
Providing High-Performance Execution with a
Sequential Contract for Cryptographic Programs

Ali Hajiabadi
National University of Singapore

Trevor E. Carlson
National University of Singapore

ABSTRACT

Constant-time programming is a widely deployed approach
to harden cryptographic programs against side channel at-
tacks. However, modern processors violate the underlying
assumptions of constant-time policies by speculatively exe-
cuting unintended paths of the program.
In this work, we propose Cassandra, a novel hardware-

software mechanism to protect constant-time cryptographic
code against speculative control flow based attacks. Cassan-
dra explores the radical design point of disabling the branch
predictor and recording-and-replaying sequential control
flow of the program. Two key insights that enable our design
are that (1) the sequential control flow of a constant-time pro-
gram is constant over different runs, and (2) cryptographic
programs are highly looped and their control flow patterns
repeat in a highly compressible way. These insights allow
us to perform an offline branch analysis that significantly
compresses control flow traces. We add a small component
to a typical processor design, the Branch Trace Unit, to store
compressed traces and determine fetch redirections accord-
ing to the sequential model of the program. Moreover, we
provide a formal security analysis and prove that our method-
ology adheres to a strong security contract by design. Despite
providing a higher security guarantee, Cassandra counter-
intuitively improves performance by 1.77% by eliminating
branch misprediction penalties.

1 INTRODUCTION

Protecting cryptographic programs has always been a major
concern since they are the primary secret processing pro-
grams. While cryptographic schemes provide strong secu-
rity levels to prevent secret extraction through cryptanalysis,
their implementations are still vulnerable to various side
channel attacks. Constant-time programming is a widely de-
ployed approach to protect cryptographic programs. Constant-
time principles mandate the absence of secret dependent con-
trol flow and data flow. In other words, the dynamic control
flow and data flow of the program must be independent of
the confidential inputs of the program [2].

Unfortunately, modern processors violate constant-time
principles which assume instructions are executed sequen-
tially (i.e., sequential executionmodel). Speculative execution
attacks have demonstrated the ability to leak secrets from
verified constant-time programs by transiently declassifying
and leaking confidential states [48, 58]. Existing defenses
to protect constant-time programs, both on the hardware
level [12, 14, 43] and the software level [11, 34, 48, 49, 55, 61],
deploy a restrictive approach to prevent or limit specula-
tive execution of instructions, diminishing the benefits of
speculative, out-of-order processors.
While existing CPUs can efficiently mitigate data flow

speculation for cryptographic programs [34], addressing the
speculation that arises from the control flow of the program is
still a major issue. We investigate a new, radical design point
to address this problem, namely recording-and-replaying;
this mechanism records the sequential control flow trace of
the program and redirects the fetch based on these traces,
instead of prediction. This design ensures that fetch is always
redirected according to the sequential execution model of the
program, as assumed by constant-time policies, eradicating
the dangers of control flow misspeculations. However, this
idea has two major challenges:

Challenge 1: Dynamic control flow traces change based
on the program input; pre-computing control flow traces
for all possible inputs in general-purpose applications is
challenging, if not infeasible.
Challenge 2: Control flow traces can be huge and com-

municating and loading these traces in the processor would
incur high overheads. In the worst case, it can show similar
slowdown as a processor without a branch predictor which
stalls fetch until the branch condition is resolved.

However, we discuss two key insights from constant-time
cryptographic programs that overcome these challenges:
Insight 1: Sequential control flow of constant-time pro-

grams are constant w.r.t. confidential inputs. In addition,
public parameters of cryptographic programs are specified
by standards or determined by the algorithm (e.g., the key
length, number of encryption rounds, etc.). Hence, reusing
just a single control flow trace over different runs of a pro-
gram can be sufficient. However, control flow traces can
still reach up to millions of decisions per static branch. As

1

ar
X

iv
:2

40
6.

04
29

0v
1

 [
cs

.C
R

]
 6

 J
un

 2
02

4

mentioned in Challenge 2, storing and communicating a
huge number of decisions per branch is not efficient, and a
solution is needed.

Insight 2: Most operations in cryptographic programs are
wrapped in loops and they repeat the same operations over
time. Detecting the repeating patterns of branch decisions
would help to allow the storage of smaller, compressed pat-
terns, and once loaded, the processor can replay the same
pattern in the future.

In this paper, we proposeCassandra, a defense for crypto-
graphic programs against control flow based Spectre attacks.
To the best of our knowledge, Cassandra is the first defense
that exploits the key characteristics of cryptographic appli-
cations, and counterintuitively, improves performance. The
main artifacts of Cassandra are twofold:

(1) Branch analysis (§4).We perform an extensive branch
analysis of cryptographic programs and devise a trace com-
pression technique that significantly compresses branch traces.
Our approach is similar to DNA sequencing techniques that
detect frequent and unknown patterns of nucleotides in large
DNA sequences [33]. The average size of our new traces is
21 entries and less than 10 for most applications in BearSSL
library [3].

(2)Microarchitecture (§5). We propose a new design that
(1) communicates compressed branch traces to the processor,
and (2) uses branch traces for fetch redirections and avoids
accessing and updating the branch predictor. We add a small,
new component to the frontend, called the Branch Trace
Unit (BTU), that efficiently stores and decompresses dynamic
branch information.
In addition, we provide a formal security analysis to ex-

press Cassandra’s security guarantees (§6). We build our
formalization on top of hardware-software contracts [16]
and prove security for a contract that only leaks constant-
time observations in a sequential execution model. Our main
intuition is to design new hardware with a strong contract
in mind and then optimize the design for high efficiency.
We demonstrate that the combination of our key insights
from cryptographic programs and trace compression enables
efficient implementation of Cassandra’s semantics.
The main contributions of Cassandra are as follows:

• Mitigating control flow based misspeculation in cryp-
tographic code, while improving performance by 1.77%
compared to an unprotected out-of-order processor;
• A branch trace compression technique, inspired by DNA

sequencingmethods, that significantly compresses traces;
• An efficient design of Cassandra that communicates
branch traces with the hardware and enforces branch
directions of a sequential contract;
• Providing a formal security analysis and proving Cassan-
dra’s security for a constant-time sequential contract.

