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Software security continues to be a critical concern for programs implemented in low-level programming
languages such as C and C++. Many defenses have been proposed in the current literature, each with different
trade-offs including performance, compatibility, and attack resistance. One general class of defense is pointer
randomization or authentication, where invalid object access (e.g., memory errors) is obfuscated or denied.
Many defenses rely on the program termination (e.g., crashing) to abort attacks, with the implicit assumption
that an adversary cannot “brute force” the defense with multiple attack attempts. However, such assumptions
do not always hold, such as hardware speculative execution attacks or network servers configured to restart
on error. In such cases, we argue that most existing defenses provide only weak effective security.

In this paper, we propose Fully Randomized Pointers (FRP) as a stronger memory error defense that is
resistant to even brute force attacks. The key idea is to fully randomize pointer bits—as much as possible while
also preserving binary compatibility—rendering the relationships between pointers highly unpredictable.
Furthermore, the very high degree of randomization renders brute force attacks impractical—providing strong
effective security compared to existing work. We design a new FRP encoding that is: (1) compatible with
existing binary code (without recompilation); (2) decoupled from the underlying object layout; and (3) can be
efficiently decoded on-the-fly to the underlying memory address. We prototype FRP in the form of a software
implementation (BlueFat) to test security and compatibility, and a proof-of-concept hardware implementation
(GreenFat) to evaluate performance. We show that FRP is secure, practical, and compatible at the binary
level, while a hardware implementation can achieve low performance overheads (<10%).

1 INTRODUCTION
Memory errors, such as buffer overflows and use-after-free, are of critical concern for software
systems implemented in low-level programming languages such as C and C++. Even today, memory
errors continue to be the primary cause of security vulnerabilities—Google and Microsoft report
that “70% of our serious security bugs are memory safety problems” [9, 35]. As such, many different
tools and techniques for defending against memory errors, in both software and hardware, have
been proposed [4, 7, 14–17, 29, 30, 37, 38, 40, 42, 48, 49, 54]. Some tools (e.g., [7, 15, 40, 49]) are
primarily designed for software testing—i.e., the detection of memory errors during testing/fuzzing.
Others (e.g. [4, 17, 42] are primarily designed for security hardening—i.e., preventing memory errors
being actively exploited by a proactive attacker. The latter will be the focus of this paper.
Due to various challenges and difficulties, no memory safety hardening solution has enjoyed

wide-spread “always-on” adoption. Existing state-of-the-art tools tend to have inherent trade-
offs, especially with regard to performance, error coverage, and binary compatibility; and these
can hinder real-world application. For program hardening under adversarial attacker models,
another important trade-off is bypass resistance—i.e., how easily a proactive attacker (who is aware
that the program is hardened) can adapt their attack to bypass the defense? Many existing tools
tend to have poor resitance. For example, bug detection tools based on memory poisoning, such as
AddressSanitizer (ASAN) [49] and Valgrind [40], famously do not track pointer origins (a.k.a., pointer
provenance [34]). While this does achieve good compatibility, it nevertheless allows attackers to
construct seemingly valid pointers to out-of-bounds objects [17]—effectively bypassing the defense.
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Other solutions, such as fat pointers [39] and Softbound [37], do explicitly track pointers with
attached object metadata, and this can be more difficult to bypass. However, such tools require
recompilation from source code (i.e., no binary compatibility), and use of instrumentation means
that this (and other software-based memory safety solutions) tend to incur high performance
overheads. Furthermore, since object metadata must be explicitly tracked over function boundaries
and to/from memory, these solutions change the Application Binary Interface (ABI), meaning
that instrumented and uninstrumented binary code cannot be freely mixed. In summary, existing
software-based solutions have poor performance and mixed compatibility/resistance.
Recently, several hardware-based memory safety solutions, based on pointer tagging, authenti-

cation, or encryption, have been proposed. One common idea is to attach a Pointer Authentication
Code (PAC, e.g., PACMem [30]) or tag (e.g., HeapCheck [48]) to each pointer. The tag typically
resides in the (otherwise unused) upper pointer bits, and uniquely identifies an underlying object
that corresponds to the pointer. When dereferenced, the memory access can be checked against
the underlying object bounds, allowing for memory errors to be detected. Another related idea is
Cryptographic Capability Computing (𝐶3) [29], which partially encrypts an encoded pointer value,
rather than using separate authentication codes/tags. The encryption hardens against tampering of
the relationship between pointers and the underlying object. Being based on hardware extensions,
these solutions tend to achieve good binary compatibility and low performance overheads. For
security, we can classify these solutions as entropy-based defenses, since an attacker must determine
a (randomized) tag or encrypted value in order to successfully bypass the defense. Assuming the
defense is well designed, the attacker will have no better method other than to guess the correct
value, and an incorrect guess will lead to immediate program termination. Each of PACMem,
HeapCheck, and 𝐶3 use 24 bits of entropy, meaning that these provide some baseline resistance to
isolated bypass attack attempts.

RedFat

DieHard

DieHarder

HeapCheck

PACMem

FRP
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Fig. 1. Relative entropy (position and size)

for each defense. More = better.

However, it has been shown that even entropy-based
defenses can still be bypassed in practice. The key as-
sumption (that an attacker can only make a single in-
correct guess) does not always hold. If this assumption
were to be violated, the attacker may simply “brute force”
the required value, significantly weakening the bypass
resistance of the given defense. For example, it is not un-
common for programs to be configured to automatically
restart after a crash, e.g., a network server may auto-
matically restart in order to minimize service disruption.
Alternatively, there may be multiple vulnerable servers
on a given network. Such configurations effectively grant
the attacker multiple attempts [1]. Another attack vector
is side channels, such as speculative execution [28], which
allow the attacker to test values without causing program termination. This approach has been
proven effective against ARM pointer authentication (PAC), see the PACMan attack [44]. Finally,
the attacker may use well-known exploitation techniques, such as heap spraying, to improve the
probability of making a correct guess. If applicable, heap spraying can be used in combination with
the other methods to enhance the overall attack effectiveness. Such bypass attacks are feasible
since most existing defenses use low entropy. For example, with 24 bits of entropy, the defense can
be bypassed with an average of 224−1≈8 million attempts, which is very achievable in practice. In
summary, existing hardware-based solutions have good performance and binary compatibility, but
still exhibit some weakness regarding bypass resistance.
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In this paper, we propose a new hardware-based memory error defense that is designed to
maximize entropy and therefore maximize bypass resistance. Our approach is based on a simple
observation that most (binary) software is agnostic to the underlying pointer encoding—provided
that core pointer operations (arithmetic, difference, comparison, dereference, etc.) implement the
expected semantics. Thus, we can design a new encoding that represents pointers as cryptograph-
ically secure random numbers, ensuring that two pointers to different objects will have: (i) bit
patterns with no predictable relation to each other; and (ii) no predictable relation to the underlying
address(es) in memory. As shown by prior work (e.g., DieHard(er) [4, 42]) randomization protects
against memory errors and bypass attacks by making potential targets unpredictable—e.g., a buffer
overflow is unlikely to find a valid target. However, unlike DieHard(er), our approach randomizes
the pointer encoding itself rather than underlying object layout within memory. Our approach
works by maintaining an explicit mapping between pointer values and the object they represent.
When a pointer is dereferenced, the map is consulted, allowing for the object to be accessed if
the pointer is valid (i.e., not out-of-bounds). The use of an explicit map allows pointer values to
take randomized values without changing the underlying memory layout. Our approach therefore
allows for a significantly higher degree of randomization: as many pointer bits as possible without
breaking compatibility—a.k.a., Fully Randomized Pointers (FRP). For existing x86_64 binary code,
we show that a baseline entropy of 52 bits can be supported under conservative assumptions,
offering robust memory error protection with significantly stronger resistance to bypass attacks
(∼251 attack attempts required versus ∼8 million). Under relaxed assumptions, the effective entropy
is further improved up to the full 64 bits. Our approach is illustrated in Figure 1. Here, each colored
inner box represents the position and scale of the bits that the attacker must guess in order to
bypass the corresponding defense. This example models 60 bits of randomization, meaning that
FRP offers very meaningful resistance against brute force-style attacks.
We have prototyped FRP as a software implementation (BlueFat) to test binary compatibility

and security, and as a hardware simulation (GreenFat) to test performance. We show that, despite
using a radically different pointer encoding, FRP is compatible with existing x86_64 binary code
without the need for recompilation. In fact, the binary software is even unaware that a memory
error defense has even been applied, i.e., our design is fully transparent. We also present (GreenFat)
as a proof-of-concept hardware simulation of FRP, achieving an overhead of (<10%), which is still
within the practical range necessary for widespread deployment. Our main contributions are:
• We propose a new pointer encoding that is (1) decoupled from the underlying machine address,

and (2) fully randomized. The high degree of randomization hardens against memory errors and
brute-force style bypass attacks.
• We show that the randomized pointer design is both efficient and compatible with existing

x86_64 binary code (without recompilation) using dynamic pointer decoding.
• We have implemented FRP in software (BlueFat) as well as a hardware simulation (GreenFat).
We show that FRP offers strong memory safety (object-bounds and use-after-free), bypass
resistance, and high compatibility. We also show that a hardware implementation of FRP can
achieve low performance overheads that are more practical for general use cases.

