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Abstract

For garbage-collected applications, dynamically-allocated objects are con-
tained in a heap. Programmer productivity improves significantly if there is
a garbage collector to automatically de-allocate objects that are no longer
needed by the applications. However, there is a run-time performance over-
head in garbage collection, and this cost is sensitive to heap size H : a smaller
H will trigger more collection, but a large H can cause page faults, as when
H exceeds the size M of main memory allocated to the application.

This paper presents a Heap Sizing Rule for how H should vary with M .
The Rule can help an application trade less page faults for more garbage
collection, thus reducing execution time. It is based on a heap-aware Page
Fault Equation that models how the number of page faults depends on H
and M . Experiments show that this rule outperforms the default policy used
by JikesRVM’s heap size manager. Specifically, the number of faults and the
execution time are reduced for both static and dynamically changing M .
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1. Introduction1

Most nontrivial programs require some dynamic memory allocation for2

objects. If a program is long-running or its objects are large, such allocation3

can significantly increase the memory footprint and degrade its performance.4

IA shorter version of this paper entitled “A Page Fault Equation for Dynamic Heap Siz-
ing” has appeared in First Joint WOSP/SIPEW International Conference on Performance
Engineering (San Jose, California, USA, January 2010, pages 201–206)[1].
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This can be avoided by deallocating memory occupied by objects that are5

no longer needed, so the space can be reused.6

Manual memory deallocation is tedious and prone to error. Many lan-7

guages therefore relieve programmers of this task by having a garbage col-8

lector do the deallocation on their behalf. Several such languages are now9

widely used, e.g. Java, C#, Python and Ruby.10

Garbage collection is restricted to the heap, i.e. the part of user memory11

where the dynamically created objects are located. The application, also12

called the mutator, therefore shares access to the heap with the garbage13

collector.14

1.1. The Problem15

The heap size H can have a significant effect on mutator performance.16

Garbage collection is usually prompted by a shortage of heap space, so a17

smaller H triggers more frequent runs of the garbage collector. These runs18

interrupt mutator execution, and can seriously dilate execution time.19

Furthermore, garbage collection pollutes hardware data and instruction20

caches, causing cache misses for the mutator when it resumes execution;21

it also disrupts the mutator’s reference pattern, possibly undermining the22

effectiveness of the page replacement policy used by virtual memory man-23

agement [2, 3].24

While a larger heap size can reduce garbage collection and its negative25

impact, H cannot be arbitrarily large either. Memory is cheap, but systems26

are also often overloaded. A competing memory-intensive job, or a burst27

of job arrivals at a server, may severely reduce the memory allocated to a28

process.29

If H exceeds the memory allocation M , part of the heap will have to30

reside on disk. This will likely result in page faults, if not caused by a31

mutator reference to the heap, then by the garbage collector. (In this paper,32

page fault always refers to a major fault that requires a read from disk.) In33

fact, it has been observed that garbage collection can cause more page faults34

than mutator execution when the heap extends beyond main memory [4].35

Figure 1 presents measurements from running mutator pmd (from the36

DaCapo benchmark suite [5]) with JikesRVM [6], using GenMS in its MMTk37

toolkit as the garbage collector. It illustrates the impact of H on how page38

faults vary with M .39

In the worst case, H > M can cause page thrashing [7]. Even if the situa-40

tion is not so dire, page faults are costly — reading from disk is several orders41
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Figure 1: How heap size H and memory allocation M affect the number of page
faults n. The garbage collector is GenMS and the mutator is pmd from the Dacapo

benchmark suite.

of magnitude slower than from main memory — and should be avoided. It is42

thus clear that performance tuning for garbage-collected applications requires43

a careful choice of heap size.44

Consider the case H = 140MBytes in Figure 1. If M = 50MBytes, then45

shrinking the heap to H = 60MBytes would trigger more garbage collection46

and double the number of page faults. If M = 110MBytes, however, set-47

ting H = 60MBytes would reduce the faults to just cold misses, and the48

increase in compute time would be more than compensated by the reduction49

in fault latency. This possibility of adjusting memory footprint to fit mem-50

ory allocation is a feature for garbage-collected systems — garbage collection51

not only raises offline programmer productivity, it can also improve run-time52

application performance.53

However, the choice of H should not be static: from classical multipro-54

gramming to virtual machines and cloud computing, there is constant compe-55

tition for resources and continually shifting memory allocation. In the above56

example, if H = 60MBytes and M changes from 110MBytes to 50MBytes,57

the number of faults will increase drastically and performance will plummet.58

H must therefore be dynamically adjusted to suit changes in M . This is the59

issue addressed by our paper:60

How should heap size H vary with memory allocation M?
Given the overwhelming cost of page faults, it would help if we know61
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how the number of faults n incurred by the mutator and garbage collector62

is related to M and H . This relationship is determined by the complex63

interaction among the operating system (e.g. page replacement policy), the64

garbage collector (e.g. its memory references change withH) and the mutator65

(e.g. its execution may vary with input). Nonetheless, this paper models this66

relationship, and applies it to dynamic heap sizing.67

1.2. Our Contribution68

The first contribution in this paper is an equation that relates the num-69

ber of faults n to memory allocation M and heap size H . This equation70

has several parameters that encapsulate properties of the mutator, garbage71

collector and operating system. It is a refinement of the Page Fault Equation72

(for generic, possibly non-garbage-collected workloads) in previous work [8].73

Our second contribution is the following74

Heap Sizing Rule:75

H =







M−b

a
for aHmin + b < M < aHmax + b

Hmax otherwise
(1)

