
1

CS5225 Concurrency Control 1

Concurrency Control in
Distributed Databases

CS5225 Concurrency Control 2

In distributed DB

X Y Z

T1 T2

2

CS5225 Concurrency Control 3

In centralized (Local) DB
T1 T2 … Tn

DB
(consistency
constraints)

CS5225 Concurrency Control 4

Example:
T1: Read(A) T2: Read(A)

A ← A+100 A ← A×2
Write(A) Write(A)
Read(B) Read(B)
B ← B+100 B ← B×2
Write(B) Write(B)

Constraint: A=B

3

CS5225 Concurrency Control 5

Schedule A: Serial Schedule
T1 T2
Read(A); A ← A+100
Write(A);
Read(B); B ← B+100;
Write(B);

Read(A);A ← A×2;
Write(A);
Read(B);B ← B×2;
Write(B);

A B
25 25

125

125

250

250
250 250

CS5225 Concurrency Control 6

Schedule B
T1 T2
Read(A); A ← A+100
Write(A);

Read(A);A ← A×2;
Write(A);

Read(B); B ← B+100;
Write(B);

Read(B);B ← B×2;
Write(B);

A B
25 25

125

250

125

250
250 250

4

CS5225 Concurrency Control 7

Schedule C
T1 T2
Read(A); A ← A+100
Write(A);

Read(A);A ← A×2;
Write(A);
Read(B);B ← B×2;
Write(B);

Read(B); B ← B+100;
Write(B);

A B
25 25

125

250

50

150
250 150

CS5225 Concurrency Control 8

Schedule D
T1 T2’
Read(A); A ← A+100
Write(A);

Read(A);A ← A×1;
Write(A);
Read(B);B ← B×1;
Write(B);

Read(B); B ← B+100;
Write(B);

A B
25 25

125

125

25

125
125 125

Same as Schedule C
but with new T2’

5

CS5225 Concurrency Control 9

• Want schedules that are “good”, regardless
of
– initial state and
– transaction semantics

• Only look at order of reads and writes
Example:
SB=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

What are good schedules?

CS5225 Concurrency Control 10

SB’=r1(A)w1(A) r1(B)w1(B)r2(A)w2(A)r2(B)w2(B)

SB=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

Example:

T1 T2

no cycles ⇒ SB is “equivalent” to a serial
schedule (in this case T1,T2)

T1 T1
T2 T2

6

CS5225 Concurrency Control 11

Example (Cont)

Sc=r1(A)w1(A)r2(A)w2(A) r2(B)w2(B)r1(B)w1(B)

CS5225 Concurrency Control 12

T1 T2 Sc cannot be rearranged into a serial schedule

Sc is not “equivalent” to any serial schedule

Sc is “bad”

T1 → T2

Also, T2 → T1

Example (Cont)

Sc=r1(A)w1(A)r2(A)w2(A) r2(B)w2(B)r1(B)w1(B)

7

CS5225 Concurrency Control 13

Concepts
Transaction: sequence of ri(x), wi(x) actions
Conflicting actions: r1(A) w1(A) w1(A)

w2(A) r2(A) w2(A)

Schedule: represents chronological order in which
actions are executed

Serial schedule: no interleaving of actions or
transactions

Serializable schedule: a schedule whose effect on
any consistent database instance is guaranteed
to be identical to that of some complete serial
schedule

CS5225 Concurrency Control 14

Definition

S1, S2 are conflict equivalent schedules
if S1 can be transformed into S2 by a
series of swaps on non-conflicting actions.

A schedule is conflict serializable if it is
conflict equivalent to some serial schedule.