1 uint8 decrypt(uint8 m, uint8 *skey)
2 {
3 uint8 state = m; //m and state are secret
4 for (int i = 0; i < num_rounds; i++)
5 state = decrypt_ct(state, skey[i]);
6 uint8 d = declassify(state); //d is public
7 return leak(d);
8 }

Listing 1: Constant-time decryption of m. Misspecula-

tion and skipping the for loop can directly leak the

secret m.

2 BACKGROUND

2.1 Constant-Time Programming

Modern cryptographic programs deploy constant-time poli-
cies to harden programs against traditional side channels that
exploit secret dependent behaviors of the program. Constant-
time principles satisfy confidential input indistinguishability
to remove timing, cache, and memory side channels [2].
Executing a given program 𝑝 with input 𝑥 generates the

attacker-visible execution trace 𝜃 :
𝜃 (𝑝 (𝑥)) = [O0 · O1 · . . . · O𝑛]

where O𝑖 represents the adversary’s observation. Constant-
time principles assume that the adversary can observe the
program counter, memory access patterns, and operands of
variable-time instructions [2].

Definition 1 (Constant-time programs). Given a program p
with confidential input 𝑥 and public input𝑦, the observations
of the execution are represented as 𝜃 (𝑝 (𝑥,𝑦)) = [O0 · . . . ·O𝑛].
Constant-time principles require that:
∀𝑦 ∈ 𝐷𝑎𝑡𝑎𝑝𝑢𝑏,∀𝑥, 𝑥 ′ ∈ 𝐷𝑎𝑡𝑎𝑐𝑜𝑛𝑓 : 𝜃 (𝑝 (𝑥,𝑦)) ≃ 𝜃 (𝑝 (𝑥 ′, 𝑦))

where≃ denotes observation indistinguishability and𝐷𝑎𝑡𝑎𝑝𝑢𝑏
and 𝐷𝑎𝑡𝑎𝑐𝑜𝑛𝑓 refer to the input space of public and confiden-
tial values, respectively [2].

Constant-time policies provide security for a sequential
executionmodel, i.e., all instructions are executed in a sequen-
tial order specified by the architectural states of the program.
However, Spectre-type attacks have demonstrated the ability
to leak secrets from constant-time programs in modern pro-
cessors when using a speculative executionmodel [48, 49, 58].
For example, Listing 1 shows a constant-time decryption of
confidential input m. Sequential execution of the code dic-
tates that after finishing all rounds of the decryption the
secret state is declassified (line 6) and can legally leak (i.e.,
it is considered public after decryption, line 7). However, in
a speculative execution model, the for loop can be skipped
due to misspeculation and directly leak the confidential in-
put m before executing all decryption rounds, and violate
constant-time policies of the program.

2

2.2 Speculation Primitives

Speculative execution of programs can be triggered through
different sources (referred to as speculation primitives) in
modern out-of-order (OoO) processors. Speculation prim-
itives can be categorized into control flow and data flow
primitives [7, 10].
Control flow speculation. The Branch Prediction Unit

(BPU) in modern processors predicts the next PC upon con-
trol flow instructions and fetches instructions speculatively
from the predicted path. Control flow prediction allows the
processor to avoid frontend stalls for cases where resolving
control flow conditions depends on long latency operations.
Prior attacks have demonstrated leaks via three main com-
ponents in the BPU:

PHT The Pattern History Table (PHT) predicts conditional
direct branches (e.g., cmp [reg], 0; je L) with two
possible outcomes of Taken and Not-Taken. Spectre-
v1 [24] is an example of exploiting the PHT primitive.

BTB The Branch Target Buffer (BTB) predicts indirect branches
(e.g., jmp [reg]) to determine the target address of
next instruction. Spectre-v2 [24] is an example of
exploiting the BTB primitive.

RSB The Return Stack Buffer (RSB) predicts the target ad-
dress of return instructions. While returns are also
considered to be indirect branches, most processors
use RSB to determine return addresses. Spectre-RSB [25]
is an example of exploiting the RSB primitive.

Throughout this paper, we refer to all control flow instruc-
tions (direct, indirect, and return) as branches.

Data flow speculation. Modern processors deploy mech-
anisms for speculative execution of loads:

STL Store-to-load forwarding (STL) allows a load to for-
ward data from a prior same-address store before
all prior stores are resolved, without sending a re-
quest to the memory. Spectre-v4 [18] is an example
of exploiting the STL primitive.

PSF Predictive store forwarding (PSF) allows a younger
load to forward data from an unresolved store before
the load and store addresses are resolved. Spectre-
PSF [9] is an example of exploiting this primitive.

Mitigating control flow speculation primitives poses higher
overheads compared to data flow primitives. Experiments
from Mosier et al. [34] show that naively addressing data
flow speculation by setting the SSBD control bit [20] in exist-
ing Intel CPUs incurs negligible performance overhead (less
than 1% when no other compiler mitigation like SLH [8] or
retpoline [51] is enabled for control flow speculation).

2.3 Evolution of Spectre Defenses

Early defenses for speculative execution attacks focused on
data caches as the transmission channel of Spectre-v1 [23,
36, 41, 42, 57]. More comprehensive solutions, like STT [59]
and NDA [56], proposed secure speculation mechanisms to
prevent the leaks from speculatively loaded data via a more
comprehensive list of transmission channels (i.e., sandboxing
policy). These solutions implement dynamic taint tracking to
restrict the execution or data propagation of the instructions
that are tainted by speculatively loaded data. While this
approach protects sandboxed programs (original Spectre-
v1 [24]), they fail to protect constant-time programs, where
secrets are loaded non-speculatively (see line 3 in Listing 1).
Recent Spectre defenses for constant-time programs ex-

tend prior solutions to protect non-speculative secrets as
well [12, 14, 31, 43]. For example, SPT [12] extends the taint
tracking mechanism of STT and assumes all data in regis-
ters and memory are tainted unless they leak during the
non-speculative, sequential execution of the program which
means they are declassified intentionally and can be un-
tainted. Most proposals for constant-time programs increase
the performance overhead compared to sandboxed cases
since they have no other choice than restricting the execu-
tion for the instructions that are actually processing secrets,
as seen in cryptographic applications. Our goal is to pro-
tect Spectre-type gadgets in cryptographic code, and to the
best of our knowledge, our approach presented in this pa-
per is the first defense that exploits key characteristics of
constant-time cryptographic programs to improve perfor-
mance compared to an unprotected baseline, while adhering
to a strong sequential security guarantee.