This rule, illustrated in Figure 2, reflects any change in workload through76

changes in the values of the parameters a, b, Hmin and Hmax. Once these77

values are known, the garbage collector just needs minimal knowledge from78

the operating system — namely, M — to determine H . There is no need to79

patch the kernel [9], tailor the page replacement policy [10], require notifi-80

cation when memory allocation stalls [2], track page references [4], measure81

heap utilization [6], watch allocation rate [11] or profile the application [12].82

Rule (1) is in closed-form, so there is no need for iterative adjustments [2,83

13, 14, 10, 12]. If M changes dynamically, the rule can be used to tune H ac-84

cordingly, in contrast to static command-line configuration with parameters85

and thresholds [15, 16, 13, 17].86

Most techniques for heap sizing are specific to the collectors’ algorithms.87

In contrast, our rule requires only knowledge of the parameter values, so it88

can even be used if there is hot-swapping of garbage collectors [18].89

1.3. An overview90

We begin in Section 2 by introducing the Page Fault Equation. We val-91

idate it for some garbage-collected workloads, then refine it to derive the92
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Figure 2: Heap Sizing Rule. (µ is a lower bound identified in Section 2.5; µ ≈ 80
in Figure 1.)

heap-aware version. This refinement introduces new parameters, which we93

interpret and inter-relate.94

Section 3 derives the Heap Sizing Rule (1) from the Equation, and presents95

experiments to show its effectiveness for staticM , dynamic M and in a multi-96

mutator mix.97

We survey some related work in Section 4, before concluding with a sum-98

mary in Section 5. Some technical details for the experiments, parameter99

calibration and parameter sensitivity are contained in an Appendix.100

2. Heap-Aware Page Fault Equation101

We first recall Tay and Zou’s parameterized Page Fault Equation in Sec-102

tion 2.1, and Section 2.2 verifies that it works for garbage-collected workloads.103

Section 2.3 then derives from it the heap-aware version in Equation (6). This104

introduces new parameters, which we interpret in Section 2.4. Garbage col-105

lection and virtual memory interact to define a lower bound for H , and106

Section 2.5 examines this bound.107

2.1. Page Fault Equation108

Suppose an application gets main memory allocation M (in pages or109

MBytes), and consequently incurs n page faults during its execution. The110

Page Fault Equation says111

n =

{

n∗ for M ≥M∗

1

2
(K +

√
K2 − 4)(n∗ + n0)− n0 for M < M∗

5



(a) previous equations
M

n*

n

M
(b) our equation

M*

n*

n

Figure 3: Generic shape of relationship between n and M . Our equation differs
from previous equations in identifying M∗.

where K = 1 +
M∗ +Mo

M +Mo
.

(2)

The parameters n∗, M∗, Mo and n0 have values that depend on the112

application, its input, the operating system, hardware configuration, etc.113

Having four parameters is minimal, in the following sense:114

• n∗ is the number of cold misses (i.e. first reference to a page on disk).115

It is an inherent characteristic of every reference pattern, and any equa-116

tion for n must account for it.117

• When n is plotted against M , we generally get a decreasing curve.118

Previous equations for n models this decrease as continuing forever [19,119

20, 21], as illustrated in Figure 3(a). This cannot be; there must be120

some M = M∗ at which n reaches its minimum n∗, as illustrated in121

Figure 3(b). Identifying this M∗ is critical to our use of the equation122

for heap sizing.123

• The interpretation for Mo varies with the context [8, 22]. For the124

Linux experiments in this paper, we cannot precisely control M , so Mo
125

is a correction term for our estimation of M . Mo can be positive or126

negative.127
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Figure 4: The Page Fault Equation can fit data from Figure 1 for different heap
sizes.
For H = 60MB, n∗ = 480, M∗ = 89.0, Mo = 14.8 and n0 = 64021 (R2 = 0.994).
For H = 140MB, n∗ = 480, M∗ = 146.2, Mo = 22.7 and n0 = 12721 (R2 = 0.993).

• Like Mo, n0 is a correction term for n that aggregates various effects of128

the reference pattern and memory management. For example, dynamic129

memory allocation increases n0, and prefetching may decrease n0 [8].130

Again, n0 can be positive or negative; geometrically, it controls the131

convexity of the page fault curve.132

2.2. Universality: experimental validation133

The Page Fault Equation was derived with minimal assumptions about134

the reference pattern and memory management, and experiments have shown135

that it fits workloads with different applications (e.g. processor-intensive, IO-136

intensive, memory-intensive, interactive), different replacement algorithms137

and different operating systems [8]; in this sense, the equation is universal.138

Garbage-collected applications are particularly challenging because the139

heap size determines garbage collection frequency, and thus the reference140

pattern and page fault behavior. This is illustrated in Figure 1, which shows141

how heap size affects the number of page faults. Details on the experimental142

set-up for this and subsequent experiments are given in Appendix A.143

Classical page fault analysis is bottom-up: it starts with a model of144

reference pattern and an idealized page replacement policy, then analyzes145

their interaction. We have not found any bottom-up model that incorporates146

the impact of heap size on reference behavior.147
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Figure 5: The Page Fault Equation can fit data for different mutators.
For pmd, n∗ = 420, M∗ = 162.4, Mo = −12.2 and n0 = 220561 (R2 = 0.995).
For xalan, n∗ = 480, M∗ = 151.6, Mo = 23.4 and n0 = 12421 (R2 = 0.997).

