff g(n) = Ω(f(n))

– f(n) = o(g(n)) iff g(n) = ω(f(n))

Q3). Which of the following statement(s) is/are True?

1. 3n+1 = O(3n)

2. 4n = O(2n)

3. 2⌊logn⌋ = Θ(n) (we assume log is in base 2)

4. For a constant i, a > 0, we have (n+ a)i = O(ni)

2



Q4). Which of the following statement(s) is/are True?

2log2 n =

1. O(n)

2. Ω(n)

3. Θ(
√
n)

4. ω(n)

Q5). Rank the following functions by their order of growth.

(But if any two (or more) functions have the same order of growth, group them together).

• f1(n) = logn

• f2(n) = n!

• f3(n) = 2n + n

• f4(n) = n2.3 + 16n

3


	Notes
	Lecture Review: Asymptotic Analysis
	Tutorial 01 Questions

