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CS5225 Concurrency Control 1

Concurrency Control in 
Distributed Databases

CS5225 Concurrency Control 2

In distributed DB

X Y Z

T1 T2
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In centralized (Local) DB
T1 T2 … Tn

DB
(consistency
constraints)
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Example:
T1: Read(A) T2: Read(A)

A ← A+100 A ← A×2
Write(A) Write(A)
Read(B) Read(B)
B ← B+100 B ← B×2
Write(B) Write(B)

Constraint:  A=B
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Schedule A: Serial Schedule
T1 T2
Read(A); A ← A+100
Write(A);
Read(B); B ← B+100;
Write(B);

Read(A);A ← A×2;
Write(A);
Read(B);B ← B×2;
Write(B);

A B
25 25

125

125

250

250
250 250
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Schedule B
T1 T2
Read(A); A ← A+100
Write(A);

Read(A);A ← A×2;
Write(A);

Read(B); B ← B+100;
Write(B);

Read(B);B ← B×2;
Write(B);

A B
25 25

125

250

125

250
250 250
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Schedule C
T1 T2
Read(A); A ← A+100
Write(A);

Read(A);A ← A×2;
Write(A);
Read(B);B ← B×2;
Write(B);

Read(B); B ← B+100;
Write(B);

A B
25 25

125

250

50

150
250 150
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Schedule D
T1 T2’
Read(A); A ← A+100
Write(A);

Read(A);A ← A×1;
Write(A);
Read(B);B ← B×1;
Write(B);

Read(B); B ← B+100;
Write(B);

A B
25 25

125

125

25

125
125 125

Same as Schedule C
but with new T2’
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• Want schedules that are “good”, regardless 
of
– initial state and
– transaction semantics

• Only look at order of reads and writes
Example: 
SB=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

What are good schedules?
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SB’=r1(A)w1(A) r1(B)w1(B)r2(A)w2(A)r2(B)w2(B)

SB=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

Example:

T1 T2

no cycles ⇒ SB is “equivalent” to a serial      
schedule (in this case T1,T2)

T1 T1
T2 T2
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Example (Cont)

Sc=r1(A)w1(A)r2(A)w2(A) r2(B)w2(B)r1(B)w1(B)
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T1 T2 Sc cannot be rearranged into a serial schedule

Sc is not “equivalent” to any serial schedule

Sc is “bad”

T1 → T2

Also, T2 → T1

Example (Cont)

Sc=r1(A)w1(A)r2(A)w2(A) r2(B)w2(B)r1(B)w1(B)
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Concepts
Transaction: sequence of ri(x), wi(x) actions
Conflicting actions: r1(A) w1(A)      w1(A)

w2(A) r2(A)       w2(A)

Schedule: represents chronological order in which 
actions are executed

Serial schedule: no interleaving of actions or 
transactions

Serializable schedule: a schedule whose effect on 
any consistent database instance is guaranteed 
to be identical to that of some complete serial 
schedule
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Definition

S1, S2 are conflict equivalent schedules
if S1 can be transformed into S2 by a 
series of swaps on non-conflicting actions.

A schedule is conflict serializable if it is 
conflict equivalent to some serial schedule.
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Nodes: transactions in S
Arcs:  Ti → Tj whenever

- pi(A), qj(A) are actions in S
- pi(A) <S qj(A)
- at least one of pi, qj is a write

Precedence graph P(S)  (S is schedule)
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Theorem

P(S1) acyclic ⇐⇒ S1 conflict serializable
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In distributed DB

X Y Z

T1 T2
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Distributed Transactions
A distributed transaction T is initiated at one site and 
spawned subtransactions at several other sites. We 
distinguish the subtransaction at home site by calling 
it the coordinator, while the other subtransactions are 
the participants.

TT11

TT22TT22

TT11

Site ASite A Site BSite B
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Distributed Transactions
T1 in site A, denoted as T1

A, is the coordinator.
T1 in site B, denoted as T1

B, is the participant.
T2

B, is the coordinator. T2
A, is the participant.

T1
A waits for T1

B, and T2
B waits for T2

A.