In contrast, for the Page Fault Equation to fit the result of a change in148

H , one simply changes the parametric values. Figure 4 illustrates this for the149

workload of Figure 1: it shows that the equation gives a good fit of the page150

fault data for two very different heap sizes. The goodness of fit is measured151

with the widely-used coefficient of determination R2 (the closer to 1, the152

better the fit). Appendix B provides details on how we use regression to fit153

Equation (2) to the data.154

A universal equation should still work if we change the mutator itself.155

Figure 5 illustrates this for pmd and xalan, using the MarkSweep garbage156

collector and H = 130MBytes.157

Universality also means the equation should fit data from different garbage158

collectors. Figure 6 illustrates this for pmd run with MarkSweep and with an-159

other garbage collector, SemiSpace, using H = 90MBytes.160

2.3. Top-down refinement161

The Page Fault Equation fits the various data sets by changing the nu-162

merical values of n∗, Mo, M∗ and n0 when the workload is changed. In the163

context of heap sizing, how does heap size H affect these parameters?164

The cold misses n∗ is a property of the mutator, so it is not affected by165

H . Although the workload has estimated memory allocation M , it may use166

more or less than that, and Mo measures the difference. Figure 7 plots the167
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Figure 6: The Page Fault Equation can fit data for different garbage collectors.
For MarkSweep, n∗ = 420, M∗ = 120.6, Mo = 7.9 and n0 = 314318 (R2 = 0.997).
For SemiSpace, n∗ = 420, M∗ = 129.0, Mo = −5.5 and n0 = 260659 (R2 = 0.992).

Mo values when pmd is run with MarkSweep at various heap sizes. We see168

some random fluctuation in value, but no discernible trend. Henceforth, we169

consider Mo as constant with respect to H .170

MarkSweep accesses the entire heap when it goes about collecting garbage.171

For such garbage collectors, the memory footprint grows with H , so we ex-172

pect M∗ to increase with H . Figure 8 shows that, in fact, M∗ varies linearly173

with H for all four workloads, i.e.174

M∗ = aH + b for some constants a and b. (3)

As for n0, Figure 9 shows that n0 decreases linearly with H , then flattens175

out, i.e.176

n0 =

{

cH + d for H < Hmax

cHmax + d for H ≥ Hmax

(4)

for some constants c, d and Hmax. Furthermore, a heap cannot be arbitrarily177

small; there is a smallest heap size such that, for any smaller H , the workload178

will run out of memory before completion [23]. There is therefore a bound179

Hmin ≤ H for all H. (5)

Equations (2), (3), (4) and (5) together give the following:180
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Heap-Aware Page Fault Equation181

n =

{

n∗ for M ≥M∗

1

2
(K +

√
K2 − 4)(n∗ + n0)− n0 for M < M∗

where K = 1 +
M∗ +Mo

M +Mo
,

M∗ = aH + b,

and n0 =

{

cH + d for Hmin ≤ H < Hmax

cHmax + d for H ≥ Hmax

(6)

Note that, rather than a bottom-up derivation, we have used a top-down182

refinement of the Page Fault Equation to derive the heap-aware version.183

2.4. Interpreting the new parameters184

Besides Hmin, the top-down refinement introduces new parameters a, b,185

c, d and Hmax; what do they mean?186

In their work on automatic heap sizing, Yang et al. defined a parameter R187

to be the minimum real memory required to run an application without sub-188

stantial paging [4]. Their experiments show that R is approximately linear in189

H , with a gradient determined by the collection algorithm; in particular, they190

reasoned that the gradient is 1 for MarkSweep and 0.5 for SemiSpace. Their191
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Figure 8: M∗ values vary linearly with H.

R is approximately our M∗, so Equation (3) agrees with their reasoning, even192

if our values for gradient a in Figure 8 are not as crisp for MarkSweep and193

SemiSpace.194

As for the intercept b, this is a measure of the space overhead — for195

code and stack of the mutator, garbage collector and virtual machine that196

is outside of the heap; for the garbage collection algorithm; etc. — that is197

independent of H . To generate no non-cold misses, M∗ must accommodate198

such overheads, in addition to heap-related objects.199

What can explain how n0 varies with H in Figure 9?200

The clue lies in the fact that n0 is positive: Recall that dynamic memory201

allocation increases n0, so n0 may (largely) measure the memory taken off202

the freelist during garbage collection. One expects that, if we increase H ,203

then the number of garbage collection would decrease, unless H is so large204

that it can accommodate all objects created by the mutator and there is no205
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Figure 9: n0 decreases linearly with H, then flattens out.

space shortage to trigger collection. This hypothesis matches the n0 behavior206

in Figure 9.207

To explicitly relate n0 to garbage collection, we measure the number of208

garbage collection NGC and plot 〈n0, NGC〉 for various heap sizes in Figure 10.209

It shows n0 increasing linearly with NGC, thus supporting the hypothesis.210

GenMS is a generational garbage collector that has a nursery where objects211

are first created, and they are moved out of the nursery only if they survive212

multiple garbage collections. Garbage is collected more frequently from the213

nursery than from the rest of the heap. Let N ′

GC be the number of collections214

from the nursery (not counting the full heap collections) and NGC be the215

number of full heap collections.216

Given our interpretation of n0 as determined by the number of garbage217
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Figure 10: n0 increases linearly with number of garbage collection. (For GenMS,
this refers to the number of full garbage collection.) Each data point is gener-
ated by one heap size.

collection, we expect to see a linear relationship among n0, N
′

GC and NGC.218

Indeed regression for our GenMS with pmd workload gives219

n0 = −847N ′

GC + 4726NGC + 71244

with R2 = 0.99. It is possible that the negative coefficient −847 for N ′

GC is220

a measure for the objects that moved out of the nursery.221

On the other hand, it may simply be a statistical reflection of the relation-222

ship between N ′

GC and NGC: Since a full heap collection includes the nursery,223

the number of times garbage is collected from the nursery is N ′

GC+NGC; this224

should be a constant in our experiment since we fixed the nursery size (at225

10MBytes), regardless ofH . Table 1 shows that, indeed, N ′

GC+NGC is almost226
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heap size H (MBytes) 60 70 80 90 100 110 120 130 140 150
N ′