Open Source Release (Software)
• https://github.com/GJDuck/BlueFat

2 BACKGROUND
In this section we briefly summarize the threat model, existing mitigations, the problem statement,
and our design.

https://github.com/GJDuck/BlueFat
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Table 1. Summary of memory error defenses.
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ASLR randomization b - ✗ n.a.
efence [43] page permissions b - ✗ n.a.
Valgrind [40] mem. poisoning b - ✗ n.a.
DrMemory [7] mem. poisoning b - ✗ n.a.
ASAN [49] mem. poisoning - - ✗ n.a.
LowFat [14, 16] low fat ptrs - ✗ ✗ n.a.
EffectiveSan [15] low fat ptrs - ✗ ✗ n.a.
SoftBound+CETS [37, 38] ptr metadata - - - n.a.
RedFat [17] low fat ptrs b - ✗ 214.5 (*)
DieHard [4] randomization b - ✗ 2744.9 (*)
DieHarder [42] randomization b - ✗ 6207.4 (*)
PACMem [30] authentication - - - 224 (†)
HeapCheck [48] tagged ptrs b - - 224 (†)
𝐶3 [29] ptr encryption b - - 224 (†)
FRP randomization b - - 252 (†)

Key: Methodology
= none,minimal
= weak
= strong

b = no source code needed

Error Detection
= no support
= partial
= byte imprecise
= full/precise

- = none or
highly improbable

✗ = occurs

Entropy
1.0 = attack attempt
∗ = measured
† = theoretical

2.1 Memory Errors
Low-level programming languages are vulnerable to memory errors such as object bounds overflows
and use-after-free. Under the C/C++ standards [25], memory errors are undefined behavior, meaning
that there is no prescribed semantics. For example, consider the allocation:

p = (T *)malloc(N * sizeof(T)); (Alloc)
If non-NULL, p will point to the base of a new object of type T[N]. Under the C standard, the object
can only be accessed via p, or a pointer derived from p using pointer arithmetic p+𝑘 for 𝑘 ∈ 0..𝑁−1.
For other values of 𝑘 , access is expressly undefined ([25] §6.5.6 ¶8).
Modern compilers optimize programs under the assumption that undefined behavior does not

occur. If (or when) this assumption is broken, a memory error will typically access a memory
location beyond the intended object, possibly including memory belonging to other objects. This
behavior can be exploited. For example, an out-of-bounds write can be used to modify a function
pointer stored in another object, leading to a control-flow hijacking attack. Similarly, an out-of-
bounds read can leak sensitive information (i.e., an information disclosure attack), such as the
infamous HeartBleed bug [18]. Use-after-free errors can be similarly exploited, by accessing a
dangling pointer to a free’ed object, where the underlying memory has been reallocated. The
importance of hardening against use-after-free should not be underestimated—around 50% of the
serious vulnerabilities in Chrome are due to use-after-free [9]. History tells us not to underestimate
the capabilities of potential attackers.

2.2 Threat Model
We model a strong-yet-realistic attacker with the following core set of capabilities (Cp.*):
Cp.Invalid) able to construct an out-of-bounds pointer q=p+𝑘 or retain a dangling pointer;
Cp.Deref) able to dereference the invalid pointer q;

Cp.Layout) is knowledgeable of allocated objects and their relative layout in memory; and
Cp.Retry) able to retry or launch multiple attacks, up to some reasonable resource bound.

The attacker uses a combination of (Cp.*) to engineer a memory error that accesses an object of
choice. For example, in the case of the HeartBleed bug [18], the attacker induces the program to
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construct (Cp.Invalid) a (bad) out-of-bounds pointer of the form (buf+𝑘) for a given buffer buf and
value 𝑘 beyond the length of buf. Note that when the attacker can control 𝑘 , it is easy to attack
defenses with low bypass resistance. The invalid pointer is then read-from (dereferenced, Cp.Deref),
and the read value is copied into a reply message that is sent back to the attacker. The attacker
also exploits basic knowledge about the layout of objects in memory (Cp.Layout). For example,
that heap memory is contiguous, meaning that it is likely that other objects (and possibly sensitive
information) is stored beyond the end of the buffer. Even if one attempt fails, the attacker may have
the ability to retry attacks. Some examples include:
(1) speculative execution attacks, like PACMan [44], allow the attacker to (speculatively) try an

attack without risking program termination;
(2) a vulnerable server may restart after a crash [1];
(3) multiple vulnerable servers on the network;
(4) the attacker may use common exploitation techniques, such as heap spraying, to increase the

number of targets per attack attempt.
The ability to retry attacks (Cp.Retry) is very powerful, as it can significantly improve the probability
of eventual success.
Both (Cp.Invalid), (Cp.Deref) and some combination of (Cp.Layout) or (Cp.Retry) are necessary

for a successful attack. For example, if the attacker were unable to construct and dereference an
invalid/bad pointer (buf+𝑘), then no attack would be possible. Similarly, (Cp.Layout) is also an
important requirement, since the attacker must determine the correct 𝑘 necessary for a successful
attack. Sometimes the attacker may only have partial knowledge, e.g., that sensitive data only may
be beyond the end of a buffer. However, assuming that attacks can be repeated (Cp.Retry), even
partial knowledge may be sufficient. We also assume that the attacker is knowledgeable about any
memory error defense used by the program. The attacker may attempt to bypass the defense within
(Cp.*). We refer to this as a bypass attack.

We note that our threat model is significantly stronger than that assumed by most existing
literature. Specifically, most memory error defenses implicitly assume that an attacker can only
ever attempt a single attack (i.e., no Cp.Retry), and that program termination will also terminate
the attack. In contrast, our model explicitly allows multiple attack attempts, effectively allowing
the attacker to “brute force” the defense.

2.3 Threat Mitigation
Since memory errors are a well-known problem, many existing defenses and mitigation strategies
have been proposed. Some prominent examples are shown in Table 1. Here, the table summarizes
the claimed1 error detection capability, the underlying error detection methodology, and (where
applicable) micro-benchmarks measuring attack resistance w.r.t. our threat model. Most existing
defenses use (some combination of) page-level protections, memory poisoning, low fat pointers, ptr
metadata, authentication, encryption, or randomization as the underlying methodology. We evaluate
each tool under the default configuration from the publicly available repository.
Many Table 1 defenses target invalid pointer construction (Cp.Invalid) or dereference (Cp.Deref).

Such defenses have well-known limitations regarding compatibility and security. For example,
LowFat [14] protects pointer arithmetic (Cp.Invalid), but may also falsely flag “benign” out-of-
bounds pointers2 that are never dereferenced (see false positives in Table 1). This can result in
limited compatibility with real-world code. Other defenses, such as Valgrind [40], DrMemory [7],
and ASAN [49], target dereference (Cp.Deref) using memory poisoning, e.g., poisoned redzones

1Many of them assume a weaker threat model than ours (see the corresponding paper for details).
2See pointer “escapes” from [14].
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inserted between objects. However, these defenses do not track pointer validity, meaning that valid
and invalid access to non-poisoned memory cannot be distinguished—allowing bypass attacks (see
false negatives in Table 1). Here, a pointer is valid if it points to the allocated object from which is
was derived, as defined by the rules of pointer provenance [34]. SoftBound+CETS [37, 38] effectively
implements a form of provenance tracking by explicitly attaching object metadata to each pointer,
and targets (Cp.Deref). However, this solution is not binary compatible, and even the Application
Binary Interface (ABI) must be changed to accommodate the additional metadata that must be
passed for each pointer.

Fewer defenses target (Cp.Layout), and some do so only weakly. Address Space Layout Random-
ization (ASLR) randomizes the location of the heap—but provides only a very rudimentary defense
between memory regions. DieHard [4] and DieHarder [42] improve on ASLR by also randomizing
object locations within the heap. However, the attacker can still infer partial information (e.g., likely
address range of allocated objects), meaning the defense is weak especially when attacks can be
retried (Cp.Retry). Finally, it also is possible to allocate each object on a separate page [11, 33, 43],
allowing for locations to be randomized within the limits of the virtual address space. However,
placing objects on separate pages is generally impractical due to significant performance and
memory overheads.

2.4 Problem Statement
As of writing, no memory error hardening solution has achieved ubiquitous (“always-on”) adoption.
Software-only solutions tend to be too slow for practical deployment, and are also not generally
binary compatible. Randomization-based and entropy-based hardware solutions showmore promise,
achieving both good performance and compatibility in practice.