3 THREAT MODEL

Cassandra exclusively protects Spectre-type gadgets in
constant-time cryptographic code as the primary programs
processing secrets. Cassandra does not provide protec-
tion for software isolation (i.e., sandboxing policy). Exist-
ing lightweight process isolation techniques (e.g., DyPrIs for
clouds [45] and Site Isolation for browsers [38]) can prevent
unintended transient leaks of non-crypto programs.
Meltdown-type attacks (e.g., Meltdown [29], LVI [53],

Foreshadow [52], andMDS [6, 44, 54]) are out of scope. These
attacks exploit the transient execution upon exceptions and
CPU faults before they are handled, which are efficiently
mitigated in recent CPUs via microcode updates [19].

4 BRANCH ANALYSIS OF

CRYPTOGRAPHIC PROGRAMS

In this section, we investigate the practicality of a record-
and-replay solution for cryptographic programs. to address
control flow speculation. In §4.1, we discuss our key insights

3

enabling our proposed defense, and in §4.2, we detail our
branch analysis.

4.1 Key Insights

We discuss two key insights from constant-time crypto-
graphic programs.

Insight 1: Sequential control flow of constant-time cryp-
tographic programs is a property of the algorithm and its
implementation, and is known before execution.

As we discussed in §2.1, constant-time principles assume
that the entire control flow trace and memory addresses are
leaked [2]. Hence, the dynamic control flow of the program is
required to be independent from confidential inputs. On the
other hand, public parameters of cryptographic programs
are specified by standards or determined by the underlying
scheme and its implementation, e.g., the key length, array
sizes, encryption rounds, etc. As a result, the sequential and
dynamic control flow of these programs is known before
execution and does not change during runtime. This en-
ables us to pre-compute sequential branch traces and enforce
them during runtime, instead of using the BPU to predict
the branch directions.
While branch traces of cryptographic programs can be

computed before execution, they can still be huge and incur
penalties to load them in the CPU. Our Insight 2 enables us
to significantly compress the branch traces; fitting the entire
trace of most branches in a single entry of a small structure
in the CPU.
Insight 2: Sequential control flow of constant-time crypto-
graphic programs is highly regular and looped, allowing to
significantly compress them.

Most operations and transformations of constant-time
cryptographic programs occur in loops (like Listing 1); Def-
inition 1 allows one to wrap the operations in loops if the
loop count is public. Hence, this insight enables us to detect
the repeating patterns of each branch and only communicate
this pattern with the CPU to repeatedly replay.

4.2 Detailed Branch Analysis

In this section, we investigate branches in different constant-
time cryptographic programs from BearSSL library [3]. Note,
that we consider all types of branches: conditional direct
branches, unconditional indirect branches, returns, etc. To
collect branch traces, we use Intel Pin [32] and dump the
branch target at each execution of a branch. Figure 1 shows
an overview of our branch analysis steps. As the first step
(step 1 in Figure 1), we collect the raw traces for each static
branch. In this trace, we capture all the target PCs of a branch
(i.e., the branch outcome) in the order they are executed (for

Executable

Raw Traces

PC𝟏 PC𝟐 !!! PC𝒏

Aggregation

Vanilla Traces

PC1×𝒄𝟏 !!! PCn×𝒄𝒏

k-mers Traces

𝒑𝟏×𝒄𝟏 !!! 𝒑𝒎×𝒄𝒎

𝒑𝟏 = {PC𝒊×𝒄𝒊 &&& PC𝒋×𝒄𝒋}
&&&

𝒑𝒎 = {PC𝒌×𝒄𝒌 &&& PC𝒍×𝒄𝒍}

k-mers
Counting

Branch Trace
Collection

1

2 3

Figure 1: Branch analysis overview in Cassandra.

Traces are per static branch.

not-taken cases, we dump the next PC). Here is an example
of raw trace of a loop branch 𝐵𝑅0 with a loop count of four:

𝑃𝐶1 · 𝑃𝐶1 · 𝑃𝐶1 · 𝑃𝐶1 · 𝑃𝐶0

where 𝑃𝐶1 is the taken path of the branch and 𝑃𝐶0 is the
next PC after 𝐵𝑅0 (i.e., the not-taken path).
The next step of the analysis builds the vanilla traces

which is a more compact format of the raw traces (step 2).
In this format, we aggregate the branch outcomes that are
repeating and replace them with the repeated outcome PC
and number of repetitions (i.e., its count). Here is the vanilla
trace of branch 𝐵𝑅0 that we discussed earlier:

𝑃𝐶1 × 4 · 𝑃𝐶0 × 1
Vanilla traces are the baseline traces that we use for anal-

ysis and compression. Table 1 shows the average and max-
imum size of the vanilla traces in BearSSL programs. The
results show that the average size of vanilla traces per branch
is 384,947 and the maximum size is 51,538,4101. Communi-
cating these large traces to the hardware can incur high
efficiency overheads. However, we expect these traces to be
represented by fewer elements according to Insight 2; we
only need to detect the repeating outcome patterns of each
static branch. We aim to devise a generic approach that can
detect the repeating and unknown patterns in vanilla traces.

Question: How does one detect the repeating and un-
known patterns and their frequency in a vanilla trace?