GC (nursery) 12 8 5 4 3 3 2 2 2 2
NGC (full) 74 74 78 79 80 79 79 79 79 80
N ′

GC +NGC 86 82 83 83 83 82 81 81 81 82

Table 1: For GenMS with pmd, the number of nursery collections and full collec-
tions is almost constant.

constant as H varies from 60MBytes to 150MBytes.227

It follows that n0 should be directly correlated with NGC for GenMS, and228

regression shows that, in fact,229

n0 = 5256NGC + 2809,

as shown in Figure 10(i).230

The interpretation of the other parameters is now clear: As H increases,231

there is less garbage collection and n0 decreases. The gradient c is therefore232

a measure for the memory taken off the freelist during garbage collection.233

For a sufficiently large H = Hmax, the heap suffices to contain all objects234

created by the workload. We then expect NGC to stabilize, so n0 flattens235

out; d is then implicitly determined by c and the kink in Figure 9.236

The effect of H on M∗ and n0 explains the impact it has on page faults237

that we see in Figure 1, which shows that an increased H decreases n for238

small M , but increases n for large M , i.e. dn

dH
< 0 for small M and dn

dH
> 0239

for large M . Now240

dn

dH
=

∂n

∂n0

dn0

dH
+

∂n

∂M∗

dM∗

dH

=
(K +

√
K2 − 4

2
− 1

)dn0

dH
+

1

2

(

1 +
K√

K2 − 4

) n∗ + n0

M +Mo

dM∗

dH
(7)

It is obvious from Equation (7) that ∂n

∂n0

and ∂n

∂M∗
are both positive, while241

Figure 9 and Figure 8 show that dn0

dH
≤ 0 and dM∗

dH
> 0. In other words, the242

page fault curve is largely dominated by the garbage collector for small M243

(through dn0

dH
), and by virtual memory for large M (through dM∗

dH
).244

2.5. A lower bound for H245

The two opposing effects in Equation (7) cancel when246
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dn

dH
= 0 at some M = µ;

in Figure 1, µ ≈ 80MBytes. Now, µ partitions the page fault curve so that247

dn

dH
< 0 for M < µ

and
dn

dH
> 0 for M > µ,

and M∗ is in the latter segment. We hence have248

µ < M∗ for all M∗.

Since M∗ = aH + b, we have µ < aH + b for all H . In particular, since Hmin249

is the smallest feasible H (Equation (5)), we get250

µ < aHmin + b (see Figure 2).

This imposes a lower bound on H , i.e.251

Hmin >
µ− b

a
.

Unfortunately, we failed to derive a closed-form for µ from Equation (7);252

otherwise, we could express this bound in terms of the other parameters.253

3. Heap Sizing254

How large should a heap be? A larger heap would reduce the number255

of garbage collections, which would in turn reduce the application execution256

time, unless the heap is so large as to exceed (main) memory allocation and257

incur page faults. Heap sizing therefore consists in determining an appropri-258

ate heap size H for any given memory allocation M .259

The results in Section 2 suggest two guidelines for heap sizing, which we260

combine into one in Section 3.1. For static M , Section 3.2 compares this Rule261

to that used by JikesRVM’s default heap size manager. In Section 3.3, we do262

another comparison, but with M changing dynamically. Dynamic changes in263

M can occur when a mutator is part of a heavily-loaded multiprogramming264

mix. Section 3.4 therefore presents experiments where there are multiple265

mutators, and compares our Rule to Poor Richard’s Memory Manager [24].266
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Figure 11: Guideline for heap sizing from the Heap-Aware Page Fault Equa-
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Figure 12: Guideline for heap sizing from Figure 9.

3.1. Heap Sizing Rule267

The Heap-Aware Page Fault Equation says that, for a given H (so M∗
268

and n0 are constant parameters), the number of page faults decreases with269

increasing M for M < M∗, and remains constant as cold misses for M ≥M∗.270

Since M∗ = aH+ b (Figure 8), the boundary M = M∗ is H = M−b

a
. We thus271

get one guideline for heap sizing, as illustrated in Figure 11.272

Recall that the workload cannot run with a heap size smaller than Hmin.273

For H > Hmin, a bigger heap would require less garbage collection. Since274

garbage collection varies linearly with n0 (Figure 10), and Figure 9 shows275

that n0 stops decreasing when H > Hmax, the heap should not grow beyond276

Hmax: the benefit to the mutator is marginal, but more work is created for277

the garbage collector. We thus get another guideline for heap sizing, as278

illustrated in Figure 12.279

The two guidelines combine to give the Heap Sizing Rule (1) that is280

illustrated in Figure 2: Figure 12 requires H > Hmin. Therefore, for M <281

aHmin + b, the diagonal line in Figure 11 does not apply, and H should be282
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large to reduce the faults from garbage collection, so we get H = Hmax from283

Figure 12. For aHmin + b < M < aHmax + b, H should be large to minimize284

garbage collection and its negative impact (delays, cache corruption, etc.),285

but the size should not exceed the diagonal line in Figure 11. For M >286

aHmax + b, Figure 12 again sets H = Hmax; going beyond that would create287

unnecessary work for the garbage collector.288

3.2. Experiments with static M289

We first test the Heap Sizing Rule for a static M that is held fixed290

throughout the run of the workload. We wanted to compare the effectiveness291

of the Rule against previous work on heap sizing [2, 9, 10, 12]. However,292

we have no access to their implementation, some of which require significant293

changes to the kernel or mutator (see Section 4).294

We therefore compare the Rule to JikesRVM’s heap sizing policy, which295

dynamically adjusts the heap size according to heap utilization during execu-296

tion. This adjustment is done even if M is fixed, since an execution typically297

