
1

Access ControlAccess Control

1

Access Control
• Access control: ensures that all direct accesses to

object are authorized – a scheme for mapping users to
allowed actions
– Protection objects: system resources for which protection is desirable,

e.g., memory, file, directory, hardware resource, software resources,
tables, tuples, …

– Subjects: active entities requesting accesses to resources, e.g., user,
owner, program, etc.

– Access mode: type of access, e.g., read/select, write/update, execute

• Protects against accidental and malicious threats by

2

Protects against accidental and malicious threats by
regulating the reading, writing and execution of data
and programs

• Need:
– Proper user identification and authentication

– Information specifying the access rights is protected from modification

2

Access Control

• Access control requirement:
– Cannot be bypassed

– Enforce least-privilege and need-to-know restrictions

– Enforce organizational policy

• Access control components:
– Access control policy: specifies the authorized accesses of a system
– Access control mechanism: implements and enforces the policy

• Separation of components allows to:

3

p p
– Define access requirements independently from implementation
– Compare different policies
– Implement mechanisms that can enforce a wide range of policies

Authorization Management

Who can grant and revoke access rights?g g
• Centralized administration: security officer
• Decentralized administration: locally autonomous systems
• Hierarchical decentralization: security officer >

departmental system administrator > Windows NT
administrator

• Ownership based: owner of data may grant access to other

4

p y g
to his/her data (possibly with grant option)

• Cooperative authorization: concurrence of several
authorizers

3

Access Control

Di ti t l (DAC)• Discretionary access control (DAC)
– An individual user can set the policy

• Mandatory access control (MAC)
– The policy is built into the system
– The user cannot modify it

5

• Role-based access control (RBAC)

Discretionary Access Control

6

4

Discretionary Access Control

• DAC policies govern the access of subjects to objects on the
basis of subjects' identity, objects’ identity and permissionsj y j y p

• When an access request is submitted to the system, the access
control mechanism verifies whether there is a permission
authorizing the access

• Such mechanisms are discretionary in that they allow subjects
to grant other subjects authorization to access their objects at
their discretion
M d i i i b d

7

• Most common administration: owner based
– Users can protect what they own
– Owner may grant access to others
– Owner may define the type of access given to others

DAC – Access Matrix

8

5

DAC – Implementation

Capability lists: What can this User do?

A th i ti

9

Access control lists

Authorization
Relation

Access Control Conditions

• Data-dependent conditions: access constraints based
on the value of the accessed dataon the value of the accessed data

• Time-dependent: access constraints based on the
time of the data access

• Context-dependent: access constraints based on
collection of information (rather than sensitivity of
data) which can be accessed

10

data) which can be accessed

• History-dependent: access constraints based on
previously accessed data

6

OS vs DBMS
• Data model is richer than that provided by OS – files vs different

levels of abstractions (physical, logical, view).

• Different abstractions are used to represent data at logical level p g
(e..g, relations, XML) and require different ways of protection.

• DBMS usually requires a variety of granularity levels for access
control, e.g., relation and view, and finer granularity like attributes.

• Logical level introduces complexity
– objects are usually related by different semantic relations, and these relations

must be carefully protected, e.g., data in different tables are linked through
foreign keys.

l l i l bj t (diff t i) l d t th– several logical objects (e.g., different views) may also correspond to the same
logical/physical objects (same file) or same logical object (views) may
correspond to different physical/logical objects (different files/relations the views
have been built)

• Data accessed by a wider variety of access modes (update, based
on SQL statements).

11

Access Control in Commercial DBMSs

• All commercial systems adopt DAC

• Current discretionary authorization models for
relational DBMS are based on the System R
authorization model

– P. P. Griffiths and B. W. Wade. An Authorization Mechanism for a Relational
Database System. ACM Trans. Database Syst. 1, 3 (Sep. 1976), Pages 242 - 255.