Detecting repeating, unknown patterns in large traces has
been the focus of many domains, like database mining [1]
and DNA sequencing [4, 33]. For example, two interesting
problems in DNA sequencing are finding tandem repeats [4]
and 𝑘-mers counting [33]. A tandem repeat in a DNA se-
quence is two or more contiguous copies of a pattern of
nucleotides. Finding tandem repeats has applications like
individual identification, tracing the root of an outbreak, etc.
𝑘-mers are also referred to a substring of size 𝑘 of a given
DNA sequence. Counting the frequency of 𝑘-mers is useful
in genome assembly, sequence alignment, etc.

4.2.1 𝑘-mers Counting and Traces. In this work, we deploy
the 𝑘-mers counting technique for pattern repeat detection
1Here, size refers to the number of elements in a trace, not storage size.

4

Algorithm 1: 𝑘-mers Branch Compression
Input: DNA sequence 𝑠𝑒𝑞,𝑚𝑎𝑥_𝑘
Output: 𝑘-mers trace 𝐾 and pattern set 𝑃

1 𝑢𝑛𝑢𝑠𝑒𝑑_𝑙𝑒𝑡𝑡𝑒𝑟𝑠 ← 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡 \ unique_letters(𝑠𝑒𝑞)
2 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑒𝑛 ←∞
3 while

len(𝑠𝑒𝑞) < 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑒𝑛 ∧ Size(𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑡_𝑘𝑚𝑒𝑟𝑠) <𝑚𝑎𝑥_𝑘
do

4 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑒𝑛 = len(𝑠𝑒𝑞)
5 for 𝑘 ← 2 to𝑚𝑎𝑥_𝑘 do

6 𝑓 𝑟𝑒𝑞𝑠 ← count_kmers(𝑠𝑒𝑞, 𝑘)
7 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒.clear()
8 foreach 𝑘𝑚𝑒𝑟 ∈ 𝑓 𝑟𝑒𝑞𝑠 do
9 if 𝑓 𝑟𝑒𝑠 [𝑘𝑚𝑒𝑟] > 1 ∧ Size(𝑘𝑚𝑒𝑟) ≤ 𝑚𝑎𝑥_𝑘 then

10 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 [𝑘𝑚𝑒𝑟] ←
(𝑘 × 𝑓 𝑟𝑒𝑞𝑠 [𝑘𝑚𝑒𝑟])/𝑙𝑒𝑛 (𝑠𝑒𝑞)

11 end

12 end

13 end

14 𝑚𝑜𝑠𝑡_𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑡_𝑘𝑚𝑒𝑟 ← max(𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒)
15 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑡_𝑘𝑚𝑒𝑟𝑠.insert(𝑚𝑜𝑠𝑡_𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑡_𝑘𝑚𝑒𝑟)
16 𝑙𝑒𝑡𝑡𝑒𝑟 ← 𝑢𝑛𝑢𝑠𝑒𝑑_𝑙𝑒𝑡𝑡𝑒𝑟𝑠.pop()
17 𝑠𝑒𝑞.replace_and_merge(𝑚𝑜𝑠𝑡_𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑡_𝑘𝑚𝑒𝑟, 𝑙𝑒𝑡𝑡𝑒𝑟)
18 end

19 𝐾 ← 𝑠𝑒𝑞

20 𝑃 ← 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑡_𝑘𝑚𝑒𝑟𝑠

(step 3). The reason for this choice is that our experiments
with the state-of-the-art tools show that 𝑘-mers counting
tools are much faster to analyze large traces (up to millions)
compared to others (e.g., TRF tool [4] for tandem repeat
finding) and also they are more configurable. We use scikit-
bio Python library [46] in our analysis which allows us to
define a custom alphabet for DNA sequences, while most
tools only consider four letters A, C, G, T; some branches
can have more than four outcomes (e.g., a return can jump
to more than four callsites). Additionally, 𝑘-mers counting
tools allow configuring the algorithm parameters which is
useful to enforce starting with smaller and more frequent
patterns and then continuing to larger patterns if necessary.
This is beneficial to enable minimal storage.

Before 𝑘-mers counting, we transform vanilla traces to
their equivalent DNA sequences. For example, vanilla trace
of branch 𝐵𝑅1 of this form:

𝑃𝐶0 × 2 · 𝑃𝐶1 × 5 · 𝑃𝐶0 × 2 · 𝑃𝐶1 × 5 · 𝑃𝐶2 × 3
is transformed to this DNA sequence: 𝐴𝐶𝐴𝐶𝐺 .
Algorithm 1 shows a simplified version of the technique

that we use to build 𝑘-mers traces. The inputs of the algo-
rithm are (1) the equivalent DNA sequence of a vanilla trace
and (2)𝑚𝑎𝑥_𝑘 which specifies the maximum size of repeat-
ing patterns that we consider. The core of the algorithm is
the 𝑐𝑜𝑢𝑛𝑡_𝑘𝑚𝑒𝑟𝑠 procedure (line 6) that takes 𝑘 and DNA
sequence 𝑠𝑒𝑞 as input and builds a frequency map of all the

Table 1: Branch analysis of BearSSL programs.𝑚𝑎𝑥_𝑘

is set to 16 in our analysis. Note, that 𝑘-mers trace size
is the sum of trace size and its pattern set size.

Program
Vanilla trace size 𝑘-mers 𝑘-mers

trace size compression rate
Avg Max Avg Max Avg Max

RSA-2048 221,619.8 24,340,548 37.0 2,733 18,677.2 1,622,703.2
EC_c25519 965,261.6 51,538,410 7.9 134 321,607.7 17,179,470.0
DES 1,483,319.9 24,000,000 7.1 34 494,420.8 8,000,000.0
AES-128 161.5 1,530 6.5 31 43.8 510.0
ChaCha20 175.7 752 34.9 561 40.9 250.7
Poly1305 45.0 600 11.2 134 9.4 200.0
SHA-256 3,350.5 31,736 10.7 70 1,077.6 10,578.7
All 384,946.7 51,538,410 21.2 2,733 106,555.4 17,179,470.0

existing 𝑘-mers and their frequency. Algorithm 1 continues
compressing the sequence with the most frequent pattern
(i.e., has the highest coverage in the sequence, lines 14-17)
until one of the two termination conditions occur (line 3):

(1) The length of the compressed sequence stops reducing;
(2) The size of the frequent patterns set has reached𝑚𝑎𝑥_𝑘 .