8

CS5225 Concurrency Control 15

Nodes: transactions in S
Arcs: Ti → Tj whenever

- pi(A), qj(A) are actions in S
- pi(A) <S qj(A)
- at least one of pi, qj is a write

Precedence graph P(S) (S is schedule)

CS5225 Concurrency Control 16

Theorem

P(S1) acyclic ⇐⇒ S1 conflict serializable

9

CS5225 Concurrency Control 17

In distributed DB

X Y Z

T1 T2

CS5225 Concurrency Control 18

Distributed Transactions
A distributed transaction T is initiated at one site and
spawned subtransactions at several other sites. We
distinguish the subtransaction at home site by calling
it the coordinator, while the other subtransactions are
the participants.

TT11

TT22TT22

TT11

Site ASite A Site BSite B

10

CS5225 Concurrency Control 19

Distributed Transactions
T1 in site A, denoted as T1

A, is the coordinator.
T1 in site B, denoted as T1

B, is the participant.
T2

B, is the coordinator. T2
A, is the participant.

T1
A waits for T1

B, and T2
B waits for T2

A.

TT11
AA

Site ASite A Site BSite B

TT22
AA

TT11
BB

TT22
BB

CS5225 Concurrency Control 20

T1 T2

1 (T1) a ← X 5 (T2) c ← X

2 (T1) X ← a+100 6 (T2) X ← 2c

3 (T1) b ← Y 7 (T2) d ← Y

4 (T1) Y ← b+100 8 (T2) Y ← 2d

Example
X Y

Node 1 Node 2

constraint: X=Y

Precedence relation

11

CS5225 Concurrency Control 21

(node X) (node Y)
1 (T1) a ← X

2 (T1) X ← a+100

5 (T2) c ← X 3 (T1) b ← Y

6 (T2) X ← 2c 4 (T1) Y ← b+100

7 (T2) d ← Y

8 (T2) Y ← 2d

If X=Y=0 initially, X=Y=200 at end (always good?)

Schedule S1 Precedence: intra-transaction
inter-transaction

CS5225 Concurrency Control 22

Serializability in Distributed DBMS
Somewhat more involved. Two types of

schedules have to be considered:
local schedules
global schedule

For global transactions (i.e., global schedule)
to be serializable, two conditions are necessary:

Each local schedule should be serializable.
All sub-transactions of global transactions
appear in the same order in the equivalent
serial schedule at ALL sites.

12

CS5225 Concurrency Control 23

Global Non-serializability
Consider 2 sites and one data item x that is duplicated in

both sites

T1: Read(x) T2: Read(x)
x ←x+5 x ←x*10
Write(x) Write(x)
Commit Commit

The following two local schedules are individually
serializable (in fact serial), but the two transactions are not
globally serializable.

LH1={R1(x),W1(x),R2(x),W2(x)}
LH2={R2(x),W2(x),R1(x),W1(x)}

T1 T2

T2 T1

CS5225 Concurrency Control 24

Global Non-serializability (Cont)

LH1={R1(x),W1(x),R2(x),W2(x)}
LH2={R2(x),W2(x),R1(x),W1(x)}

Assume x=1 initially. At site 1, x=60 after LH1.
At site 2, x=15 after LH2. Violates the mutual

consistency.

13

CS5225 Concurrency Control 25

prevent P(S) cycles from occurring
T1 T2 ….. Tn

Scheduler

DB

How to enforce serializable schedules?

CS5225 Concurrency Control 26

Classification of Concurrency
control Mechanisms

14

CS5225 Concurrency Control 27

A locking protocol

Two new actions:
lock (exclusive):
unlock:

scheduler

T1 T2

lock
table

CS5225 Concurrency Control 28

Locking Rules in centralized db
(2-phase locking)

• Well-formed transactions
• Legal schedulers
• Two-phase transactions

• These rules guarantee serializable
schedules

15

CS5225 Concurrency Control 29

Rules

Rule #1: Well-formed transactions
Ti: … li(A) … pi(A) … ui(A) ...