Although some existing systems randomize pointers, they do so only weakly, and not sufficiently
enough to deter our threat model. The problem is that pointers are represented as machine addresses,
meaning that pointer randomization also necessitates object layout randomization. However, the
degree of layout randomization is significantly limited in practice:

(i) The x86_64 implements a 48 bit virtual address space, meaning that the upper 16 bits of a
user-mode address is sign-extended from the 17𝑡ℎ msb (zero for user-mode);

(ii) Due to performance and memory constraints, objects are usally allocated (near) contiguously,
meaning that many objects are “close” and often share the same page(s).

To illustrate the problem, we design two proof-of-concept attacks that are allowable under our
threat model: overflow (OF) and underflow (UF):

for (size_t i = 0; i < N; i++) attack(p+1+i); (𝑂𝐹 )
for (size_t i = 0; i < N; i++) attack(p-1-i); (𝑈𝐹 )

Here, p is a valid pointer to a word-sized object, and the attack() function attempts to access
the given invalid (out-of-bounds) pointer. Under our threat model, the attack() function can
effectively ignore crashes/errors, so the attack can be retried (Cp.Retry). The results are shown in
Table 1 under the (Entropy) column, representing attack resistance. Here, (n.a.) means the defense
does not attempt to resist attacks (can be interpreted as 1.0). For the others, we either measure
the average3 number of attempts necessary for a successful targeted attack (*), or determine the
necessary value from theory (†).4 A higher value is better. The results show that, apart from this
proposal, all of the Table 1 defenses are vulnerable to our threat model. For example, tools such as
Valgrind and ASAN do not use any randomization, and can be trivially bypassed by choosing an

3Over 10,000 runs with a (worst-case) ±2.2% margin for 95% confidence.
4We state the theoretical entropy for systems where practical experimentation is not possible.
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offset 𝑘 sufficient to “skip-over” poisoned redzones (Cp.Invalid). Other tools, such as DieHarder and
RedFat, only use weak randomization due to limitations (i), (ii), meaning that there is a best-case
∼12.6 bits of effective security for DieHarder. For performance reasons, existing heap randomizers
ultimately still allocate objects from the same memory region(s), thus tend to have limited effective
entropy. Finally, existing pointer authentication, tagging, and encryption schemes use 24 bits
of entropy. Although an improvement, even this is still not sufficient against practical bypass
attacks [44]. The challenge is to design a memory error defense that can resist even very strong
threat models. We discuss our design below.

2.5 Approach
Memory errors are exploitable when the relationship between pointers is predictable. Some existing
defenses attempt to counter this using randomization, but this is limited in practice leading to
weak security. We believe that randomization can still be an effective defense, but the degree of
randomization needs to be significantly improved. For this we design Fully Randomized Pointers
(FRP)—a method for randomizing as many pointer bits as possible without compromising binary
compatibility. We illustrate our basic approach below:

Example 1 (Fully Randomized Pointers). To illustrate the approach, consider the allocations
(𝑝 = malloc(10); 𝑞 = malloc(10)). Possible values for 𝑝 and 𝑞 could be:

𝑝=0x0000564745119010; 𝑞=0x0000564745119020; (addresses)
𝑝=0xac8415a209566010; 𝑞=0xb5da178f9e40d020; (fully randomized)

We assume an attacker who is aware of the value for 𝑝 but not for 𝑞.5 The (addresses) version is an
example of an ordinary machine address returned by glibc malloc. Although the heap base address
has been randomized using Address Space Layout Randomization (ASLR), the relationships between
pointers are not random and is predictable. The attacker can easily infer the offset 𝑘=𝑞−𝑝=16 using
basic knowledge of the internals of the version of malloc used by the program.
In contrast, almost all of pointers bits in the (fully randomized) version have been randomized

on a per-object basis—i.e., both 𝑝 and 𝑞 are essentially just random numbers. Given the randomized
value for 𝑝 , what value for 𝑘 is needed to successfully overflow from 𝑝 into 𝑞? Essentially, the
attacker needs to solve 𝑘=𝑞−𝑝 where both 𝑘 and 𝑞 are unknowns, meaning that the difference 𝑘 is
undetermined. Given the high degree of randomization, brute forcing the specific 𝑘 is impractical,
preventing such an overflow from being constructed. □

Although full pointer randomization is our goal, the question is “how” to do so. The limitations
of (i) and (ii) (Section 2.4) mean that a traditional object layout randomizer will not be sufficient
and a different approach is necessary. We therefore propose a new design based on the simple
premise that pointers are not necessarily machine addresses. Rather, we take the view that a pointer
p is abstract entity that satisfies a set of basic properties:
(1) p is associated with some underlying allocated object 𝑂 ;
(2) p identifies an offset in relation to the base of 𝑂 ;
(3) the standard pointer operations (arithmetic, difference, dereference, etc.) can be applied to p.
A machine address is one possible pointer encoding, but other encodings are possible. Our hypothe-
sis is that most existing binary code is agnostic about the underlying pointer encoding, just provided
these basic operations have the expected semantics. Thus, we can replace the pointer encoding to
introduce stronger memory safety, while retaining compatibility without recompilation.

5For example, with HeartBleed, the attacker knows 𝑝=buf, and must use 𝑝 to construct the address 𝑞 of the target object.
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We design a new pointer encoding based on abstract ⟨id, offset⟩ pairs, where id is a unique
identifier associated to a specific object 𝑂 , and offset is the explicit byte offset within 𝑂 . We also
instantiate the standard pointer operations (arithmetic, dereference, etc.), and show how this is
sufficient for binary compatibility. Importantly, the abstract encoding is:

(a) decoupled from the underlying object memory address; and
(b) both id and offset are strongly randomized—allowing for the relationship between pointers to

be obfuscated and protecting against bypass attacks

By “decoupling” the pointer encoding from the underlying memory address, the limitations of (i)
and (ii) are also no longer of concern—a key difference between our approach and existing heap
randomizers (DieHard(er) [4, 42]). Furthermore, even (partial) knowledge of object layout can no
longer be exploited (Cp.Layout), and the number of retries necessary for a brute-force style attack
will exceed the attacker’s resources (Cp.Retry).

The final challenge is performance. In general, software implementations of memory safety
tools have high overheads, and are far too slow for widespread practical use, so we focus on
a hardware implementation. Since pointers are not represented as machine addresses, dynamic
pointer decoding is necessary. Furthermore, the mapping between pointers and addresses can
change at any time as objects are malloc’ed and free’ed. For performance we use an old idea:
a cache that can quickly retrieve the most frequently used pointer decodings. We will discuss a
hardware implementation (GreenFat) of these ideas.

2.6 Detailed Example

0xb5da178f9e406fb0

12345

0xb5da178f9e40d024

LEA

0xb5da178f9e40d020

0x0000564745119020

-

+

MAP

0x0000564745119024

 0x2+%rax+2*12345

 base (encoded)

 base (decoded)

pr
og

.e
xe

B
lu
eF
at

movzwl 0x2(%rax,%rbx,2),%edx

%rax

%rbx

*

CHK

Fig. 2. Example pointer decoding.

We implement Fully Randomized Pointers (FRP) by in-
tercepting memory dereference operations and dynam-
ically decoding pointer values. A detailed example of
on-the-fly pointer decoding is illustrated in Figure 2.
Here, we consider an example instruction with a (ran-
domized) encoded pointer stored in %rax. The Load Ef-
fective Address (LEA) operation evaluates the memory
operand 0x2(%rax,%rbx,2), which corresponds to the
pointer arithmetic (0x2+%rax+2×%rbx). This operation
is executed as normal under the standard x86_64 seman-
tics, but this time generates a derived encoded pointer
rather than an address. The dynamic pointer decoder is
inserted in between the (LEA) and dereference (*) opera-
tions. Here, the encoded access pointer is mapped (MAP)
into an (encoded) base pointer (𝑞 from Example 1), and
a (decoded) base memory address. The difference (-) be-
tween the (encoded) access pointer and base pointers is
then added (+) to the (decoded) base to yield the final (de-
coded) memory address. The final address is dereferenced (*) as per normal, before being discarded.
As such, only fully randomized (encoded) pointers are visible to the program, and these have no
observable relation to the underlying memory address.

In addition to pointer decoding, our approach also checks for memory safety. For use-after-free
errors, our approach ensures that encoded pointers are never reused before resource (𝑖𝑑) exhaustion.
This means that dangling pointer access will be detected by a missing entry in the (MAP)—even
when the underlying memory has been reallocated. To check for object-bounds errors, (MAP) also
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stores object metadata (size+base address) which is checked before access (CHK):

[base, base+size) ∩ [lb, ub) = [lb, ub) (CHK)

Here, base is the object base address, size is the object size, and [lb, ub) are the bounds of the
memory access. Assuming the object in Figure 2 is of size 10 bytes (Example 1), the resulting
memory access is within bounds and thus is allowable. Otherwise, if the address is out-of-bounds,
our approach will detect this case and take protective action before the dereference operation (*).
Finally, we must also consider the tricky case where the base address %rax is itself invalid.

