CS3230 Semester 1 2024/2025
 Design and Analysis of Algorithms

Tutorial 02
 Solving Recurrences and Master Theorem For Week 03

Document is last modified on: July 24, 2024

1 Lecture Review: Recurrences

Given a recurrence in standard form of $T(n)=a \cdot T\left(\frac{n}{b}\right)+f(n)$, where $f(n)=c \cdot n^{d} \log ^{k} n$, we want to give a tight asymptotic bound for $T(n)$.

There are a few ways to solve recurrences, with the easiest being Master theorem (a.k.a. master method). Let $d=\log _{b} a$ (this d is a very important value; also notice $b^{d}=a$).

1. Case 1: $f(n)=O\left(n^{d-\epsilon}\right) \Rightarrow T(n)=\Theta\left(n^{d}\right)$.

The total work done at the leaves dominate.
2. Case 2: $f(n)=\Theta\left(n^{d} \log ^{k} n\right) \Rightarrow T(n)=\Theta\left(n^{d} \log ^{k+1} n\right)$.

There are some extensions of case 2 , to be elaborated in this tutorial.
3. Case 3: $f(n)=\Omega\left(n^{d+\epsilon}\right) \Rightarrow T(n)=\Theta(f(n))$,
assuming $a \cdot f\left(\frac{x}{b}\right) \leq c \cdot f(x), \forall x$, and some constant $c<1$ (regularity condition).
The root does most of the work.
However, there are also three other ways to solve recurrences, especially those that are not of the standard form above: Telescoping (if applicable), substitution method (guess and check; need good guess(es)), or draw the recursion tree (try exploring https://visualgo.net/en/recursion).

1.1 Recap About Telescoping

Consider any sequence $a_{0}, a_{1}, \ldots, a_{n}$ and suppose we need to find $\sum_{i=0}^{n-1}\left(a_{i}-a_{i+1}\right)$.
Expanding $\sum_{i=0}^{n-1}\left(a_{i}-a_{i+1}\right)$, we have $\left(a_{0}-a_{1}\right)+\left(a_{1}-a_{2}\right)+\left(a_{2}-a_{3}\right)+\ldots+\left(a_{n-1}-a_{n}\right)$.
Which can be rewritten as $a_{0}+\left(-a_{1}+a_{1}\right)+\left(-a_{2}+a_{2}\right)+\ldots+\left(-a_{n-1}+a_{n-1}\right)-a_{n}$.

Thus, except for a_{0} at the beginning and $-a_{n}$ at the end, all other a_{i} appear exactly once as a negative and then as a positive in the sum, and thus cancel each other, making the $\sum_{i=0}^{n-1}\left(a_{i}-a_{i+1}\right)=a_{0}-a_{n}$.

2 Tutorial 02 Questions

Q1). Give a tight asymptotic bound for $T(n)=4 \cdot T\left(\frac{n}{4}\right)+\frac{n}{\log n}$ using telescoping.

Q2-3-4). are hidden, they are of type:
Give a tight asymptotic bound for $T(n)=a \cdot T\left(\frac{n}{b}\right)+f(n)$.
But we guarantee that all three can be solved (easily) with master theorem.

Q5). Give a tight asymptotic bound for $T(n)=4 \cdot T\left(\frac{n}{2}\right)+\sqrt{n}$ using the substitution method.

Q6). Suppose that you are given k sorted arrays: $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$, with n elements each.
Your task is to merge them into one combined sorted array of size $k \cdot n$.
Let $T(k, n)$ denotes the complexity of merging k arrays of size n.
Suppose that you decide that the best way to do the above is via recursion (when $k>1$):

1. Merge the first $\left\lceil\frac{k}{2}\right\rceil$ arrays of size n,
2. Merge the remaining $\left\lfloor\frac{k}{2}\right\rfloor$ arrays of size n,
3. Merge the two sorted subarrays obtained from the first two steps above.

Give a formula for $T(k, n)$ based on the recursive algorithm above and solve the recurrence.