TT11
AA

Site ASite A Site BSite B

TT22
AA

TT11
BB

TT22
BB
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T1 T2

1 (T1) a ← X 5 (T2) c ← X

2 (T1) X ← a+100 6 (T2) X ← 2c

3 (T1) b ← Y 7 (T2) d ← Y

4 (T1) Y ← b+100 8 (T2) Y ← 2d

Example
X Y

Node 1 Node 2

constraint: X=Y

Precedence relation
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(node X) (node Y)
1 (T1) a ← X

2 (T1)   X ← a+100

5 (T2)   c ← X 3  (T1)    b ← Y

6 (T2)   X ← 2c 4  (T1)    Y ← b+100

7  (T2)    d ← Y

8  (T2)    Y ← 2d

If X=Y=0 initially, X=Y=200 at end (always good?)

Schedule S1 Precedence: intra-transaction
inter-transaction
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Serializability in Distributed DBMS 
Somewhat more involved.  Two types of 

schedules have to be considered:
local schedules
global schedule

For global transactions (i.e., global schedule) 
to be serializable, two conditions are necessary:

Each local schedule should be serializable. 
All sub-transactions of global transactions 
appear in the same order in the equivalent 
serial schedule at ALL sites.
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Global Non-serializability
Consider 2 sites and one data item x that is duplicated in 

both sites

T1: Read(x) T2: Read(x)
x ←x+5 x ←x*10
Write(x) Write(x)
Commit Commit

The following two local schedules are individually 
serializable (in fact serial), but the two transactions are not 
globally serializable.

LH1={R1(x),W1(x),R2(x),W2(x)}  
LH2={R2(x),W2(x),R1(x),W1(x)}

T1 T2

T2 T1
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Global Non-serializability (Cont)

LH1={R1(x),W1(x),R2(x),W2(x)}
LH2={R2(x),W2(x),R1(x),W1(x)}

Assume x=1 initially. At site 1,  x=60 after LH1.
At site 2,  x=15 after LH2. Violates the mutual 

consistency.
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prevent P(S) cycles from occurring 
T1  T2 ….. Tn

Scheduler

DB

How to enforce serializable schedules?
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Classification  of Concurrency 
control Mechanisms
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A locking protocol

Two new actions:
lock (exclusive):
unlock:

scheduler

T1 T2

lock
table
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Locking Rules in centralized db 
(2-phase locking)

• Well-formed transactions
• Legal schedulers
• Two-phase transactions

• These rules guarantee serializable
schedules
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Rules

Rule #1: Well-formed transactions
Ti:  … li(A) … pi(A) … ui(A) ...

Rule #2: Legal scheduler
S = …….. li(A) ………... ui(A) ……...

no lj(A)
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• What schedules are legal?
What transactions are well-formed?
S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B)
r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

S2 = l1(A)r1(A)w1(B)u1(A)u1(B)
l2(B)r2(B)w2(B)l3(B)r3(B)u3(B)

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B)
l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

Exercise:
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• What schedules are legal?
What transactions are well-formed?
S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B)
r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

S2 = l1(A)r1(A)w1(B)u1(A)u1(B)
l2(B)r2(B)w2(B)l3(B)r3(B)u3(B)

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B)
l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

Exercise:
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Schedule F

T1 T2 25   25
l1(A);Read(A)
A←A+100;Write(A);u1(A) 125

l2(A);Read(A)
A ← Ax2;Write(A);u2(A)   250
l2(B);Read(B)
B ← Bx2;Write(B);u2(B) 50

l1(B);Read(B)
B ← B+100;Write(B);u1(B)                                                    

150
250 150

A   B
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Two phase locking (2PL)
for transactions

# locks
held by
Ti

Time
Growing Shrinking
Phase Phase
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Schedule G
T1 T2
l1(A);Read(A)
A ← A+100;Write(A)
l1(B); u1(A) 

l2(A);Read(A)
A ← Ax2;Write(A);lll222(B)(B)(B)

Read(B);B ← B+100
Write(B); u1(B) 

l2(B); u2(A);Read(B)
B ← Bx2;Write(B);u2(B); 

delayed
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Schedule H    (T2 reversed)
T1 T2
l1(A); Read(A) l1(B);Read(B)
A ← A+100;Write(A) B ← Bx2;Write(B)
lll222(B)(B)(B) lll222(A)(A)(A)

delayeddelayed

Deadlocked transactions are rolled back
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2PL  ⇒ conflict serializable schedule

Theorem
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Strict 2PL
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Locking-Based Algorithms 
That’s all that is needed to ensure serializability!