For example, given the valid pointer p from Example 1, an attacker could (in theory) pass the
invalid (out-of-bounds) pointer p′=p+𝑘 into %rax. This is possible since pointer arithmetic is never
checked to avoid false positives at the binary level. If the invalid p′ were to have the same value
as a valid pointer q, then the invalid access will not be detected by either the (MAP) nor (CHK)
checks—effectively bypassing the defense. Indeed, other memory safety tools, such as Valgrind [40]
and DrMemory [7], are vulnerable to precisely this kind of bypass attack. Essentially, the attacker
needs to find the correct value for 𝑘 , which is easy to do with default memory allocators that allocate
objects within the same memory region. In contrast, FRP protects this case using a combination
of pointer decoupling and randomization. Namely, under our running example, the attacker must
generate p′ from p by finding the very specific value 𝑘=672727314255736848 out of ∼252 possibilities.
The attacker cannot exploit basic memory layout knowledge (Cp.Layout) since pointer values are
decoupled. Furthermore, the high degree of randomization means that the number of retries
(Cp.Retry) necessary will easily exceed any practical attacker resource.

The problem of invalid pointers is closely related to the notion of pointer provenance [34], which
refers to the relationship between pointer values and the underlying object that the object pointer
references. It is possible that two pointers have the same value but have different provenance
(i.e., reference different objects), as is the case with the (invalid) p′ and valid q in the example
above. For compatibility, tools based on memory poisoning (ASAN, Valgrind, etc.) do not track
pointer provenance and are therefore vulnerable to bypass attacks using invalid pointers. Other
memory safety solutions, such as SoftBound [37] explicitly track object metadata associated with
each pointer, and therefore do effectively track pointer provenance. However, the explicit metadata
tracking is not binary compatible, and must be re-compiled from source code. FRP is effectively a
form of implicit provenance tracking under a probabilistic guarantee, since different provenances
correspond to very different (randomized) pointer values, and cannot easily be confused. Unlike
explicit tracking, FRP does not require special handling of pointer arithmetic, and thus preserves
the ABI and achieves strong binary compatibility. Since FRP values are ordinary machine words,
even advanced pointer idioms, such as XOR-linked-lists, are fully supported. Such idioms tend to
break explicit metadata tracking.

Next, we shall detail our design in two main parts: pointer decoupling, and randomization.

3 DECOUPLED POINTERS
In this section, we propose a decoupled pointer encoding that is binary compatible and independent
of the underlying memory layout, defending against (Cp.Layout). Our approach is to first define
the necessary pointer requirements, then to design a decoupled encoding accordingly.

3.1 Pointer Requirements
For compatibility, the pointer encoding must satisfy a set of basic requirements assumed by most
binary code. Here, each allocated object𝑂 is uniquely identified by a base pointer p returned by the
underlying allocator. The main pointer requirements are:



10 Gregory J. Duck, Sai Dhawal Phaye, Roland H. C. Yap, and Trevor E. Carlson

Rq.Arith) p𝑖=p+𝑖 points to the 𝑖𝑡ℎ byte in 𝑂 ; and p𝑗=p𝑖+𝑘 (and 𝑘=p𝑗−p𝑖 ) for 𝑘=( 𝑗−𝑖).
Pointer comparison is defined in the obvious way.

Rq.Word) p𝑖 is representable as a (64 bit) machine word.
Rq.Deref) p𝑖 can be dereferenced to access 𝑛 consecutive 𝑂 bytes pointed to by p𝑖 ..p𝑖+𝑛−1.
Rq.Align) (p & 0xFFF) must equal the alignment of 𝑂 .

A more detailed treatment of pointer requirements can be found in [34]. The (Rq.Align) requirement
is often necessary for (binary) compatibility, where the binary determines object alignment by
inspecting the pointer value.6 Most real-world programs also relax some of the requirements. For
example, many C/C++ programs (and most binaries) relax (Rq.Arith), allowing for arbitrary 𝑘 values
outside the bounds of 𝑂 . In the case of C/C++, this is technically undefined behavior ([25] §6.5.6
¶8), but is nevertheless relied upon by many programs [17]. Furthermore, many binaries relax
(Rq.Deref) for out-of-bounds reads, provided that (1) the memory access does not cause a page fault
(SIGSEGV), and (2) any out-of-bounds data is discarded by subsequent execution. For performance
reasons, many glibc string handling functions (strlen, strcpy, etc.) use SIMD instructions that
may read (then discard) out-of-bounds data. We claim that any pointer encoding satisfying the
relaxed (Rq.*) will be compatible with most existing binary code.

3.2 Decoupled Pointer Design
We design a basic decoupled pointer encoding that satisfies the relaxed (Rq.*). This subsection is
necessarily low-level, since the bit-level encoding directly relates to compatibility and security.
Pointer Arithmetic. Our underlying approach is to refactor pointers into explicit ⟨id, offset⟩ pairs:
- id is an object identifier that uniquely identifies some allocated object 𝑂 ; and
- offset represents the byte offset from the base of 𝑂 .
With this abstract encoding, a memory allocator returns a pointer of the form ⟨id, zero⟩, where id
is a freshly minted (never-used-before) identifier, and zero represents an offset of 0 bytes. Here,
zero can be any arbitrary zero-point value, but for now we shall use the obvious value zero=0.
Under the abstract encoding, the id does not depend on the machine address—rather, objects

are associated with unique identifiers that are never reused, even when the underlying memory is
free’ed and reallocated. For this, identifiers could even be assigned sequentially (#1, #2, #3, ...),
meaning that a dangling abstract pointer can never be confused with a valid pointer to a reallocated
object. We also use the following definition of pointer arithmetic:

⟨id, offset⟩+𝑘 = ⟨id, offset+𝑘⟩ (Arith)
That is, pointer arithmetic only affects the offset, meaning that an out-of-bounds abstract pointer
can never be confused with a valid pointer to another object. The object identifier (id) is idempotent
with respect to reallocation and pointer arithmetic, resolving (in principle) all potential ambiguity
between invalid and valid pointers.
Flattening. To satisfy (Rq.Word), we flatten the abstract encoding into 64 bit integers:

struct { int64_t id:40; int64_t offset:24; };
Here offset bitfield occupies the 𝑚= log2 (𝑀) least significant bits (lsb), and the id occupies the
remaining 64−𝑚 most significant bits (msb), where𝑀 based on the default glibc malloc threshold7
𝑀=MMAP_THRESHOLD_MAX=32MB. Note that the offset is stored within the lsb, meaning that integer
encoding is consistent with (Arith) for small values of 𝑘 , satisfying (Rq.Arith). Finally, to satisfy

6Most programs are compatible with 16-byte alignment (0xF). However, some programs as sensitive to page alignment
(0xFFF), specifically when interacting with system calls (e.g., mprotect) where page alignment is required.
7See the mallopt manpage.
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requirement (Rq.Align), we use zero=(addr & 0xFFF), thereby preserving the page offset (12 lsb) of
the machine address (addr).
Pointer Dereference. The final requirement is pointer dereference (Rq.Deref). To address this, our
approach is to intercept all memory accesses and to decode pointers “on-the-fly”, as illustrated in
Figure 2. Essentially, the pointer dereference (*p) operation is replaced with *decode(p), where
decode maps encoded pointers to the corresponding machine address, defined as follows:

decode(p) =
{
M [p.id] .base + p.offset isEncoded (p)
p otherwise

Here, isEncoded determines whether a pointer is encoded or not. For the x86_64, we can assume
that a non-zero value for any of the 16 most significant bits will indicate an encoded pointer. The
mappingℳ is an associative map that maps identifiers of allocated objects to information about the
corresponding object (also seeMAP from Figure 2). Here, (ℳ[id] .base) is the base machine address
of the object with id. Initially the map is empty (ℳ=∅) when the program starts. As execution
proceeds,ℳ is updated each time an object is (de)allocated, using wrappers over standard memory
allocation functions.
Theℳ map can be implemented using an associative map data structure. However, querying

an associative map is a relatively slow operation, especially since (ℳ) must be consulted for each
memory access. In hardware, we can optimize memory access wrapping the ℳ map with a cache
(𝒞) to store the most frequently accessed objects. The impact of 𝒞 can be significant when the miss
ratio is low, and we shall evaluate the impact of this design in Section 5.

3.3 Discussion
Decoupled pointers satisfy the relaxed requirements (Rq.*), and are a practical encoding that
is compatible with existing binary code (without recompilation) assuming that pointers can be
decoded on-the-fly. Although the decoupled pointer encoding is compatible, it by itself only provides
weak protection against bypass attack. For example, (1) the offset bitfield may overflow into the id,
meaning that q=p+𝑘 is still has a solution, and (2) the id bitfield has a limited size (40 bits), meaning
that identifier values will need to be reused eventually (after ∼1012 allocations). We address security
using full randomization in Section 4.
Decoupled pointers also assume that all pointer dereference operations can be intercepted for

pointer decoding. For a software implementation, this can be achieved using a Dynamic Binary
Instrumentation (DBI) framework—similar to the approach used by other DBI-based memory error
checking tools (e.g., Valgrind [40] and DrMemory [7]). Themain downside of DBI is the performance
overhead, meaning that a software-only implementation of decoupled pointers would be too slow
for most practical use cases. However, the approach is feasible as a hardware solution, where pointer
decoding can be integrated into the CPU load-store pathway with little performance impact. We
shall present a hardware implementation in Section 5.