• It is based on ownership administration with

12

• It is based on ownership administration with
administration delegation

7

The System R Authorization Model
• Objects to be protected are tables and views

• Privileges include: select, update, insert, delete,
drop inde (onl for tables) alter (onl for tables)drop, index (only for tables), alter (only for tables)

• Groups are supported, whereas roles are not

• Privilege delegation is supported through the grant
option:
– if a privilege is granted with the grant option, the user

i i it i th i il AND t it t

13

receiving it can exercise the privilege AND grant it to
other users

– a user can only grant a privilege on a given relation if
he/she is the table owner or if he/she has received the
privilege with grant option

Grant operation

GRANT PrivilegeList| ALL[PRIVILEGES]
ON Relation | View
TO UserList | PUBLIC
[WITH GRANT OPTION]

• it is possible to grant privileges on both relations
and views

14

• privileges apply to entire relations (or views)

• for the update privilege, one needs to specify
the columns to which it applies

8

Grant operation - example

Bob: GRANT select, insert ON Employee TO Ann
WITH GRANT OPTION;;

Bob: GRANT select ON Employee TO Jim
WITH GRANT OPTION;

Ann: GRANT select, insert ON Employee TO Jim;

• Jim has the select privilege (received from both Bob
and Ann) and the insert privilege (received from Ann)

15

and Ann) and the insert privilege (received from Ann)
• Jim can grant to other users the select privilege

(because it has received it with grant option); however,
he cannot grant the insert privilege

Grant operation

• The authorization catalog keeps track of
th i il th t h d l tthe privileges that each user can delegate

• Whenever a user u executes a Grant
operation, the system intersects the
delegable privileges of u with the set of
privileges specified in the command

16

privileges specified in the command

• If the intersection is empty, the command
is not executed

9

Grant operation - example
Bob: GRANT select, insert ON Employee TO Jim WITH GRANT

OPTION;
Bob: GRANT select ON Employee TO Ann WITH GRANT OPTION;
Bob: GRANT insert ON Employee TO Ann;
Jim: GRANT update ON Employee TO Tim WITH GRANT OPTION;
Ann: GRANT select, insert ON Employee TO Tim;

•The first three GRANT commands are fully executed (Bob is the
owner of the table)
•The fourth command is not executed because Jim does not have

17

•The fourth command is not executed, because Jim does not have
the update privilege on the table
•The fifth command is partially executed; Ann has the select and
insert but she does not have the grant option for the insert; so Tim
only receives the select privilege

Revoke operation

REVOKE PrivilegeList| ALL[PRIVILEGES]
ON Relation | ViewON Relation | View
FROM UserList | PUBLIC

• When a privilege is revoked, the access privileges of the
revokee should be indistinguishable from a sequence in
which the grant never occurred.

18

which the grant never occurred.

10

Revoke operation

REVOKE PrivilegeList| ALL[PRIVILEGES]
ON Relation | ViewON Relation | View
FROM UserList | PUBLIC

• What happens when a “with grant option” privilege is
revoked?

19

• What happens when a user is granted access from
two different sources, and one is revoked?

Grants from multiple sources

• grant(Bob, Ann)

• grant(Bob Jim)

• grant(Bob, Ann)

• grant(Bob Jim)

Ann

• grant(Bob, Jim)

• grant(Jim,Ann)

• revoke(Bob, Ann)

• grant(Bob, Jim)

• grant(Jim,Ann)

• revoke(Bob, Ann)

20

Bob

Jim

Assume all grant statements are with grant option

11

But …

• grant(Bob, Ann)

• grant(Ann Jim)

• grant(Bob, Ann)

• grant(Ann Jim)

Ann

• grant(Ann, Jim)

• grant(Jim,Ann)

• revoke(Bob, Ann)

• grant(Ann, Jim)

• grant(Jim,Ann)

• revoke(Bob, Ann)

21

Bob

Jim

Recursive revocation …
• grant(Bob, Ann)

• grant(Bob, Jim)

• grant(Bob, Ann)

• grant(Bob, Jim)

Bob

• grant(Jim,Sue)

• grant (Ann, Jim)

• revoke(Bob, Jim)

• grant(Jim,Sue)

• grant (Ann, Jim)

• revoke(Bob, Jim)

22

Bob

Ann

Jim Sue
?