Finally, the output of the algorithm is the compressed DNA
sequence 𝐾 and the set of detected patterns 𝑃 (lines 19-20).
As the final step, we re-transform the DNA 𝑘-mers pat-

terns back to the PC traces. We refer to the result as 𝑘-mers
representation; 𝑘-mers representation consists of the 𝑘-mers
trace 𝐾 and its transformed pattern set 𝑃 . For example, here
is the 𝑘-mers trace of branch 𝐵𝑅1 that we discussed earlier:

𝑝0 × 2 · 𝑝1 × 1
where the pattern set is:

𝑃 = {𝑝0 : 𝑃𝐶0 × 2 · 𝑃𝐶1 × 5, 𝑝1 : 𝑃𝐶2 × 3}
Table 1 shows the average and maximum size of 𝑘-mers

representation (sum of trace 𝐾 size and pattern set 𝑃 size) for
BearSSL programs. The average 𝑘-mers size per static branch
is 21 and the maximum size is 2,733. Compared to vanilla
trace sizes, our compression leads to an average compression
rate of 106,555× and a maximum rate of 17,179,470×. Note,
that the results presented in Table 1 exclude the branches
that always have a single target (i.e., their vanilla trace size
is already 1).
Example: Toy-AES-2. Figure 2 illustrates the Cassan-

dra branch analysis for a toy example, Toy-AES-2 program,
that encrypts data with key and plaintext length of two in
three encryption rounds. As the first step, raw traces are
collected per static branch (step 1). For example, BR6 is a
loop branch with a loop count of 2: it executes BR7 twice and
then executes the fall-through path, PC7. In the next step,
vanilla traces are generated (step 2). After transforming
vanilla traces into their equivalent DNA sequences (step 3),
we perform our 𝑘-mers branch compression technique and
generate the 𝑘-mers traces and pattern sets (step 4).

5

k-mers
Counting

BR6: T
BR7: A
BR2: G	×	2
BR3: G
BR1: C	×	2
BR4: A
BR5: C

BR6: AC
BR7: A
BR2: CTCT
BR3: G
BR1: TGTG
BR4: A
BR5: C

DNA Sequences

4

BR6: BR7	$	BR7	$	PC7
BR7: PC3	$	PC3	
BR2: BR3	$	BR3	$	BR3	$	PC4	$	BR3	$	BR3	$	BR3	$	PC4
BR3: PC1	$	PC1	$	PC1	$	PC1	$	PC1	$	PC1	
BR1: BR2	$	BR2	$	BR2	$	BR5	$	BR2	$	BR2$	BR2	$	BR5
BR4: PC1	$	PC1	
BR5: BR6	$	BR6	

Raw Traces

BR6: BR7	×	2 $	PC7	×	1
BR7: PC3	×	2	
BR2: BR3	×	3 $	PC4	×	1 $	BR3	×	3 $	PC4 ×	1
BR3: PC1	×	6
BR1: BR2	×	3 $	BR5	×	1 $	BR2	×	3 $	BR5 ×	1
BR4: PC1	×	2
BR5: BR6	×	2

Vanilla Traces

k-mers Pattern Sets
BR6: {T: BR7	×	2 $	PC7	×	1}
BR7: {A: PC3	×	2}
BR2: {G: BR3	×	3 $	PC4	×	1}
BR3: {G: PC1	×	6}
BR1: {C: BR2	×	3 $	BR5	×	1}
BR4: {A: PC1	×	2}
BR5: {C: BR6	×	2}

Branch
Trace

Collection

1

Aggregation 2

DNA
Encoding

3

k-mers Traces
PC1

BR1
PC2
PC3
BR2
BR3

PC4
BR4

BR5
PC5
PC6
BR6
BR7
PC7

void Sbox(q){
//no branches
return;

}
void encrypt(skey, q){

for (i=0; i<3; i++){
Sbox(q);
//shiftRows,mixCols,AddKey

}
Sbox(q);
//shiftRows,AddKey
return;

}
void main(){

for (i=0; i<2; i++)
c[i] = encrypt(skey, q[i]);

}

Toy-AES-2

Figure 2: Cassandra branch analysis workflow example. Note, that the branches are analyzed separately and

traces are generated per static branch; DNA sequences of branches are independent from each other.

Algorithm 2: Trace Generation Procedure
Input: Input binary 𝑏𝑖𝑛_𝑖𝑛, 𝑖𝑛𝑝1, 𝑖𝑛𝑝2
Output: Updated binary 𝑏𝑖𝑛_𝑜𝑢𝑡 with traces and hint information

1 𝑡𝑟𝑎𝑐𝑒𝑠.clear()
2 𝑢𝑛𝑖𝑞𝑢𝑒_𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 ← detect_static_branches(𝑏𝑖𝑛_𝑖𝑛, 𝑖𝑛𝑝1) A
3 foreach 𝑏𝑟𝑎𝑛𝑐ℎ ∈ 𝑢𝑛𝑖𝑞𝑢𝑒_𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 do
4 [𝐾1, 𝑃1] ← generate_kmers_traces(𝑏𝑖𝑛_𝑖𝑛, 𝑖𝑛𝑝1)
5 [𝐾2, 𝑃2] ← generate_kmers_traces(𝑏𝑖𝑛_𝑖𝑛, 𝑖𝑛𝑝2)
6 𝑖𝑠_𝑠𝑡𝑟𝑒𝑎𝑚_𝑙𝑜𝑜𝑝 ← diff (𝐾1, 𝐾2)
7 if ¬𝑖𝑠_𝑠𝑡𝑟𝑒𝑎𝑚_𝑙𝑜𝑜𝑝 then