Rule #2: Legal scheduler
S = …….. li(A) ………... ui(A) ……...

no lj(A)

CS5225 Concurrency Control 30

• What schedules are legal?
What transactions are well-formed?
S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B)
r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

S2 = l1(A)r1(A)w1(B)u1(A)u1(B)
l2(B)r2(B)w2(B)l3(B)r3(B)u3(B)

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B)
l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

Exercise:

16

CS5225 Concurrency Control 31

• What schedules are legal?
What transactions are well-formed?
S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B)
r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

S2 = l1(A)r1(A)w1(B)u1(A)u1(B)
l2(B)r2(B)w2(B)l3(B)r3(B)u3(B)

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B)
l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

Exercise:

CS5225 Concurrency Control 32

Schedule F

T1 T2 25 25
l1(A);Read(A)
A←A+100;Write(A);u1(A) 125

l2(A);Read(A)
A ← Ax2;Write(A);u2(A) 250
l2(B);Read(B)
B ← Bx2;Write(B);u2(B) 50

l1(B);Read(B)
B ← B+100;Write(B);u1(B)

150
250 150

A B

17

CS5225 Concurrency Control 33

Two phase locking (2PL)
for transactions

locks
held by
Ti

Time
Growing Shrinking
Phase Phase

CS5225 Concurrency Control 34

Schedule G
T1 T2
l1(A);Read(A)
A ← A+100;Write(A)
l1(B); u1(A)

l2(A);Read(A)
A ← Ax2;Write(A);lll222(B)(B)(B)

Read(B);B ← B+100
Write(B); u1(B)

l2(B); u2(A);Read(B)
B ← Bx2;Write(B);u2(B);

delayed

18

CS5225 Concurrency Control 35

Schedule H (T2 reversed)
T1 T2
l1(A); Read(A) l1(B);Read(B)
A ← A+100;Write(A) B ← Bx2;Write(B)
lll222(B)(B)(B) lll222(A)(A)(A)

delayeddelayed

Deadlocked transactions are rolled back

CS5225 Concurrency Control 36

2PL ⇒ conflict serializable schedule

Theorem

19

CS5225 Concurrency Control 37

Strict 2PL

CS5225 Concurrency Control 38

Locking-Based Algorithms
That’s all that is needed to ensure serializability!

Beyond this is to improve concurrency

Locks are either read lock (also called shared lock)
or write lock (also called exclusive lock)

Read locks and write locks are conflicting (or
incompatible)

rlock

wlock

wlockrlock

yes no

nono

20

CS5225 Concurrency Control 39

Locking in distributed DB
• Just like in a centralized system
• But with multiple lock managers

D1

locks
for
D1

scheduler 1

node 1

D2

locks
for
D2

scheduler 2

node 2

...

T
access &
lock data

access &
lock data

(release all locks at end)

CS5225 Concurrency Control 40

Distributed Locking

• Look at three schemes:

– Centralized locking
– Primary Copy 2PL
– Distributed 2PL

21

CS5225 Concurrency Control 41

Centralized Locking

• Single site that maintains all locking information.
• One lock manager for whole of DDBMS.
• Local transaction managers involved in global

transaction request and release locks from lock
manager.

• Or transaction coordinator can make all locking
requests on behalf of local transaction managers.

CS5225 Concurrency Control 42

Communication Structure of
Centralised 2PL

22

CS5225 Concurrency Control 43

Primary Copy 2PL

• Lock managers distributed to a number of sites.
• Each lock manager responsible for managing locks for

set of data items.
• For replicated data item, one copy is chosen as primary

copy, others are slave copies
• Only need to write-lock primary copy of data item that is

to be updated.
• Once primary copy has been updated, change can be

propagated to slaves.

CS5225 Concurrency Control 44

Distributed 2PL
2PL schedulers are placed at each site.

Each scheduler handles lock requests for data at that
site.

A transaction may read any of the replicated copies of
item x, by obtaining a read lock on one of the copies
of x. Writing into x requires obtaining write locks for
all copies of x.