4 FULLY RANDOMIZED POINTERS
We use the decoupled pointer encoding from Section 3 as the basis for Fully Randomized Pointers
(FRP). For binary compatibility, all pointers must be represented as 64 bit integers (Rq.Word)
meaning that the object identifier bitfield (id) is vulnerable to modification, and this is difficult to
prevent directly. Even if all pointer arithmetic were to be fully instrumented (e.g., to detect bitfield
overflows), this would break compatibility with binary code that creates deliberate out-of-bounds
pointers (relaxed Rq.Arith). Instead, we use an indirect mitigation in the form of full randomization.
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4.1 Decoupled Pointer Randomization
The idea is to obfuscate that relationship between pointers to different objects, meaning that the
necessary value for 𝑘 to construct an out-of-bounds pointer (Cp.Invalid) becomes undetermined.
Similar protection is afforded to dangling pointers, thereby hardening against bypass attacks in
general. Unlike existing randomization-based defenses, such as DieHard(er) [4, 42], our baseline
pointer encoding is decoupled from the underlying memory address, meaning that we randomize
pointer bits without affecting the layout of objects withinmemory. Decoupled pointer randomization
is relatively straightforward: the identifier (id) and offset bitfields are randomized independently, as
discussed below.
Identifier randomization. Identifiers can be generated at random with a collision-check:

generateId () =
{
id id ← getId (), id ∉ dom ℳ
generateId () otherwise

Here, getId () is a Cryptographically Secure Pseudo Random Number Generator (CSPRNG) source.
Since different objects will be assigned very different (random) ids, there is no predictable relation-
ship between their respective pointers, defending against (Cp.Invalid).
Offset randomization. It is also possible to randomize the offset. This exploits the observation that
the zero-point (zero) can be any arbitrary value subject to the following constraints:

(1) (zero + size) cannot overflow the offset bitfield, and
(2) (zero & 0xFFF) must match the decoded machine base pointer in order to satisfy (Rq.Align).

Any random (CSPRNG-sourced) value satisfying (1) and (2) can be used for the zero value. Offset
randomization further obfuscates the relationship between pointers to different objects, further
hardening against (Cp.Invalid).
Additional optional randomization. It is also possible to (optionally) randomize the page offset as
an extension in order to further harden the defense. For this, we can choose a memory allocator
that randomizes object locations within each page. This also assumes that an attacker is unable to
predict page offset randomization (Cp.Layout), which may be the case in many common attack
scenarios.
Normally, heap objects must be “suitably aligned for any built-in type”8. In practice for the

x86_64, this means that heap objects are aligned to 16-byte boundaries. As an extension, relaxing
this assumption allows the remaining pointer bits to be randomized—further maximizing security.
However, some programs rely on the default malloc alignment, so this extension may break
compatibility, so is disabled by default.
Sensitive data. An attacker may also attempt to bypass the defense by reading sensitive data, such as
the mapping ℳ, CSPRNG-parameters, or the heap itself (via a machine address). For our analysis,
we assume that sensitive data is stored in a dedicated memory region that is not accessible by the
program, i.e., not addressable. For a software implementation, this can be achieved with additional
instrumented checks. For hardware, this can be achieved by storing sensitive information in an
inaccessible (e.g., non-addressable) memory region.
Note that the heap itself is considered sensitive data. This means that heap objects are only

accessible via FRPs and not regular addresses. This assumption is critical for our security analysis.

8See the malloc man page.
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4.2 Security Analysis
Wemodel two single-word objects pointed to by encoded pointers p, q. We assume that the attacker
knows p and q is the intended target. Due to the randomization, the attacker knows the value of p
but not q, which can be any value in the FRP space. The attacker can construct (Cp.Invalid) and
dereference (Cp.Deref) invalid pointers. Furthermore, the attacker is able to retry failed attacks
(Cp.Retry). The attacker is adversarial, meaning that they can attempt any attack allowable under
the threat model.

We can quantify the probability of an isolated attack attempts succeeding as follows:

(2 |id | − 1 − 2 |id |−16) × 2 |offset | × 2 |page | × 2 |align | (Security)

Here, |id | is the number of randomized bits in the id, |offset | is the number randomized bits in
the offset, |page | is the number of randomized bits in the page offset (optional), and |align| is the
remaining number randomized bits that is otherwise reserved for malloc alignment (optional).
Here (Security) accounts for 2 |id | potential randomized identifiers, less one already consumed by
p, less (2 |id |−16) identifiers with zero 16 msb. For our baseline, we assume |id |=40, |offset |=12, and
|page |=|align|=0 which evaluates to 52 bits—significantly stronger than the current state-of-the-
art [29, 30, 48]. This analysis conservatively assumes the attacker is aware of the memory layout
(Cp.Layout) and can therefore guess the lower 12 bits of the target q. By relaxing these assumptions,
we have that |page |=8 and |align|=4, meaning that the effective entropy increases to 60 bits and
64 bits respectively. We now consider some possible attack scenarios:
Network server reset. The attacker attempts to dereference an invalid pointer, hoping to hit the
target q. For an incorrect guess, the program terminates, but the attacker can retry under (Cp.Retry).
Under the baseline entropy of 52 bits, the attacker will be required to make an average of 252−1
guesses before a successful attack. Assuming the attacker targets a network server that resets after
a crash, the network bandwidth for the TCP handshakes (3×40 bytes) alone would exceed 240
petabytes. As such, this is not a practical attack.
Speculative execution. Here the attacker dereferences invalid pointers speculatively, and uses side
channels (e.g., timing) to determine whether the guess was valid or not. The advantage of this
approach is that it does not terminate the program on an unsuccessful attempt. The disadvantage
is that it requires a more complicated set-up, and may require sampling of noisy side channels.

For our analysis, we use the PACMan attack as a guide, which is a practical speculative execution
attack against ARM Pointer Authentication Codes (PAC) [44].We use the estimate of 2.69 milliseconds
per attack attempt ([44] § 8.2), which can exhaust all 16 bit PAC values in 2.94 minutes, and all 24
bit values in 12.54 hours. At the same rate, exhausting all 52 bit FRP values would take over 192077
years. Again, this is not a practical attack.
Heap spray. In some cases, the attacker could induce the program to create multiple 𝑛 targets (heap
spray), rather than assuming a single target (𝑛=1). However, we can consider this to be another
form of (Cp.Retry), where 𝑛 is the number of attack attempts. The disadvantage of this approach is
that each allocated target consumes memory, which imposes a practical bound on the size of 𝑛.
Furthermore, memory size is orders of magnitude smaller than the size of the FRP space, meaning
that heap sprays have negligible impact on security. For example, suppose the attacker allocated
232 targets, which by itself would consume considerable memory. However, the effective security
of FRP would be essentially unchanged: 252−232≈252.
The attacker may also attempt to allocate objects to reduce the size of the (unallocated) FRP

space, making future allocations more predictable. However, this runs into the same problem: the
FRP is so large that it will not be meaningfully affected by such attacks, using the same equation
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as above. Furthermore, such an attack would require the attacker to somehow track the values of
previously allocated pointers, which may not be feasible under our threat model.
Discussion. The large entropy of FRP protects against even “brute force”-style attacks, even under
conservative assumptions. The large entropy may also help protect against future hypothetical
attacks (e.g., targeting a flawed implementation) that reduces the effective entropy, since FRP
provides a maximized entropy buffer.

5 EVALUATION
We have implemented a software implementation (BlueFat) of Fully Randomized Pointers (FRP) on
top of the Pin Dynamic Binary Instrumentation (DBI) framework [32] and a hardware simulation
(GreenFat) on top of gem5 [5]. The software implementation primarily aims to comprehensively
test the security and compatibility of FRP on real-world x86_64 binaries without recompilation.
The hardware simulation aims to evaluate the performance potential of FRP under the assumption
that the cache (𝒞) is implemented natively in hardware.

In both cases, the FRP wraps the standard glibc memory allocation functions with full pointer
randomization, and intercepts all memory dereference to dynamically decode pointers into the
corresponding memory address. The implementation also checks for memory errors, and will abort
the program on use-after-free or out-of-bounds write. For reads, the implementation will zero
any out-of-bound byte (similar to failure-oblivious computing [45]), retaining compatibility with
the relaxed (Rq.Deref) while also preventing exploitation in the form of information disclosure.
In terms of look-and-feel, the software implementation (BlueFat) is similar to other DBI-based
memory error tools, such as Valgrind [40] and DrMemory [7]. However, unlike these related tools,
the FRP methodology is primarily designed to harden against bypass attacks rather than for bug
detection.
All experiments are run on an Intel Xeon Gold 6242R CPU (clocked at 3.10GHz) with 376GB

of RAM. Each benchmark binary is obtained by compiling using gcc/g++/gfortran compiler
version 9.4.0 under (-O2). The system runs on Ubuntu 20.04 (LTS). We evaluate BlueFat for
security/compatibility and GreenFat for performance.