goes through phases, and its need for memory varies accordingly.298

Figure 13(i) shows that, for pmd run with MarkSweep, JikesRVM’s au-299

tomatic heap sizing indeed results in fewer faults than if H is fixed at300

60MBytes or at 140MBytes for small M ; for large M (≥ 80MBytes), how-301

ever, its dynamic adjustments fail to reduce the number of faults below that302

for H = 60MBytes.303

It is therefore not surprising that, although our Rule fixes H for a static304

M , it consistently yields less faults than JikesRVM; i.e. it suffices to choose305

an appropriate H for M , rather than adjust H dynamically according to306

JikesRVM’s policy. Notice that, around M = 80MBytes, page faults under307

the Rule drop sharply to just cold misses. This corresponds to the disconti-308

nuity in Figure 2 at M = aHmin + b.309

Since disks are much slower than processors, one expects page faults to310

dominate execution time. Figure 13(ii) bears this out: the relative perfor-311

mance in execution time between the two policies is similar to that in Fig-312

ure 13(i). The cold miss segments in the two plots illustrate how, by trading313

less page faults for more garbage collection, the Rule effectively reduces ex-314

ecution time.315

Figure 13(iii) and Figure 13(iv) show similar results for pmd run with316

SemiSpace and for xalan run with MarkSweep.317

17



 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 20  40  60  80  100 120 140 160 180 200

N
um

be
r 

of
 P

ag
e 

F
au

lts
 n

Memory allocation M (MBytes)

JikesRVM MarkSweep -- DaCapo pmd

fixed H = 60MB

fixed H = 140MB

RVM Auto Heap Size

Heap Sizing Rule

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 20  40  60  80  100 120 140 160 180 200

E
la

ps
ed

 T
im

e 
(s

ec
)

Memory allocation M (MBytes)

JikesRVM MarkSweep -- DaCapo pmd

RVM Auto Heap Size

Heap Sizing Rule

(i) Page faults (MarkSweep and pmd) (ii) Execution time (MarkSweep and pmd)

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 20  40  60  80  100 120 140 160 180 200

E
la

ps
ed

 T
im

e 
(s

ec
)

Memory allocation M (MBytes)

JikesRVM SemiSpace -- DaCapo pmd

RVM Auto Heap Size

Heap Sizing Rule

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 20  40  60  80  100 120 140 160 180 200

E
la

ps
ed

 T
im

e 
(s

ec
)

Memory allocation M (MBytes)

JikesRVM MarkSweep -- DaCapo xalan

RVM Auto Heap Size

Heap Sizing Rule

(iii) Execution time (SemiSpace and pmd) (iv) Execution time (MarkSweep and xalan)

Figure 13: Comparison of the Heap Sizing Rule to JikesRVM’s dynamic heap
sizing policy. M is fixed for each run. The steep drop for the Rule’s data
reflects the discontinuity in Figure 2.

3.3. Experiments with dynamic M318

We next test the Heap Sizing Rule in experiments where M is changing319

dynamically.320

To do so, we modify the garbage collectors so that, after each collection,321

they estimate M by adding Resident Set Size RSS in /proc/pid/stat322

and free memory space MemFree in /proc/meminfo (the experiments are run323

on Linux). H is then adjusted according to the Rule.324

To change M dynamically, we run a background process that first mlock325

enough memory to start putting pressure on the workload, then loop infinitely326

as follows:327

18



 60

 80

 100

 120

 140

 160

 0  50  100  150  200  250  300  350  400

M
em

or
y 

|| 
H

ea
p 

(M
B

yt
e)

Elapsed Time (second)

JikesRVM MarkSweep -- DaCapo pmd

Memory
Heap  60

 80

 100

 120

 140

 160

 0  50  100  150  200  250  300  350  400

M
em

or
y 

|| 
H

ea
p 

(M
B

yt
e)

Elapsed Time (second)

JikesRVM SemiSpace -- DaCapo pmd

Memory
Heap  60

 80

 100

 120

 140

 160

 0  50  100  150  200  250  300  350  400

M
em

or
y 

|| 
H

ea
p 

(M
B

yt
e)

Elapsed Time (second)

JikesRVM MarkSweep -- DaCapo xalan

Memory
Heap

Figure 14: How the Heap Sizing Rule adjusts H at each garbage collection when
M varies dynamically. (To plot the points for M , we run a background process
that measures M every 3 seconds.)

repeat{
sleep 30sec; mlock 10MBytes;
sleep 30sec; mlock 10MBytes;
sleep 30sec; mlock 10MBytes;
sleep 30sec; munlock 30MBytes;

}

To prolong the execution time, we run the mutator 5 times in succession.328

Figure 14 shows how H responds to such changes for three of the work-329

loads in our experiments. Since we do not modify the operating system to330

inform the garbage collector about every change in M , adjustments in H331

occur less frequently (only when there is garbage collection). Consequently,332

there are periods during which H is different from that specified by the Rule333

for the prevailing M .334

Even so, Table 2 shows that page faults under the Rule is an order of335

magnitude less than those under JikesRVM’s automatic sizing policy. The336

gap for execution time is similar. These indicate the effectiveness of the Rule337

for dynamic heap sizing.338

3.4. Experiments with multiple mutators339

We now examine the Rule’s efficacy in a multiprogramming mix, and com-340

pare it to Poor Richard’s Memory Manager (PRMM), which is specifically341

designed to manage garbage collection when memory is shared [24].342

PRMM is paging-aware, in that each process tracks the number of page343

faults it has caused. It has three strategies: Communal, Leadered and Self-344

ish. The Communal and Leadered strategies require processes to commu-345

19



MarkSweep SemiSpace MarkSweep

pmd pmd xalan

page RVM 425828 680575 352338
faults Rule 36228 36470 64580
execution RVM 4762 8362 4202
time (sec) Rule 419 404 761

Table 2: Automatic heap sizing when M changes dynamically: a comparison of
JikesRVM’s default policy and our Heap Sizing Rule.