12

Revoke operation

REVOKE PrivilegeList| ALL[PRIVILEGES]
ON Relation | ViewON Relation | View
FROM UserList | PUBLIC

• a user can only revoke the privileges he/she has granted;
it is not possible (?) to only revoke the grant option

• upon execution of a revoke operation, the user from
h th i il h b k d l th

23

whom the privileges have been revoked looses these
privileges, unless the user has them from some source
independent from that that has executed the revoke

Revoke operations
• Recursive revocation

– whenever a user revokes an authorization on a table from
another user all the authorizations that the revokee had grantedanother user, all the authorizations that the revokee had granted
because of the revoked authorization are removed

– The revocation is iteratively applied to all the subjects that
received the access authorization from the revokee

Ann Sue

24

Bob Jim

Bob

Ann

Chris

Jim

Sue?

13

Recursive revocation

• Let G1, …., Gn be a sequence of grant operations with
a single privilege on the same relations, such that i,k g p g
= 1,…., n, if i<k, then Gi is executed before Gk. Let Ri

be the revoke operation for the privilege granted with
operation Gi.

• The semantics of the recursive revoke requires that
the state of the authorization system after the
execution of the sequence

25

G1, …., Gn , Ri

be identical to the state that one would have after the
execution of the sequence

G1, …., Gi-1, G i+1 , …., Gn

Recursive Revocation

Ann Sue Dave
10 30 40

70

Bob

Chris

Jim

Pat20 50 60

Ann
10

26

Bob

Chris

Jim Pat

10

20 50

60

14

Recursive revocation

• Recursive revocation in the System R takes into
account the timestamps denoting when each p g
authorization has been granted

• Variations to this approach have been proposed that
do not take into account the timestamps
– Why?

• To avoid cascades of revoke

• The authorizations granted by the revokee are kept as long as the
revokee has other authorizations for the same privilege (even if these

27

revokee has other authorizations for the same privilege (even if these
authorizations have a larger timestamps with respect to the timestamps
of the grant operations performed by the revokee)

Recursive revocation without
timestamp

Ann
10 30

Sue Dave
40

70

Bob

Chris

Jim

Pat20 50 60

Ann
10

Sue Dave
40

70

28

Bob

Chris

Jim Pat

10

20 50

60

15

Recursive revocation without
timestamp

Bob

Ann

Chris

Jim

29

?????

Noncascading Revocation

• Recursive revocation can be a very
disruptive operationdisruptive operation

• A recursive revoke entails:
– Revoking all authorizations the revokee

granted, for which no other supporting
authorizations exist and, recursively, revoking
all authorizations granted through them

30

all authorizations granted through them
– Invalidating application programs and views

16

Noncascading Revoke

• A user can revoke a privilege on a table from another
user without entailing automatic revocation of the g
authorizations for the privilege on the table the latter may
have granted

• Instead of deleting the authorizations the revokee may
have granted by using the privilege received by the
revoker, all these authorizations are restated as if they
had been granted by the revoker

31

Ann

Bob

Fred

Noncascading Revoke

• The semantics of the revocation without cascade of
privilege p on table t from user y by user x is:p g p y y
– To restate with x as grantor all authorizations that y granted by

using the authorization being revoked

• Since y may have received the grant option for the
privilege on the table from some other users different
from x, not all authorizations he/she granted will be given
to x
– x will be considered as grantor only of the authorizations y

32

x will be considered as grantor only of the authorizations y
granted after receiving the privilege with the grant option from x;

– y will still be considered as grantor of all authorizations he/she
granted that are supported by other authorizations not granted
by x

17

Noncascading Revoke
80

Bob
Emily Gio

20
40 50

Ann

Cathy

Dave

Fred

30 60 70

Bob
Emily Gio

20

50 80

33

Ann

Cathy

Dave

Fred

20

30 60 70

70

Noncascading Revoke
Gio

Ann

Bob

Dave

Emily
20

40 50

80

Ann

Cathy

Dave

Fred

30 60 70

Gio

Ann

Bob

Dave

Emily
20

40 50

70

80

34

Cathy
Fred

30 70

70

• Note that the authorization granted by Dave to Emily has not been
specified with Cathy as grantor. Why?