5.1 Security
FRP is primarily optimized for security and resistance to bypass attacks. To evaluate the effectiveness
of FRP, we evaluate BlueFat against several prominent memory error defenses from Table 1. For
benchmarks we use (in increasing order of difficulty):
(1) Recent Common Vulnerabilities and Exposures (CVEs);
(2) RedFat benchmarks (from [17]) including non-incremental [17] CVEs and 480 Juliet [41] test

cases;
(3) A strong adversarial attacker model capable of brute-force bypass attacks (see Section 2.2). This

includes ported RedFat CVEs and the Table 1 microbenchmarks.
We caution against drawing conclusions from the quantity of passing/failing tests. For example,
the RedFat benchmarks from [17] (which are used “as-is”) are tuned against Valgrind. Rather, any
failing test means that the tool is vulnerable to bypass attacks (see the Bypass safe? column). We
also note that, unlike the other tools, DieHard(er) implements error detectionmitigation rather than
detection. This is represented by a dash (-) and should not be interpreted as a negative outcome.
We evaluate all tools from Table 1 for which implementations are publicly available and can run
under our test set-up.

The results are shown in Table 2. Here, we see that most existing defenses are able to detect “ordi-
nary” CVEs (Recent) during normal execution—i.e., without an attacker that is actively attempting
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Table 2. Security evaluation of defense techniques.
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CVEs CVEs Jul. CVEs Micro

Defense cv
e-
20
23
-2
95
84

cv
e-
20
23
-2
52
21

cv
e-
20
23
-2
72
49

cv
e-
20
23
-2
52
22

cv
e-
20
07
-3
47
6

cv
e-
20
12
-4
29
5

cv
e-
20
16
-1
90
3

cv
e-
20
16
-2
33
5

cw
e-
12
2-
he
ap

cv
e-
20
07
-3
47
6*

cv
e-
20
12
-4
29
5*

cv
e-
20
16
-1
90
3*

cv
e-
20
16
-2
33
5*

O
F+

U
F

UA
F
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ASLR+glibc ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 0 ✗ ✗ ✗ ✗ ✗ ✗ ✗

ASAN [49] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 210 ✗ ✗ ✗ ✗ ✗ ✗ ✗

LowFat [14, 16] ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ 428 ✗ ✗ ✗ ✗ ✗ ✗ ✗

EffectiveSan [15] ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ 480 ✗ ✗ ✗ ✗ ✗ ✗ ✗

efence [43] ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ 480 ✗ ✗ ✗ ✗ ✗ ✗ ✗

DieHard [4] - - - - - - - - - ✗ ✗ ✗ ✗ ✗ ✗ ✗

DieHarder [42] - - - - - - - - - ✗ ✗ ✗ ✗ ✗ ✗ ✗

Valgrind [4] ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ 0 ✗ ✗ ✗ ✗ ✗ ✗ ✗

DrMemory [7] ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗ 476 ✗ ✗ ✗ ✗ ✗ ✗ ✗

RedFat [17] ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ 480 ✗ ✗ ✗ ✗ ✗ ✗ ✗

FRP (this work) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 480 ✓ ✓ ✓ ✓ ✓ ✓ ✓

(✓) = error detected, (✗) = error not detected
(-) = indeterminate since the benchmark does not model a target object.
(Jul.) = Juliet benchmarks (480 tests); (*) = ported to strong attacker

to bypass the defense. Such tools are useful for debugging or at least some modest attack surface
reduction. The RedFat benchmarks use non-incremental overflows which allow for the construction
of pointers with attacker-controlled offsets (𝑝+𝑘). This leads to mixed results on some defenses—the
value chosen for 𝑘 may be sufficient to bypass common detection methods, e.g. memory poisoning.
Finally, we consider our “strong” threat model (Strong). For this, we port the RedFat CVEs to
also include a proactive attacker with the (Cp.*) capabilities, including the ability to retry (brute
force) failed attacks. We also test the micro benchmarks from Section 2.4, as well as an additional
use-after-free (UAF ) benchmark:

free(p); for (size_t i = 0; i < N; i++) { malloc(𝑛); attack(p); } (𝑈𝐴𝐹 )
For these tests, we use a maximum of 10,000 attempts. Only BlueFat offers any real resistance. Since
pointers have been randomized, the number of attempts necessary for a successful attack is ∼251,
providing strong security even against the capable attacker. Table 2 also highlights the problem
of incomplete error coverage due to uninstrumented code (e.g., shared libraries), as illustrated
by CVE-2023-27249, which is missed by many tools. Such problems are avoided by transparently
checking all memory access, which is possible with a hardware implementation (GreenFat).
Our results also reinforce the earlier results from Table 1. Namely, that existing defenses are

effective against weak or non-existent attacker models (Recent), have mixed results against less-
weak models, and have essentially no resistance against strong attacker models (Strong). Given that
the strong attacker model is not unrealistic, this highlights the need for stronger memory error
defenses such as FRP.

5.2 Compatibility
To test compatibility, we evaluate BlueFat against the full SPEC2017 benchmark suite [8] under
the ref workload. There are 19 benchmarks in total, with 12 benchmarks using C, 5 using C++, and
8 benchmarks using Fortran (non-exclusively). The results are shown in Figure 3, and represent
the relative slowdown using Valgrind’s Memcheck as a baseline. To make the comparison fairer, we
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Fig. 3. Normalized SPEC timings for Valgrind and BlueFat. For (*) we exclude cam4, which runs under

BlueFat but not Valgrind. The results demonstrate perfect compatibility for BlueFat and FRP—despite using

a radically different pointer encoding.

disable leak checking (–leak-check=no) and undefined value errors (–undef-value-errors=no),
which speeds up Valgrind somewhat. We compare against BlueFat with a software cache size of
64KB (4096 entries).
We compare against Valgrind as a Dynamic Binary Instrumentation (DBI)-based memory error

detection tool that is binary compatible without recompilation. We caution that compatibility
(and not performance) is the primary goal of these experiments—i.e., can FRP (as implemented by
BlueFat) run the full SPEC2017 benchmark suite without error? It is generally accepted that DBI
is too slow for most hardening applications, and that only a hardware-based implementation can
deliver performance overheads acceptable for general deployment. Our main performance result is
based on a hardware simulation (GreenFat), and will be presented in Section 5.3.
Binary compatibility is essential for a usable tool. Despite using a radically different pointer

encoding (i.e., FRP replacing addresses with random numbers), BlueFat can successfully run
the entire SPEC benchmark suite (Figure 3). Furthermore, each binary runs without any special
(re)compilation or instrumentation, i.e., the binary itself is unaware of the hardening solution.
This validates the key premise of our design, namely: alternative pointer encodings are indeed
practical provided that the minimum set of pointer requirements (Rq.*) have been satisfied. The
results demonstrate that FRP can be applied to any binary, including legacy binaries and libraries,
without the need to rebuild the entire software tool chain. We also tested BlueFat on a wide
plethora of off-the-shelf binaries, including ([12] Table II Real-World), ([13] Table 1), and many
other programs/libraries. We find that BlueFat is highly compatible with existing binaries—further
validating our approach. However, there are some exceptions, which will be discussed in Section 5.4.

Other memory safety tools have mixed results regarding compatibility, despite using the default
pointer encoding. Valgrind can run most benchmarks with the exception of cam4 (which failed due
to a segmentation fault under our tests). We also tested DrMemory [7], with deepsjeng reporting
a heap allocation failure, but with the other benchmarks running, albeit much slower than Valgrind.
While other DBI-based memory error detection tools can also achieve reasonable compatibility,
only FRP achieves the strong bypass resistance and security guarantees necessary for hardening
applications.

5.3 Performance
In this section we demonstrate a proof-of-concept hardware-accelerated version of FRP (GreenFat).
Our goal with GreenFat is to propose a hardware-software co-designed solution that significantly
reduces the overheads seen when using FRP. It does this by storing a mapping from the FRP value
to the virtual address and bounds metadata in a small, fast-to-access cache. This accelerates the
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translation of an FRP and allows for the hardware to quickly check recently used FRP values for the
translations in the small cache. In the relatively rare case of a cache miss, we access the translation
data from DRAM and cache it for future accesses.
In the rest of this section, we describe the methodology used for application representative

generation, detailed simulator setup, and provide an analysis of the hardware simulation results.