8 𝑡𝑟𝑎𝑐𝑒𝑠.insert([𝑏𝑟𝑎𝑛𝑐ℎ,𝐾1, 𝑃1])
9 end

10 end

11 𝑏𝑖𝑛_𝑜𝑢𝑡 ← embed_information(𝑏𝑖𝑛_𝑖𝑛, 𝑡𝑟𝑎𝑐𝑒𝑠)
12 Procedure generate_kmers_traces(𝑏𝑖𝑛, 𝑖𝑛𝑝)
13 𝑅 ← collect_raw_traces(𝑏𝑖𝑛_𝑖𝑛, 𝑖𝑛𝑝1) B
14 𝑉 ← transform_to_vanilla_traces(𝑅) C
15 𝑠𝑒𝑞 ← transform_to_DNA(𝑉1) D
16 [𝐾, 𝑃] ← kmers_compression(𝐷𝑁𝐴_𝑠𝑒𝑞,𝑚𝑎𝑥_𝑘) E
17 return [𝐾, 𝑃]

4.3 Trace Generation Procedure

In this section, we provide an automatic procedure to gen-
erate branch traces for a given binary of a constant-time
cryptographic application. Algorithm 2 shows the steps of
this procedure (steps A - E).

Step A identifies all static branches that appear during the
execution (line 2) and stores them in the 𝑢𝑛𝑖𝑞𝑢𝑒_𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠
set. Steps B - E steps generate 𝑘-mers traces for each branch,
as we explained in §4.2.

Note, that in lines 4 and 5, we generate 𝑘-mers traces twice
to detect the stream loop. Stream ciphers, like ChaCha20,
accept input plaintexts of an arbitrary length. The program
processes each block of the plaintext in a loop (i.e., the stream
loop). The vanilla trace of the stream loop is in the form of
𝑃𝐶1×𝑛 ·𝑃𝐶0×1, where 𝑛 is the length of the input. However,

all the other branches arewrapped inside this loop and repeat.
Hence, they have valid 𝑘-mers traces. For the stream loop,
we stall the fetch until the stream loop resolves2; this incurs
negligible penalty since it is not a long latency branch.

Finally, once all branches are analyzed, the input binary is
instrumented with the 𝑘-mers traces and their hint informa-
tion to facilitate their access during execution (line 13, see
§5.2 for the details of trace representations and their commu-
nication with the hardware). We evaluate the analysis time
of the trace generation procedure in §7.5.

5 DESIGN OF CASSANDRA

To implement Cassandra in hardware, we need to (1) com-
municate the branch traces prepared by our analysis with
the hardware on demand, and (2) design a specialized unit,
called Branch Trace Unit (BTU), in the fetch stage to deter-
mine the branch directions based on the branch traces. BTU
is designed similarly to Trace Caches [39, 40] and Sched-
ule Caches [35] in prior work, with two key differences: (1)
traces are determined before execution in Cassandra and
no dynamic trace selection methodology is required. (2) In
case of a trace miss in the BTU , the frontend is stalled until
the trace becomes available, while prior works would switch
to a normal fetch procedure.
In §5.1, we present an overview of Cassandra design,

and in §5.2 and §5.3, we provide the required details for
Cassandra implementation.

5.1 Overview

Figure 3 shows an overview of the Cassandra microarchi-
tecture. When a branch is fetched, two possible scenarios
occur depending on whether the branch is accompanied by

2In general, if traces are not available for a crypto branch, we redirect fetch
only if the branch direction is resolved.

6

Branch Trace Unit

Trace Cache

Checkpoint Table

Pattern Table

Branch
Prediction Unit

1

 0

Execution

Commit

Fetch + ICache
Decode

Crypto branch

1

2

3

Crypto
fetch flow

Crypto
Commit flow

Non-crypto
fetch flow

Figure 3: Overview of Cassandramicroarchitecture.

Crypto branches do not access or update the BPU.

our hint information (i.e., it is a crypto branch; see §5.2 for
the details of branch hint information), or it is a non-crypto
branch. In the former scenario, the fetch unit queries the BTU
to determine the next PC (step 1), and in the latter scenario,
the BPU predicts the next PC (step 2). Pattern Table and
Trace Cache are the two sub-components of the BTU that (1)
determine the next PC for each branch and (2) keep track
of the progress in the trace. In cases that a trace fits in one
entry of the Trace Cache, it will rotate to keep replaying the
trace. However, if the trace does not fit in one entry then
the head element of the entry is removed when the branch
commits, and the entire entry shifts and prefetches the up-
coming parts of the trace at the back (step 3). Finally, when
a branch misses in the BTU , one of the entries is evicted
and a checkpoint of its progress is taken in the Checkpoint
Table. This checkpoint allows to resume the execution of the
evicted branch when it reappears in the future. In §5.3, we
discuss the details of our microarchitecture.

5.2 Trace Representation and

Communication

Weuse the output of Algorithm 1 to prepare the branch traces.
Traces consist of two parts per static branch: (1) the pattern
set built from the 𝑘-mers patterns 𝑃 , which stores all the
possible branch outcome patterns, and (2) the branch trace
built from the 𝑘-mers trace 𝐾 . Figure 4a shows the structure
of each element in the pattern set. Each pattern element has a
12-bit target offset (the signed difference between the branch
PC and the target PC) and the number of its repetitions (8-
bit). In cases where the number of repetitions exceeds 8 bits,
the element is duplicated in a way that the sum of the two
elements is equal to the original number:

𝛿 (𝐵𝑅0) × 300→ 𝛿 (𝐵𝑅0) × 255 · 𝛿 (𝐵𝑅0) × 45
We use a compact form to store the patterns in cases where
patterns overlap. For example, if two patterns in a trace are
𝐴𝐶𝑇 and 𝐶𝑇𝐴, then the output pattern set is 𝐴𝐶𝑇𝐴.