nicate with a “whiteboard” in shared memory, and thus coordinate their346

garbage collection. For the Selfish strategy, processes independently initi-347

ate whole-heap garbage collection if they detect memory pressure. Hertz348

et al.’s experiments show that Leadered and Selfish outperform Communal,349

and Selfish is comparable to Leadered. Our experiments therefore compare350

our Rule to the Selfish strategy, and similarly use GenMS and GenImmix as351

garbage collectors and pmd and xalan as mutators.352

Figure 15 presents results for the execution for two concurrent mutators.353

The plots show that, as in Figure 13 and Table 2, our Rule outperforms354

JikesRVM’s dynamic heap sizing policy. They also show that our Rule is355

comparable to the Selfish strategy, except for Figure 15(ii), where our Rule356

is noticeably worse for small M but better for large M .357

Why does our Rule not do as well as Poor Richard’s in some cases? The358

reason lies in Fig. 14: In a multiprogramming mix, the operating system359

may change M more frequently than garbage collection; consequently, the360

Rule is often violated, thus causing extra page faults. For the Rule to work361

effectively in a multiprogramming mix, it is therefore necessary that the362

garbage collector keep track of changes in M . If H deviates too far from the363

heap size specified by the Rule for M , this should trigger garbage collection364

and heap resizing. Note that details for this trigger mechanism concern365

effective application of the Rule, which is an issue separate from this paper’s366

focus on the correctness of the Rule.367

4. Related Work368

Early work on the interaction between garbage collection and virtual369

memory were for languages like Lisp and Standard ML. For example, Moon370
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Figure 15: Comparison of Heap Sizing Rule (HSR) to JikesRVM’s dynamic heap
sizing policy and Poor Richard’s Selfish strategy. The elapsed time depends
on how many times each mutator runs (see Appendix A). We therefore follow
Hertz et al. and report the ratio of elapsed time instead, using as base the run
time for our Rule at M = 250MBytes. ρ is the average ratio of HSR runtime
to Selfish runtime.

and Cooper et al. observed that garbage collection can cause disk thrash-371

ing [25, 7].372

Recent work is mostly focused on Java. Kim and Hsu noted that a garbage373

collector can generate more hardware cache misses than the mutator, and in-374

terfere with the latter’s temporal locality [3]. They pointed out that (where375

possible) heap size should not exceed available main memory. Also, since376

most objects are short-lived, a heap page evicted from physical memory may377

only contain dead objects; so, rather than incur unnecessary IO through378

garbage collection for such pages, it may be better to grow the heap. Their379

observation is reflected in our Heap Sizing Rule at M = aHmin + b, where380
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a reduction in M prompts a discontinuity in H , raising it to Hmax (see Fig-381

ure 2).382

Yang et al. [4] had observed a linearity similar to Figure 8. Their dynamic383

heap sizing algorithm relies on changes to the virtual memory manager to384

track recent page accesses, shuffle pages between hot and cold sets, construct385

LRU histograms for mutator and collector references, decay the histograms386

exponentially to reflect phase changes, etc. The hot set size is adjusted387

through weighting with minor faults and setting targets with constants (1%388

and 0.2).389

In follow-up work [10], the authors modified and extended their system390

to handle generational collectors, provide per-process and per-file page man-391

agement, etc.392

Rather than reduce page faults by sizing the heap, Hertz et al. [9] designed393

a garbage collector to eliminate such faults (assuming memory allocation is394

sufficiently large). It requires extending the virtual memory manager to help395

the collector bookmark evicted pages with summary information, so it can396

avoid recalling them from disk.397

Another possibility is to modify the mutator. Zhang et al. [12] proposed398

a PAMM controller that uses program instrumentation to extract phase in-399

formation that is combined with data (heap size and fault count) polled from400

the virtual machine and operating system, and thus used to trigger garbage401

collection. Various constants (step size, soft bound, etc.) are used in a bi-402

nary search for an optimal heap size. In contrast, our Heap Sizing Rule is in403

closed-form, and does not require an iterative search.404

Whereas PAMM uses the mutator’s phase boundary to trigger garbage405

collection, Grzegorczyk et al. used a stall in memory allocation as the sig-406

nal [2], thus delaying collection till when it is actually necessary. Like PAMM,407

their IV heap sizing is also iterative, using an additive constant to grow the408

heap and a multiplicative constant to shrink it.409

Another iterative policy for growing the heap was proposed by Xian et410

al. for the HotSpot virtual machine [14]. They set a threshold (75%) for411

H/M to switch between two growth rates. This proposal was in the context412

of their study of which factors cause throughput degradation, how they do413

so, and what can be done.414

There is recent interest in heap sharing among multiple applications. Choi415

and Han proposed a scheme for dynamically managing heap share with hard-416

ware support and application profiling [26]. Sun et al.’s Resonant Algorithm417

is more narrowly focused on determining a heap partition that equalizes col-418
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lection frequencies among applications [27].419

Tran et al. have demonstrated how the Page Fault Equation can be used420

to dynamically partition a database buffer among tasks [22], and we believe421

our heap-aware Equation (6) can be similarly used for heap sharing.422

5. Conclusion423

Many programming languages and systems now provide garbage collec-424

tion. Garbage collection increases programmer productivity but degrades425

application performance. This run-time effect is the result of interaction be-426

tween garbage collection and virtual memory. The interaction is sensitive to427

heap size H , which should therefore be adjusted to suit dynamic changes in428

main memory allocation M .429

We present a Heap Sizing Rule (Figure 2) for how H should vary with430

M . It aims to first minimize page faults (Figure 11), then garbage collection431