23

CS5225 Concurrency Control 45

Communication Structure of
Distributed 2PL

CS5225 Concurrency Control 46

Dealing with Multiple Copies of
Data

Three schemes which guarantee that conflicts are
discovered at least in one site.

1. Read-lock-one, write-lock-all (ROWA). To read a data
item A, a transaction may obtain a read-lock on any
copy of A. To write on a data item A, a transaction
must obtain write-locks on all copies of A.

24

CS5225 Concurrency Control 47

Dealing with Multiple Copies of
Data

2. The majority locking strategy. To read a data item A, a
transaction may obtain read-locks on a majority of the
copies of A. To write on a data item A, a transaction
must also obtain write-locks on a majority of the
copies of A.

3. Primary Copy Locking. All locks for a data item A are
requested at the site of the primary copy.

CS5225 Concurrency Control 48

Deadlock and Wait for Graph
A transaction is deadlocked if it is blocked and will A transaction is deadlocked if it is blocked and will
remain blocked until there is intervention. remain blocked until there is intervention.

LockingLocking--based CC algorithms may cause deadlocks.based CC algorithms may cause deadlocks.

WaitWait--for graph (for graph (WFGWFG).).

TTii TTjj

25

CS5225 Concurrency Control 49

Local versus Global WFG
Transaction T1 is initiated at site A and spawned
subtransactions at site B. Transaction T2 is initiated
at site B and spawned subtransactions at site A.

Assume T1 waits for a lock held by T2 at site B, and
T2 waits for a lock held by T1 at site A.

TT11

TT22TT22

TT11

Site A (no cycle locally)Site A (no cycle locally) Site B (No cycle)Site B (No cycle)

CS5225 Concurrency Control 50

Local versus Global WFG
Transaction T1 is initiated at site A and spawned
subtransactions at site B. Transaction T2 is initiated
at site B and spawned subtransactions at site A.

Assume T1 waits for a lock held by T2 at site B, and
T2 waits for a lock held by T1 at site A.

TT11

TT22TT22

TT11

Site ASite A Site BSite B

26

CS5225 Concurrency Control 51

Deadlock Management
Ignore

use timeout.

Avoidance

detecting potential deadlocks in advance and
taking action to ensure that deadlock will not
occur.

Detection and Recovery

Allowing deadlocks to form and then finding and
breaking them.

CS5225 Concurrency Control 52

Deadlock Detection
Topologies for deadlock detection algorithms

Centralized

Hierarchical

Distributed

27

CS5225 Concurrency Control 53

Centralized Deadlock Detection
• Single site appointed deadlock detection

coordinator (DDC).
• Each scheduler periodically sends its local

WFG to the central site
• DDC has responsibility of constructing and

maintaining GWFG.
• If one or more cycles exist, DDC must break

each cycle by selecting transactions to be
rolled back and restarted.

CS5225 Concurrency Control 54

Hierarchical Deadlock Detection

• Sites are organized into a hierarchy.
• Each site sends its LWFG to detection

site above it in hierarchy.
• Reduces dependence on centralized

detection site.

28

CS5225 Concurrency Control 55

Hierarchical Deadlock Detection

CS5225 Concurrency Control 56

Distributed Deadlock Detection
Sites cooperate in detection of deadlocks.

The local WFGs are formed at each site and
passed on to other sites.

The WFGs are combined into a GWFGs.

To save cost, only when a potential deadlock
exists then will the WFG be transmitted.

29

CS5225 Concurrency Control 57

Local versus Global WFG
There is a potential global deadlock found in site A,
because the WFG in site A has a cycle involving the
external node EX.

Similarly, it is true for site B.

TT11

TT22TT22

TT11

Site ASite A Site BSite B

EXEX

CS5225 Concurrency Control 58

Distributed Deadlock Detection
All potential global deadlock graphs discovered at site
i are forwarded to the site j where there is a
transaction T for which site i is waiting.