Beyond this is to improve concurrency

Locks are either read lock (also called shared lock) 
or write lock (also called exclusive lock) 

Read locks and write locks are conflicting (or 
incompatible) 

rlock

wlock

wlockrlock

yes no

nono
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Locking in distributed DB
• Just like in a centralized system
• But with multiple lock managers

D1

locks
for
D1

scheduler 1

node 1

D2

locks
for
D2

scheduler 2

node 2

...

T
access &
lock data

access &
lock data

(release all locks at end)
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Distributed Locking

• Look at three schemes:

– Centralized locking
– Primary Copy 2PL
– Distributed 2PL
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Centralized Locking

• Single site that maintains all locking information. 
• One lock manager for whole of DDBMS. 
• Local transaction managers involved in global 

transaction request and release locks from lock 
manager.

• Or transaction coordinator can make all locking 
requests on behalf of local transaction managers. 
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Communication Structure of 
Centralised 2PL
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Primary Copy 2PL

• Lock managers distributed to a number of sites. 
• Each lock manager responsible for managing locks for 

set of data items. 
• For replicated data item, one copy is chosen as primary 

copy, others are slave copies
• Only need to write-lock primary copy of data item that is 

to be updated. 
• Once primary copy has been updated, change can be 

propagated to slaves.
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Distributed 2PL 
2PL schedulers are placed at each site.  

Each scheduler handles lock requests for data at that 
site.

A transaction may read any of the replicated copies of 
item x, by obtaining a read lock on one of the copies 
of x.  Writing into x requires obtaining write locks for 
all copies of x.
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Communication Structure of 
Distributed 2PL
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Dealing with Multiple Copies of 
Data 

Three schemes which guarantee that conflicts are 
discovered at least in one site.

1. Read-lock-one, write-lock-all (ROWA). To read a data 
item A, a transaction may obtain a read-lock on any 
copy of A. To write on a data item A, a transaction 
must obtain write-locks on all copies of A.
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Dealing with Multiple Copies of 
Data 

2. The majority locking strategy. To read a data item A, a 
transaction may obtain read-locks on a majority of the 
copies of A. To write on a data item A, a transaction 
must also obtain write-locks on a majority of the 
copies of A.

3.  Primary Copy Locking. All locks for a data item A are 
requested at the site of the primary copy. 

CS5225 Concurrency Control 48

Deadlock and Wait for Graph 
A transaction is deadlocked if it is blocked and will A transaction is deadlocked if it is blocked and will 
remain blocked until there is intervention. remain blocked until there is intervention. 

LockingLocking--based CC algorithms may cause deadlocks.based CC algorithms may cause deadlocks.

WaitWait--for graph (for graph (WFGWFG).).

TTii TTjj
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Local versus Global WFG 
Transaction T1 is initiated at site A and spawned 
subtransactions at site B. Transaction T2 is initiated 
at site B and spawned subtransactions at site A. 

Assume T1 waits for a lock held by T2 at site B, and 
T2 waits for a lock held by T1 at site A.

TT11

TT22TT22

TT11

Site A (no cycle locally)Site A (no cycle locally) Site B (No cycle)Site B (No cycle)
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Local versus Global WFG 
Transaction T1 is initiated at site A and spawned 
subtransactions at site B. Transaction T2 is initiated 
at site B and spawned subtransactions at site A. 

Assume T1 waits for a lock held by T2 at site B, and 
T2 waits for a lock held by T1 at site A.

TT11

TT22TT22

TT11

Site ASite A Site BSite B
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Deadlock Management  
Ignore 

use timeout.   

Avoidance 

detecting potential deadlocks in advance and 
taking action to ensure that deadlock will not 
occur. 

Detection and Recovery  

Allowing deadlocks to form and then finding and 
breaking them. 
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Deadlock Detection 
Topologies for deadlock detection algorithms 

Centralized 

Hierarchical 

Distributed 
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Centralized Deadlock Detection
• Single site appointed deadlock detection 

coordinator (DDC). 
• Each scheduler periodically sends its local 

WFG to the central site
• DDC has responsibility of constructing and 

maintaining GWFG. 
• If one or more cycles exist, DDC must break 

each cycle by selecting transactions to be 
rolled back and restarted. 
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Hierarchical Deadlock Detection

• Sites are organized into a hierarchy. 
• Each site sends its LWFG to detection 

site above it in hierarchy. 
• Reduces dependence on centralized 

detection site.
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Hierarchical Deadlock Detection
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Distributed Deadlock Detection 
Sites cooperate in detection of deadlocks. 