Figure 4b shows the structure of each element in the
branch trace. The first two components, pattern index and

(b) Trace Element

4-bit 8-bit 16-bit4-bit

Pattern
index

Pattern
size

Pattern
counter

Trace counter

(a) Pattern Element

12-bit 8-bit

𝛿(Target PC) #repetitions

(c) Checkpoint Element

Trace index Latest pattern
counter Latest trace counter

12-bit

8-bit 16-bit

Original pattern
counter Original trace counter

Figure 4: Elements in the Branch Trace Unit (BTU).

Each entry of the Pattern Table, Trace Cache, and
Checkpoint Table, consisting of 16 elements and corre-

sponds to a static branch.

pattern size, specify the corresponding pattern from the pat-
tern set. For example, if the corresponding pattern of a trace
element is 𝐶𝑇 and the entire pattern set is 𝐴𝐶𝑇𝐴, then the
pattern index is 1 (indices start from 0) and the pattern size
is 2. Pattern counter is equal to the sum of the repetitions
of the corresponding pattern elements and the trace counter
specifies the total number of times that the pattern needs to
be repeated before advancing to the next trace element.
A special End of Trace marker is used to denote the end

of each trace. This allows the processor to repeat the trace
whenever it reaches the end of the trace. We store traces in
data pages and embed hints for each static branch:

(1) Single-target mark. A significant portion of branches
always jump to a single target (e.g., "call sbox <pc>"), and
we mark such branches as single-target and do not need to
store and communicate traces for them (e.g., 79% of static
branches in RSA are single-target); we only need to embed
its single target within the hint information (i.e., a PC offset
pointing to the branch’s single target). This implementation
ensures that no BTU resources are used for single-target
branches and no trace miss would occur as well.
(2) Traces Virtual Address offset (Δ). If the branch is

multiple-target, then Δ points to the data page address that
holds branch traces.

(3) Short-trace mark. We mark the branches when their
traces are smaller than 16 (i.e., they fit in one entry of the
BTU). This will allow us to reduce the memory accesses to
bring traces to the core and only repeat the trace once loaded.
Embedding hint information. A general approach to

inform the hardware about the hints is to insert a special hint
instruction before each branch. Hint instructions are only
decoded and do not use the ALUs; prior work has used hint
instructions for x86 [22] and RISC-V [17]. An alternative so-
lution is to re-purpose some of the previously-ignored prefix

7

bytes in x86, like how XRELEASE [30] was implemented, to
embed the hint information for each branch, similar to [62].
Fourteen bits can be sufficient per static branch to embed
single-target mark (1 bit), address offset (12 bits), and short-
trace mark (1 bit). We opt to use the latter solution in this
work because hint instructions still consume critical frontend
resources, even though not executed. Moreover, inserting
hint instructions might not provide backward compatibility
with older processors. However, non-crypto branches do not
need hint information and to avoid the penalties of wait-
ing until the branch is decoded, one possible solution is to
set new status registers that specify PC ranges for crypto
code. This allows for early detection of crypto/non-crypto
branches at the fetch stage (steps 1 and 2 in Figure 3).

5.3 Details of the Microarchitecture

The BTU consists of three main components:
• Pattern Table (PAT) holds the pattern sets of branches and

each entry consists of 16 pattern elements (see Figure 4a),
specified by𝑚𝑎𝑥_𝑘 in Algorithm 1;
• Trace Cache (TRC) holds the branch traces and each entry
consists of 16 trace elements (see Figure 4b);
• Checkpoint Table (CPT) always holds the latest valid po-

sition of the branch trace, i.e., the committed progress of
the trace. Each entry is only one checkpoint element (see
Figure 4c). CPT is stored in data pages which keeps the
checkpoints for all branches to handle the BTU evictions
and interrupts.

In addition, the CPT keeps the original counts of the first
element of the TRC for (head of the trace); this helps the BTU
to insert a refreshed version of the element at the back of
the TRC entry for repetition (see the commit flow for the
details of the CPT updates).

All three tables are direct-mapped tables, indexed with the
branch PC, and they are fully inclusive of each other. The
BTU uses an LRU replacement policy to evict an entry.
Crypto fetch flow. Once a crypto branch is fetched,

the fetch unit queries the BTU to determine the next PC
(step 1 in Figure 3). If the branch is marked as single-target,
then the next PC is already known by the hint information
and there is no need for BTU lookup. For multiple-target
branches, BTU looks up the first element of the TRC to find
the appropriate pattern element in the PAT which provides
the next PC. Upon each BTU lookup the pattern counter of
the first element in the TRC is decremented. If the pattern
counter is zero, then the trace counter is decremented and
the pattern counter is refreshed based on the corresponding
pattern elements. As we will explain in the crypto commit

flow, the first element of the trace is removed only when
the enforced branch direction is committed. Hence, there
is a possibility that the trace counter of the first element is

zero (i.e., we need to advance to the next element) but the
branch is not committed yet. In this case, the BTU needs
to lookup the next element in the TRC entry. In the worst
case that all 16 elements of the TRC are looked up (i.e., trace
counter is zero in all of them), then the BTU waits until the
first element is removed. We did not encounter this scenario
in our simulations since crypto branches are easy to resolve.
Non-crypto fetch flow. For non-crypto branches, we

use the branch predictor to determine the next PC (step 2).
Crypto commit flow. Once a crypto branch commits

(step 3), if the trace counter of the first element in the corre-
sponding TRC entry is zero, then the first element is removed
and all the other elements are shifted. If the branch is marked
as short-trace, a refreshed version of the removed element
is inserted at the back of the entry. However, if the trace is
larger than the TRC entry, we prefetch the next element after
the last element, which brings the upcoming elements to the
TRC before they are needed. If the last element is an End of
Trace marker, we restart from the beginning of the trace.

Additionally, when a crypto branch commits, the latest
pattern counter and trace counter are checkpointed in the
CPT . This allows the processor to resume the executionwhen
it is interrupted (e.g., in context switches). Trace index in the
checkpoint element (see Figure 4c) points to the latest trace
element that the execution needs to resume from.