5.3.1 Methodology. We model our FRP implementation, GreenFat, using the gem5 [5, 31] simula-
tor. The gem5 simulator is a popular cycle-level processor simulation methodology. We model a
modern processor system with a full cache hierarchy, and a detailed out-of-order CPU execution
model (See Table 3 for details) in Syscall Emulation mode. We then augment this system with the
GreenFat cache to build a fast-to-access memory that tracks recent object-to-bounds translations,
minimizing overheads and allowing for fast lookups of recently-used FRP mappings.
The GreenFat cache is modeled with {128, 512, 1024, 4096} entries, and each entry stores the

virtual address bounds information for each object (assumes 16 B of space per entry, same as
BlueFat). The total capacity for these caches are {2 KiB, 8 KiB, 16 KiB, 64 KiB} respectively. Entries
are added to the FRP mappings through our memory allocation wrappers (malloc(), free(),
etc.) that do not require recompilation of the binaries under test (the use of LD_PRELOAD to insert
malloc wrappers is sufficient for these workloads). The cache itself is connected directly to the
memory controller to avoid LLC cache pollution. All misses will access DRAM in a deterministic,
non-cached way to prevent potential side-channel attacks from partially decoding pieces of the
FRP information.

The evaluation is done using the working subset of C/C++ applications9 from the SPEC CPU2006
benchmark suite10 built using LLVM 10.0 compiler with a RISC-V backend. As running full applica-
tions in detail can take months to simulate in gem5 [47], we therefore use application representatives
that accurately represent the original workload behavior [21]. To generate these representatives,
we use functional simulation of gem5 (AtomicCPU mode) which allows us to collect the Basic Block
Vectors (BBVs) required to cluster the regions to generate the 1 billion instruction SimPoint [21]
representatives. The full reference input sets were used (largest input sets) running both the (i)
baseline gem5, and the (ii) GreenFat configuration. We collect performance and cache statistics,
and detail those results later in this section. All object statistics were generated using the 1 B
representative region execution.

5.3.2 GreenFat Implementation Details. In this section, we will present an overview of the steps
taken by the hardware-software co-designed system to implement FRPs. First, (1) upon heap
memory allocation, we allocate a mapping from a newly minted FRP to a virtual address region.
This is done at the time of the malloc() function call. Next, (2) on access by a standard load or store
instruction, the hardware checks for the presence of an FRP, and, when identified, (2a) looks up the
FRP in the GreenFat cache to determine the object base and bounds. On a hit, the access continues
as normal, but on a miss (2b), the GreenFat cache reads the object map in DRAM, and stores the
entry in the cache for later use. The hardware next (3) checks for validity of the address, and if
(3a) valid, proceeds to access the L1-D cache using the virtual address from the FRP and the offset
supplied from software. Note that data from the GreenFat mapping needs to be checked (either
via the cache lookup, or from DRAM) before initiating an L1-D cache lookup via the translated
virtual address. If invalid (3b), the hardware will raise a memory access exception (similar to an
invalid memory access), and the OS will subsequently raise a SIGSEGV to the application.

9For the setup used to build representatives, the RISC-V compiler used (LLVM 10.0) does not support Fortran applications,
and the gem5 version used has many unimplemented syscalls, limiting application support similar to previous work [20].
10CPU2006 is compatible with our gem5 setup.
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Table 3. System configuration used in gem5 simulation. Acronyms used below include Out-of-Order CPU

(OoO), LoadQueue (LQ), StoreQueue (SQ) and Reorder Buffer (ROB), Least-Recently Used (LRU).

Component Description
CPU OoO @ 1GHz, 32 LQ, 32 SQ, and 192 ROB entries
GreenFat Cache 8-way LRU, 2 cyc hit lat, 300 cyc miss lat, 16 B line size
L1I/D Cache 32 KiB, 2-way LRU, 2 cyc lat, 64 B line size
L2 Cache 256 KiB, 8-way LRU, 20 cyc latency, 64 B line size
DRAM tCL 13.75 ns, tRCD 13.75 ns, tRP 13.75 ns (approximately 80 cycles)

Table 4. Benchmark slowdown (%) and cache miss rates (%) for gem5 simulations of our GreenFat

implementation across different cache sizes (4096, 1024, 512 and 128 entries of a 8-way associative cache).

Slowdown is calculated by comparing the benchmark simulated runtime under GreenFat with baseline

gem5. In addition, object data for the representative regions are listed for comparison. Entries with a

hyphen (-) indicate a cache miss rate of less than 0.01%. Count is the number of unique objects accessed

in the representative region. The 𝜇 symbol represents the mean object size (in KiB), and |𝐴| is the number

of accesses, in millions.

Benchmark
Slowdown (%) Cache Miss Rate (%) Object Data

4096 1024 512 128 4096 1024 512 128 Count 𝜇 (KiB) |𝐴| (M)

401.bzip2 2.54 2.54 2.54 2.54 - - - - 7 7,329.8 171.4
403.gcc 2.60 3.13 3.52 12.61 0.03 0.04 0.06 0.46 8,901 2.5 230.9
429.mcf 4.98 4.98 4.98 4.98 - - - - 3 190,698.8 1043.7
433.milc 1.94 1.94 1.94 1.94 - - - - 40 11,798.5 357.1
445.gobmk 0.22 0.22 0.22 0.22 - - - - 8 1,487.6 18.5
462.libquantum 0.74 0.74 0.74 0.74 - - - - 1 8,193.0 253.0
464.h264ref 0.42 0.77 1.69 5.36 0.00 0.01 0.05 0.13 1,164 1.8 292.7
470.lbm 3.98 3.98 3.98 3.98 - - - - 2 52,344.8 311.2
473.astar 59.57 63.10 66.02 69.30 18.89 19.93 21.31 22.83 192,298 0.5 63.0
483.xalancbmk 18.99 52.01 121.23 242.97 0.59 1.43 2.94 5.12 66,444 0.6 231.0

GEOMEAN 8.46 11.49 16.11 23.02 - - - - - - -

5.3.3 Analysis. We assess GreenFat cache statistics and the impact on performance over four
different cache-sizes — 2KiB, 8 KiB, 16 KiB, and 64KiB corresponding to 128 entries, 512 entries,
1024 and 4096 entries, respectively. Table 4 displays theGreenFat cache miss rates and performance
slowdown of GreenFat compared to the baseline gem5 implementation. As GreenFat stores
mappings in the GreenFat cache on a per-object basis, the miss rate remains low (<0.01%) for
six benchmarks (401.bzip2, 433.milc, 429.mcf, 445.gobmk, 462.libquantum, and 470.lbm),
with object counts ranging from just one object for 462.libquantum, to 40 objects in 433.milc.
Thus, workloads with a lower number of objects have low cache-sensitivity.

Contrary to that, benchmarks such as 483.xalancbmk, 473.astar, 464.h264ref, and 403.gcc
exhibit a clear trend, wherein the slowdown increases as miss rate rises. The object counts for
these workloads (See Figure 4 for details) increase above the largest cache sizes evaluated. But, a
high object count alone does not predict performance slowdown, as seen in Figure 4. For exam-
ple, the slowdown for 473.astar remains near 65% for all cache sizes. As the miss rates remain
constant (near 20%), the overall performance impact for this workload is modest. Nevertheless,
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for 483.xalancbmk, a much smaller miss rate (between 1% and 5%) translates to a much higher
slowdown (from 52% to 240%). This is likely caused by 483.xalancbmk’s sensitivity to the misses
— these object loads are critical to application progress. The 473.astar application, in comparison,
is much less susceptible to its higher miss rate, as the out-of-order processor is able to hide the
additional latency of these misses. This is a clear demonstration into why a detailed simulation
methodology is needed, as using GreenFat cache miss rates alone does not translate to an accurate
performance impact of this implementation.
For a 64KiB cache, the overhead of hardware GreenFat implementation is 8.46% compared to

11.19× for the software BlueFat implementation. We caution that these results are for slightly
different benchmarks, so a direct one-to-one comparison is not possible. Nevertheless, it is clear
that GreenFat represents a significant performance improvement, since major overheads (e.g.,
DBI) are avoided altogether. Finally, we remark that our GreenFat implementation represents a
relatively conservative hardware extension, in the form of an additional cache and pointer decode
step. Although this is not zero-overhead, our approach is compatible with existing conventional
microarchitectures without a radical redesign.

5.4 Limitations
FRP is designed to prevent attacks under stronger threat models including brute force attacks (see
Section 2.2). FRP does not prevent other attacks from outside of this model. That said, most exploits
depend on a memory error as part of the attack chain, and traditional memory errors still represent a
significant attack surface. Another limitation is that, like other binary-only tools [7, 17, 40], BlueFat
and GreenFat can only protect heap objects. This is because stack/global object boundaries and
lifetimes are generally ambiguous at the binary level. This is a general limitation, and is not specific
to FRP. Similarly, objects allocated using Custom Memory Allocators (CMAs) will not be necessarily
protected, or only partly protected, depending on the internal implementation of the CMA. Again,
this is a general limitation not specific to FRP. These limitations could be lifted if our approach
were to be ported to the source-level, or if the binary representation were to be augmented with
the necessary information as a future extension.

FRP is compatible with most off-the-shelf binaries. Some binaries, such as Google Chrome [19],
appear to be incompatible with DBI-based tools (including non-FRP tools) in general, so cannot be
tested. Other binaries use custom tagged pointer representations that compete with our randomized
pointer encoding. For example, the SpiderMonkey Javascript engine in Firefox [36] uses NaN boxing
that packs data in the upper 16 bits of x86_64 pointers. Such examples of incompatibility are
rare, and the incompatibility likely affects all encoded-pointer defenses, and is not specific to FRP.
Also, it may be possible to adapt the programs to remove such incompatibilities, by modifying the
program at the source level as a last resort.