The local WFGs are formed at each site and 
passed on to other sites.  

The WFGs are combined into a GWFGs.

To save cost, only when a potential deadlock 
exists then will the WFG be transmitted.
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Local versus Global WFG 
There is a potential global deadlock found in site A, 
because the WFG in site A has a cycle involving the 
external node EX.

Similarly, it is true for site B.

TT11

TT22TT22

TT11

Site ASite A Site BSite B

EXEX
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Distributed Deadlock Detection
All potential global deadlock graphs discovered at site 
i are forwarded to the site j where there is a 
transaction T for which site i is waiting. 

T1T1 T1T1T2T2 T4T4

T2T2 T3T3 T4T4T3T3
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Distributed Deadlock Detection

T1T1 T1T1T2T2 T4T4

T2T2 T3T3 T4T4T3T3

T2 T1 T4
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Distributed Deadlock Detection

T1T1 T1T1T2T2 T4T4

T2T2 T3T3 T4T4T3T3

T3 T3 T2 T2 T1 T1 T4T4
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Distributed Deadlock Detection

T1T1 T1T1T2T2 T4T4

T2T2 T3T3 T4T4T3T3

T4 T4 T3 T3 T2 T2 T1 T1 T4T4
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Distributed Deadlock Detection
Q: How to avoid the same deadlock being detected 
more than once? 

T1T1 T1T1T2T2 T4T4

T2T2 T3T3 T4T4T3T3

T4 T4 T3 T3 T2 T2 T1 T1 T4T4

T1 T1 T4 T4 T3 T3 T2 T2 T1T1

T3 T3 T2 T2 T1 T1 T4 T4 T3T3

T2 T2 T1 T1 T4 T4 T3 T3 T2T2
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Example

• r6(l), r2(y), r5(m), r1(z), r1(x), r4(b), r3(a), 
r6(n), r3(c), r5(a),r1(y), r3(x), r6(m), r2(b), 
r4(n) 

X

Y

z

a

b

c

l

m

n

Site A Site B Site  C
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Example

• r6(l), r2(y), r5(m), r1(z), r1(x), r4(b), r3(a), 
r6(n), r3(c), r5(a),r1(y), r3(x), r6(m), r2(b), 
r4(n) 

x (T2)

y (T2)

z (T1)

a (T3)

b (T4)

c (T3)

l (T6)

m (T5)

n (T6)

Site A Site B Site  C
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Example

• r6(l), r2(y), r5(m), r1(z), r1(x), r4(b), r3(a), 
r6(n), r3(c), r5(a),r1(y), r3(x), r6(m), r2(b), 
r4(n) 

x (T1)

y (T2)

z (T1)

a (T3)

b (T4)

c (T3)

l (T6)

m (T5)

n (T6)

Site A Site B Site  C

T5T3

T2
T4
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Example

• r6(l), r2(y), r5(m), r1(z), r1(x), r4(b), r3(a), 
r6(n), r3(c), r5(a),r1(y), r3(x), r6(m), r2(b), 
r4(n) 

x (T1)

y (T2)

z (T1)

a (T3)

b (T4)

c (T3)

l (T6)

m (T5)

n (T6)

Site A Site B Site  C

T5T3

T2
T4
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Size of Data Items 
The size or granularity of the data item that can be locked in 
a single operation has effect on the performance of the 
concurrency control method.

Granule size Granule size can be:

Tuple –

Page (or bucket) –

Relation –
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Size of Data Items (Cont)
Consider a transaction which is simply updating a tuple of a 
relation:

Tuple – the CC locks only that tuple

Relation – the CC locks the whole relation

Consider a transaction which is updating many tuples of a 
relation:

Tuple – the CC locks each individual tuple separately

Relation – the CC locks the entire relation
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Size of Data Items (Cont)
Ideally, the CC should support mixed granularity with tuple, 
page and relation level locking.

DBMS will automatically upgrade locks from tuple to page to 
relation if a particular transaction is locking more than a 
certain percentage of the tuples or pages in the relation.
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Summary

• Data sharing has to be managed to 
present inconsistencies or other anomalies

• Locking is the most widely used 
mechanism

• Deadlock has to be managed