(Figure 12), as disk retrievals impose a punishing penalty on execution time.432

Comparisons with JikesRVM’s automatic heap sizing policy shows that the433

Rule is effective for both static M (Figure 13), dynamic M (Table 2) and434

in a multi-mutator mix (Figure 15). This Rule can thus add a run-time435

advantage to garbage-collected languages: execution time can be improved436

by exchanging less page faults for more garbage collection (Figure 13(i) and437

Figure 13(ii)).438

The Rule is based on a Heap-Aware Page Fault Equation (6) that models439

the number of faults as a parameterized function of H and M . The Equa-440

tion fits experimental measurements with a variety of garbage collectors and441

mutators (Figures 4, 5, 6), thus demonstrating its universality. Its parame-442

ters have interpretations that relate to the garbage collection algorithm and443

the mutators’ memory requirements (Section 2.4). We also demonstrate how444

this Equation can be used to examine the interaction between garbage col-445

lection and virtual memory through a relationship among these parameters446

(Section 2.5).447

The Rule is based on four parameters (a, b, Hmin and Hmax) that charac-448

terize the workload (garbage collector and mutator). Once these values are449

known, the Rule just needs the value of M . In particular, there is no need450

to change the operating system, and a hot swap of garbage collector just451

requires a change in the parameter values.452

Our experiments suggest that choosing H to suit M is more effective than453

changing H to suit mutator phases. In any case, if the mutator has multiple454
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phases with very different behavior, one can make the Rule itself adaptive by455

changing the parameter values to suit each phase. The Rule does not require456

“stop-the-world” garbage collection; in principle, it can be implemented in457

any garbage collector that allows dynamic heap sizing.458

Our application of the Equation is focused on M∗. Although M∗ is partly459

determined by the rest of the page fault curve, we have not used the latter.460

Tran et al. have demonstrated how the curve, in its entirety, can be ap-461

plied to fairly partition memory and enforce performance targets when there462

is memory pressure among competing workloads [22]. In future work, we463

plan to demonstrate a similar application of the Equation for dynamic heap464

sharing.465
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APPENDIX471

Appendix A. Experimental set-up472

The hardware for our experiments has an Intel Core 2 Duo CPU E6550473

(2.33GHz each), with 4MByte L2 cache, 3.25GByte RAM, 8GByte swap474

space, and a 250GByte disk that has 11msec average seek time and 7200rpm475

spindle speed. The operating system is linux-2.6.20-15-generic SMP, and476

the page size is 4KBytes.477

To reduce noise and nondeterminism [28], we run the experiments in478

single-user mode, disconnect the network and shut down unnecessary back-479

ground processes. We set lowmem reserve ratio=1 to reserve the entire low480

memory region for the kernel, so it need not compete with our workload for481

memory.482

Linux does not provide any per-process memory allocation utility. Like483

previous work [10], we therefore vary M by running a background process484

that claims a large chunk of memory, pins those pages so the virtual mem-485

ory manager allocates RAM space for them, then mlock them to prevent486

eviction. The remaining RAM space (after lowmem reserve ratio=1 and487
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mlock ) is shared by our workload and the background processes (e.g. de-488

vice drivers). There is thus some imprecision in determining M , and Mo
489

corrects for this inaccuracy.490

After each run of a mutator, we clear the page cache so the cold misses491

n∗ remains constant. There is also a pause for the system to settle into an492

equilibrium before we run the next experiment.493

Our first experiments used HotSpot Java Virtual Machine [13]. How-494

ever, to facilitate tests with various garbage collectors, we switched to the495

Jikes Research Virtual Machine (Version 3.0.1) [6]. The collectors GenMS,496

MarkSweep and SemiSpace were chosen from its MMTk toolkit as representa-497

tives of the three major techniques for collecting garbage. (There is another498

technique that slides the live objects; however, previous work has shown499

that Mark-Compact, which uses this technique, does not perform as well as500

MarkSweep and SemiSpace [29].) For the multi-mutator experiments, we501

follow Hertz et al. in using GenMS and GenImmix [24].502

Our first mutator was ipsixql from the DaCapo benchmark suite [5].503

However, for the JVM/ipsixql combination, measurements show that heap504

size has little effect on page faults. We then limited the other experiments505

to pmd (a source code analyzer for Java), xalan (an XSLT transformer for506

XML documents) [28], and fop (which parses and formats an XSL-FO file,507

and generates a PDF file).508

We prefer a larger range of mutators, but are limited by the need to make509

comparisons between garbage collectors, space constraint for presenting the510

results, and time constraint for finishing the experiments. The workloads are511

IO-intensive, so a set of data points like Figure 1 can take two or three days512

to generate.513

JikesRVM uses adaptive compilation, which makes its execution nonde-514

terministic. We therefore (like previous work [10]) logged the adaptive com-515

pilation of 6 runs of each workload, select the run with best performance,516

then direct the system to compile methods according to the log from that517

run. Such a replay of the compilation is known to yield performance that is518

similar to an adaptive run.519

For the multi-mutator and sensitivity experiments (Sections 3.4 and Ap-520

pendix C), we use an Intel Core i5 machine with 4MByte L2 cache, 4GByte521

RAM and a 500GByte disk. It runs a vanilla Linux 2.6.36-rc3 with 4KByte522

pages. We make no change to the operating system, and implemented the523

Heap Sizing Rule with some 50 lines of code in524

MMTk/src/org/mmtk/utility/heap/HeapGrowthManager.java.525
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Appendix B. Parameter calibration526

For the Page Fault Equation (2), an experiment with a fixed H yields a527

data set528

Ωn

k
= {〈Mi, ni〉 | Mi−1 < Mi for i = 1, . . . , k}.