• Because it was granted before Dave received the privilege from
Cathy

18

Views and content-based authorization

• Views are commonly used to support content-based
access control in RDBMS

• Content-based access authorizations should be
specified in terms of predicatesspecified in terms of predicates
– Views can also be used to grant privileges on simple statistics

calculated on data (such as AVG, SUM,..)

• Only the tuples of a relation verifying a given predicate
are considered as the protected objects of the
authorization

• The approach to support content-based access control in
RDBMS can be summarized as follows:

35

RDBMS can be summarized as follows:
– Define a view containing the predicates to select the tuples to be

returned to a given subject S
– Grant S the select/insert/update privileges on the view, and not

on the underlying table

Views and content-based authorization

• Queries against views are transformed through view
composition into queries against base tables

• The view composition operation combines the predicates
specified in the query on the view with the predicates
which are part of the view definition

• Example: suppose we want to
authorize user Ann to access only
employees whose salary is lower than
20000:

Ann: SELECT * FROM Vemp
WHERE Job = ‘Programmer’;

Query after view composition:

36

CREATE VIEW Vemp AS
SELECT * FROM Employee
WHERE Salary < 20000;

GRANT Select ON Vemp TO Ann;

SELECT * FROM Employee
WHERE Salary < 20000 AND

Job = ‘Programmer’;

19

Steps in Query Processing

• Parsing
• Catalog lookup• Catalog lookup
• Authorization checking
• View Composition
• Query optimization

Note that authorization is performed before view

37

composition; therefore, authorization checking is
against the views used in the query and not
against the base tables used in these views

Authorizations on views

• The user creating a view is called the view definer
• The privileges that the view definer gets on the viewThe privileges that the view definer gets on the view

depend on:
– The view semantics, that is, its definition in terms of the base

relation(s)
– The authorizations that the definers has on the base table(s)

• The view definer does not receive privileges corresponding
to operations that cannot be executed on the view e.g.,
alter and index do not apply to views

38

alter and index do not apply to views
• To determine the privileges that the view definer has on the

view, the system needs to intersect the set of privileges
that the view definer has on the base tables with the set of
privileges corresponding to the operations that can be
performed on the view

20

Authorizations on views

• Consider the following view
Bob: CREATE VIEW V1 (Emp# Total Sal)Bob: CREATE VIEW V1 (Emp#, Total_Sal)

AS SELECT Emp#, Salary + Bonus
FROM Employee WHERE
Job =‘Programmer’;

The update operation is not defined on column
Total Sal of the view; therefore Bob will not receive

39

Total_Sal of the view; therefore, Bob will not receive
the update authorization on such column

Authorizations on views - example

• Consider relation Employee and assume Bob is the
creator of Employee

• Consider the following sequence of commands:• Consider the following sequence of commands:
– Bob: GRANT Select, Insert, Update ON Employee to

Tim;
– Tim: CREATE VIEW V1 AS SELECT Emp#, Salary FROM

Employee;
– Tim: CREATE VIEW V2 (Emp#, Annual_Salary) AS

SELECT Emp#, Salary*12 FROM Employee;

40

• Tim can exercise on V1 all privileges he has on relation Employee,
that is, Select, Insert, Update

• However, Tim can exercise on V2 only the privileges of Select and
Update on column Emp#; update operation is not defined on column
Annual_Sal of V2

21

Authorizations on views

• It is possible to grant authorizations on a view: the
privileges that a user can grant are those that he/she

ith t ti th b t blowns with grant option on the base tables
– Tim cannot grant any authorization on views V1 and V2 he has

defined, because he does not have the authorizations with grant
option on the base table

• Consider the following sequence of commands:
– Bob: GRANT Select ON Employee TO Tim WITH GRANT

OPTION;
– Bob: GRANT Update, Insert ON Employee TO Tim;

41

– Tim: CREATE VIEW V4 AS SELECT Emp#, Salary FROM
Employee;

Authorizations of Tim on V4:
- Select with Grant Option;
- Update, Insert without Grant Option;

DAC Summary
• Advantages:

Int iti e– Intuitive
– Easy to implement

• Disadvantages:
– Maintenance of ACL or Capability lists
– Maintenance of Grant/Revoke

42