Any implementation of FRP must be careful not to introduce new attack vectors or side channels.
This can be challenging in both software and hardware implementations. This is also a general
problem that is not specific to FRP. That said, the high entropy of FRP may provide a buffer against
some implementation-specific attacks that only leak partial information.

6 RELATEDWORK
We briefly summarize the related work in this section.

6.1 Memory Error Defenses
For a relatively recent survey on memory error defenses, see [54].
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Memory poisoning. As discussed, memory poisoning is a very common approach implemented by
many tools [3, 6, 7, 17, 22, 23, 26, 40, 49, 51, 52]. The vulnerability to bypass attacks is well-known,
and thus the technique is mainly used for bug detection rather than security hardening.
Guard pages. Another pre-existing idea is to insert inaccessible guard pages between memory
objects, as used by efence [43], Archipelago [33], and GWP-ASAN. Accessing a guard page will
trigger a memory fault (SIGSEGV). In addition to consuming large amounts of memory (both virtual
and physical), the approach can be vulnerable to bypass in the absence of randomization.
Use-after-free vulnerabilities. There exist specialized use-after-free defenses [11, 38, 53, 56]. Os-
car [11] similarly avoids reusing pointers to reallocated memory. Unlike FRP, Oscar relies on virtual
memory tricks, specifically, mapping the same physical page into the virtual address space more
than once. This has overheads, weaker security, and supports fewer reallocations until exhaustion.
Pointer tagging. Our approach shares some superficial similarities with pointer tagging. Here, unused
pointer bits are repurposed for meta information, e.g., an object id. For example, HWAsan [50] for
ARM tags each pointer with a randomized value that is checked against access. However, pointer
tagging essentially encodes the id twice: once explicitly as the tag, and once more implicitly as
the address. Our FRP encoding supports orders of magnitude more ids (40 versus 16 bits), enabling
much stronger security.
Fat pointers. Another old idea is to replace pointers with a fat encoding that explicitly stores object
metadata, as used by Safe-C [2], CCured [39], Cyclone [27], amongst others. Like FRP, this approach
tracks pointer provenance and avoids pointer confusion. However, fat pointers violate (Rq.Word)
and are generally not compatible with existing code without modification. Softbound [37] improves
over fat pointers by separating metadata, but is not binary compatible and needs recompilation.
Low-fat pointers. Another idea is to compress fat pointers into a native address representation [14, 16].
Unlike FRP, this approach can still suffer from false positives in specific cases (e.g., pointer escapes).
Associative maps. Tools like CRED [46], MPX [24], and FuZZan [26] store metadata in a tree-based
associative map. However, FRP is the first approach to use an associative map to implement full
pointer randomization, with the corresponding security benefits.
Probabilistic methods. As discussed, DieHard [4] and DieHarder [42] are the most prominent
examples of heap layout randomizers. However, such randomization is limited to the virtual address
space region used by the heap, which is orders of magnitude smaller than the full FRP space. As
such, heap layout randomizers have significantly weaker guarantees compared to FRP.
Encrypted pointers. PointGuard [10] encrypts pointers in memory to mitigate potential overwrites.
Similarly, the glibc setjmp function mangles the jmp_buf structure, and Windows supports an
EncodePointer API for encrypting pointers. However, these schemes are not general-purpose
pointer encodings under (Rq.*). For example, given an encoded 𝑝 , then DecodePointer(𝑝+1) yields
a gibberish value.

Neither the PointGuard, setjmp, nor EncodePointer encodings are general-purpose memory
error defenses. In contrast, 𝐶3 [29] is a probabilistic capability system based on partial pointer
encryption but with lower entropy (see Table 1). We elaborate in Section 6.2.
Pointer provenance. The ambiguity between invalid and valid pointers is closely related to the notion
of pointer provenance [34]. Somememory error defenses, such as fat pointers [39] and SoftBound [37],
effectively implement a form of pointer provenance tracking by explicitly annotating pointers with
object metadata. However, this tends to break binary compatibility, since this metadata must be
explicitly tracked somehow.
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We argue that our fully randomized encoding can be thought of as the first implicit provenance-
preserving pointer representation. This is a probabilistic and emergent property: two FRP pointer
values will have very different bit patterns, and thus it is extremely difficult for the two values to
become inadvertently or maliciously confused. Furthermore, since FRP values are still ordinary
machine works, there is no need for explicit object or provenance tracking that would otherwise
break binary compatibility.

6.2 Randomization versus Authentication versus Encryption versus Capabilities
Our design uses randomization as opposed to other entropy-based methods, such as authentication
or encryption. In this section, we briefly compare the different approaches.
Authentication-based methods use an address-based encoding augmented with a code or tag

dependent on the address. Thus, if the address is (maliciously) changed, the code will no longer
match allowing for the detection of the error. The code usually occupies otherwise-used address
bits (e.g., upper 24 bits under some PAC configurations), so is a relatively simple architectural
change. However, the problem is that the address itself must still occupy the other 40 bits unchanged—
fundamentally limiting an entropy-based defense.
Encryption-based methods are similar to randomization. The main difference is that random-

ization uses a dynamic bijection (represented byℳ in FRP) between pointer values and objects,
whereas encryption-based methods use a static bijection determined by a hidden key. We carefully
considered an encryption-based design, as it eliminates the need to maintain the dynamic map ℳ
altogether, which is a significant simplification. However, encryption has a significant weakness
regarding use-after-free (UaF). Specifically, if an object is free’d and reallocated with the same
underlying address, then the cipher text (the encrypted pointer) will also be the same. The 𝐶3

system adds a mitigation for this problem by including an 8 bit version bitfield into the plaintext,
meaning that each address has 28=256 encrypted pointer variants. However, under our stronger
threat model, this equates to only 8 bits of effective security, significantly weaker than the 24 bits
for other classes of memory error. By using a dynamic mapping, FRP maintains the full (52 bit)
security regardless of the error class.
Finally, our approach has similar properties to capability-based systems, including CHERI [55]

and Capstone [57]. These systems replace the notion of addresses and pointers with capabilities,
which can be thought of as a permission to access (or do some other operation on) some underlying
object. Capability systems carefully track provenance as well as protect against capability forging or
tampering. Like 𝐶3, FRP offers similar protections but by using a probabilistic-based methodology.
Traditional capability-based systems, such as CHERI [55], require a fundamental hardware redesign
as well as porting the entire software stack, and hence, do not have compatibility as a goal. In
contrast, FRP is binary-compatible with most existing software, and can be implemented with a
relatively small hardware change in the form of an additional cache. Furthermore, FRP achieves
much stronger protection compared with other probabilistic-based capability systems such as 𝐶3.

7 CONCLUSION
Over the decades there has been significant research into memory error defenses. Despite this, there
is no universally adopted (“always-on”) solution, as of the time of writing. The underlying problem
is that each solution has inherent limitations and trade-offs, especially in relation to performance,
compatibility, and security (bypass resistance). Our view is that recent hardware and entropy-based
defenses (such as pointer randomization, authentication, or encryption) are the most promising in
terms of performance and compatibility. However, the effective security of these existing defenses
is still relatively low (e.g., 24 bits), already leading to some practical bypass attacks, especially
against stronger threat models that can retry (“brute force”) attacks. Experience has shown that
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such attacks are not unrealistic, meaning that even stronger defenses are needed in order to provide
meaningful security.

In this paper, our aim was to defend against even stronger attack models, including the powerful
ability to repeat attack attempts. Our approach was to design a new pointer encoding that is
strongly decoupled from the underlying memory address, meaning that the pointer values can be
fully randomized without affecting the underlying layout of objects within memory—a.k.a. Fully
Randomized Pointers (FRP). Essentially, the FRP approach is to represent pointers as (cryptographi-
cally secure) random numbers. We show that the FRP encoding is very difficult to bypass, since it
removes the ability to predict the value of target pointers necessary in order to execute a successful
attack. Furthermore, the very high degree of randomization counters any attempt to “brute force”
the necessary value. We evaluate our design against a strong-yet-realistic attacker model, and show
that our approach has a very high attack resistance and cannot be easily bypassed.
We have implemented FRP in the form of a software prototype (BlueFat) as well as a hard-

ware simulation (GreenFat). BlueFat is built on top of a Dynamic Binary Instrumentation (DBI)
framework, allowing for encoded pointers to be decoded and checked on-the-fly. We show that
BlueFat provides strong security and is highly compatible, despite using a radically different
pointer encoding, and has comparable performance to existing DBI-based memory error detection
tools. For general purpose use of FRP, we also evaluate a proof-of-concept hardware simulation
(GreenFat) based on a modified load-store pathway. This allows for a hardware implementation
of the cache, resulting in a practical performance overhead of 8.46%
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