T1T1 T1T1T2T2 T4T4

T2T2 T3T3 T4T4T3T3

30

CS5225 Concurrency Control 59

Distributed Deadlock Detection

T1T1 T1T1T2T2 T4T4

T2T2 T3T3 T4T4T3T3

T2 T1 T4

CS5225 Concurrency Control 60

Distributed Deadlock Detection

T1T1 T1T1T2T2 T4T4

T2T2 T3T3 T4T4T3T3

T3 T3 T2 T2 T1 T1 T4T4

31

CS5225 Concurrency Control 61

Distributed Deadlock Detection

T1T1 T1T1T2T2 T4T4

T2T2 T3T3 T4T4T3T3

T4 T4 T3 T3 T2 T2 T1 T1 T4T4

CS5225 Concurrency Control 62

Distributed Deadlock Detection
Q: How to avoid the same deadlock being detected
more than once?

T1T1 T1T1T2T2 T4T4

T2T2 T3T3 T4T4T3T3

T4 T4 T3 T3 T2 T2 T1 T1 T4T4

T1 T1 T4 T4 T3 T3 T2 T2 T1T1

T3 T3 T2 T2 T1 T1 T4 T4 T3T3

T2 T2 T1 T1 T4 T4 T3 T3 T2T2

32

CS5225 Concurrency Control 63

Example

• r6(l), r2(y), r5(m), r1(z), r1(x), r4(b), r3(a),
r6(n), r3(c), r5(a),r1(y), r3(x), r6(m), r2(b),
r4(n)

X

Y

z

a

b

c

l

m

n

Site A Site B Site C

CS5225 Concurrency Control 64

Example

• r6(l), r2(y), r5(m), r1(z), r1(x), r4(b), r3(a),
r6(n), r3(c), r5(a),r1(y), r3(x), r6(m), r2(b),
r4(n)

x (T2)

y (T2)

z (T1)

a (T3)

b (T4)

c (T3)

l (T6)

m (T5)

n (T6)

Site A Site B Site C

33

CS5225 Concurrency Control 65

Example

• r6(l), r2(y), r5(m), r1(z), r1(x), r4(b), r3(a),
r6(n), r3(c), r5(a),r1(y), r3(x), r6(m), r2(b),
r4(n)

x (T1)

y (T2)

z (T1)

a (T3)

b (T4)

c (T3)

l (T6)

m (T5)

n (T6)

Site A Site B Site C

T5T3

T2
T4

CS5225 Concurrency Control 66

Example

• r6(l), r2(y), r5(m), r1(z), r1(x), r4(b), r3(a),
r6(n), r3(c), r5(a),r1(y), r3(x), r6(m), r2(b),
r4(n)

x (T1)

y (T2)

z (T1)

a (T3)

b (T4)

c (T3)

l (T6)

m (T5)

n (T6)

Site A Site B Site C

T5T3

T2
T4

34

CS5225 Concurrency Control 67

Size of Data Items
The size or granularity of the data item that can be locked in
a single operation has effect on the performance of the
concurrency control method.

Granule size Granule size can be:

Tuple –

Page (or bucket) –

Relation –

CS5225 Concurrency Control 68

Size of Data Items (Cont)
Consider a transaction which is simply updating a tuple of a
relation:

Tuple – the CC locks only that tuple

Relation – the CC locks the whole relation

Consider a transaction which is updating many tuples of a
relation:

Tuple – the CC locks each individual tuple separately

Relation – the CC locks the entire relation

35

CS5225 Concurrency Control 69

Size of Data Items (Cont)
Ideally, the CC should support mixed granularity with tuple,
page and relation level locking.

DBMS will automatically upgrade locks from tuple to page to
relation if a particular transaction is locking more than a
certain percentage of the tuples or pages in the relation.

CS5225 Concurrency Control 70

Summary

• Data sharing has to be managed to
present inconsistencies or other anomalies

• Locking is the most widely used
mechanism

• Deadlock has to be managed