We use regression to fit the equation to Ωn

k
, and thus calibrate the parameters529

M∗, Mo and n0. (The cold misses n∗ can be determined separately, by530

running the workload at some sufficiently large M .)531

Equation (2) has an equivalent linear form532

M = (M∗ −Mo)x+Mo where x =
( n+ n0

n∗ + n0

− 1 +
n∗ + n0

n+ n0

)−1

. (B.1)

Software for linear regression is readily available, but there are three issues:533

(i) Transforming Ωn

k
into a corresponding534

Ωx

k = {〈Mi, xi〉 | Mi−1 < Mi for i = 1, . . . , k}

requires a value for n0.535

(ii) The nontrivial part of the equation is valid for M ≤M∗ only, so the flat536

tail in Ωn

k
must be trimmed off. There is no obvious way of trimming537

a point 〈Mi, ni〉 since M∗ is unknown, and a point may belong to that538

tail although ni is driven from n∗ by some statistical fluctuation.539

(iii) Although regression is done with 〈Mi, xi〉 data, the objective is to get540

a good fit for the original 〈Mi, ni〉 data.541

These issues are addressed in the calibration algorithm in Figure B.16.542

In practice, calibration may be done in two ways:543

(Offline) Some workloads are repetitive, so that calibration can be done544

with data from previous runs. Examples may include batch workloads,545

transaction processing and embedded applications.546

(Online) Many workloads are ad hoc or vary with input [30], so on-the-fly547

calibration is necessary.548
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k′ ← k; //start with the entire data set
repeat{
n0 ← −n∗ + 1;
for each candidate n0 { //(i) iteratively search for best n0 value

xi ← ( ni+n0

n∗+n0

− 1 + n∗+n0

ni+n0

)−1 for i = 1, . . . , k′;
Ωx

k′
← {〈Mi, xi〉 | i = 1, . . . , k′};

fit Ωx

k′
with Equation (B.1);

record sum of square errors SSE for Ωn

k
; //(iii) instead of Ωx

k′

if SSE decreases then increment n0

else adopt previous n0 value and corresponding Mo and M∗

values;

}
record coefficient of determination R2 for Ωn

k
;

if R2 increases then k′ ← k′ − 1; //(ii) trim off the last point
else exit with n0, M

o and M∗ from previous k′ value
}
Figure B.16: Algorithm for calibrating the parameters through linear regression.

The algorithm in Figure B.16 can be used for offline calibration. For549

online calibration, one cannot wait to measure the number of page faults550

n for the entire run, so we need to use another version of the Page Fault551

Equation, namely552

Pmiss =

{

P ∗ for M ≥M∗

1

2
(K +

√
K2 − 4)(P ∗ + P0)− P0 for M < M∗

where Pmiss is the probability that a page reference results in a page fault.553

Tran et al. have demonstrated how the parameters P0, M
∗, etc. can be554

calibrated dynamically, using moving windows for measurements of Pmiss, if555

this is the probability of missing a database buffer [22].556

In our case, measuring Pmiss is difficult because page hits are not seen by557

the operating system. We are aware of only two techniques for making such558

measurements with software [10, 31]; both require significant changes to the559

operating system. They also use the Mattson stack [32], which assumes an560

LRU-like inclusion property that disagrees with the looping behavior in most561

garbage collectors.562
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garbage
collector mutator a b Hmin Hmax

GenMS pmd 0.77 88.0 36 143
xalan 0.78 78.0 32 100
fop 0.74 68.9 28 84

MarkSweep pmd 1.18 52.9 48 131
xalan 1.00 58.9 32 165
fop 1.01 55.0 35 96

SemiSpace pmd 0.75 63.5 64 106
xalan 0.71 61.9 44 114
fop 0.73 61.5 52 110

Table C.3: How the parameters in the Rule vary with garbage collector and
mutator.

The difficulty in measuring Pmiss with software has led to designs for mea-563

surement with hardware [33, 10], but implementing such designs are harder564

still. However, a major hardware vendor is extending their metering architec-565

ture to memory usage [34, 35], so Pmiss measurements with built-in hardware566

may be possible soon.567

Appendix C. Parameter sensitivity568

Our Heap Sizing Rule (1) has four parameters: a, b, Hmin and Hmax. How569

sensitive are they to the workload, and what is their impact on performance?570

Table C.3 shows how these four parameters vary with different garbage571

collectors and mutators. (The values for Hmax are somewhat different from572

those in Fig. 9 because the experiments were run with different hardware573

and software.) We see that, if we fix the garbage collector, then the values574

for a are similar for different mutators. This is consistent with the interpre-575

tation in Section 2.4 that a is determined by the garbage collector. For a576

garbage collector that is heavily used, one can therefore collect a lot of data577

to accurately determine a.578

The other parameters (b, Hmin and Hmax) have values that depend on579

the mutator. The value for b determines the H-intercept for the diagonal in580

the Rule (Figure 2). An overestimate of this parameter for space overhead581

will shift the diagonal down; the Rule would then underestimate H and582

cause garbage collection frequency to increase, but there will be no increase583
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in page faults beyond cold misses (see Figure 11). In using the Rule, one584

should therefore prefer an overestimate of b, rather than an underestimate.585

Similarly, underestimating Hmax would lower the horizontal line in Fig-586

ure 2, and reduce H as determined by the Rule. For large M , garbage collec-587

tion would be more frequent but no page faults are added. ForM < aHmin+b,588

the smaller H would cause more page faults (see Figure 4). Indeed, the big589

increase in page faults from cold misses shown in Figure 13 happens at the590

discontinuity in the Rule at M = aHmin + b.591

The discontinuity happens where M is too small to accommodate the592

minimal footprint aHmin+b, so underestimating Hmin is not an option. Over-593

estimating Hmin will cause the jump in page faults from cold misses to occur594

at some M > aHmin+ b, but Figure 13 shows that the resulting performance595

would still be better than using, say, JikesRVM’s policy.596
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