Trace evictions in the BTU . Once a trace is evicted from
the TRC, the corresponding entries in the PAT and CPT are
evicted as well. Before the eviction of the CPT entry, the
checkpoint element is updated with the latest counters and
trace index and is stored in the memory. This allows the CPU
to resume the execution when the evicted branch reappears
(this can commonly happen in context switches between
different crypto applications that evict each others’ traces).
Recovery for ROB Squashes. While Cassandra guar-

antees no branch mispredictions for crypto branches, ROB
squashes can still occur due to other reasons (e.g., non-crypto
mispredictions, interrupts, and exceptions), and Cassandra
needs to recover in cases where the crypto branches are
squashed. Whenever a crypto branch is squashed, we undo
the actions of the crypto fetch flow; the pattern counter and
trace counter of the first elements are incremented according
to the checkpointed counters in the CPT .

5.4 Discussion

Q1: Is it safe to cache branch traces? BTU only contains
the sequential control flow trace of the program; constant-
time policies allow leaking this trace (i.e., it only depends on
public information) and guarantee that it does not have any
confidential information. Moreover, in §6, we formalize the
BTU similar to caches.

8

Q2: Can non-crypto predictions cause security risks?

Cases that non-crypto branches misspeculatively run non-
crypto code is out of the scope of Cassandra’s protection
(see §3). However, we consider cases that which non-crypto
branches misspuclatively redirect fetch to crypto code. The-
oretically, BTB and RSB speculation primitives can jump to
arbitrary locations, potentially to a crypto target, and force
declassifying secrets before intended. However, exploiting
this vulnerability is impractical in the Cassandra proces-
sor since such attacks usually require one to mistrain the
BPU with legitimate code executions (i.e., crypto predictions)
and later transiently execute through BTB collisions or RSB
overflows. Since Cassandra never accesses or updates the
BPU for crypto branches then it will never contain crypto
targets. As a conservative measure, we envision performing
an integrity check upon non-crypto predictions and avoid
speculative fetch redirections if the predicted target is a
crypto instruction, similar to CFI-informed speculations [26].
A global control bit can be set by the cryptographic pro-
grams to enable integrity checks when they start executing
and disable it when the execution terminates (similar to the
SSBD [20]).

Q3: Does Cassandra handle branches influenced by

public parameters? As we discussed in §4.1, most crypto
branches that are influenced by public parameters are spec-
ified by standards and underlying algorithms and do not
change during execution. Hence, Cassandra would still
generate traces for such branches. However, in some cases,
different recommended modes exist for the same application
(e.g., key sizes of 128, 192, and 256 for AES). One possible
solution for these cases is generating separate traces for each
mode and embedding all of them in the binary. A status reg-
ister is set to specify the mode before execution and when
combined with the hint information it allows to access the
proper traces. An alternative solution can be to generate
separate binaries for each mode.

Q4:Whowill provide branch traces andwhen? Traces
need to be re-generated after each compilation if PCs change.
We believe developers can generate traces for recommended
modes (e.g., AES-128/192/256) and embed hint information in
binaries using our automated tool (§4.3). However, users can
also generate traces for legacy binaries of cryptographic pro-
grams they intend to run on a Cassandra-enabled processor
with the same procedure.

6 FORMAL SECURITY ANALYSIS

We provide a formalization of Cassandra on top of prior
work [16] and express its formal security guarantees. Infor-
mally, we first choose a strong security contract and then
ensure that the hardware semantics govern that all produced

observations agree with the contract. We refer to this ap-
proach as contract-informed hardware semantics. While many
works try to infer contracts for a new microarchitecture, we
use contracts for a clean-slate design of our microarchitec-
ture, starting with a strong contract. Our key observations
from cryptographic programs and innovations in trace com-
pression enable an efficient implementation of Cassandra’s
semantics.

§6.1 provides the background on hardware-software con-
tracts [16] as our baseline framework.We specifyCassandra
semantics in §6.2 and prove its security in §6.3.

6.1 Preliminaries on Hardware-Software

Contracts

6.1.1 ISA Language. We rely on the 𝜇Asm language, a small
assembly-like language [16], with the following syntax:

(Expressions) 𝑒 := 𝑛 | 𝑥 | ⊖𝑒 | 𝑒1 ⊗ 𝑒2
(Instructions) 𝑖 := 𝑥 ← 𝑒 | load 𝑥, 𝑒 | store 𝑥, 𝑒

| call 𝑓 | beqz 𝑥, ℓ | ret
(Functions) ℱ := ∅ | ℱ; 𝑓 ↦→ 𝑛

(Crypto Tags) 𝑡 := 𝒸 | 𝜀
(Programs) 𝑝 := 𝑖@𝑡 | 𝑝1; 𝑝2

where 𝑥 ∈ Regs and 𝑛, ℓ ∈ Vals = N ∪ {⊥}. The pc ∈ Regs
refers to a special register that contains the program counter.
In addition, an architectural state 𝜎 = ⟨𝑚,𝑎⟩ consists of
the memory𝑚 : Vals → Vals, and register assignment 𝑎 :
Regs→ Vals. Each instruction has a tag 𝑡 that specifies if it
is a crypto instruction and analyzed by Cassandra; crypto
instructions are tagged as 𝒸 and the rest are untagged (i.e.,
𝜀).

6.1.2 Contracts. A contract governs the attacker-visible ob-
servations of a given program. A contract J · K𝛼𝛽 has two main
components:

• Execution model 𝛼 specifies how state transitions occur.
For example, the sequential model (denoted as seq) eval-
uates the branch condition before transitioning to the
next state, while a speculative model (denoted as spec)
predicts the target.
• Leakagemodel 𝛽 specifies the leakages that are observable
by an attacker. For example, the constant-time leakage
model (denoted as ct) leaks the control flow and memory
addresses.

Contract semantics 𝜏𝑛⇝ is labeled with the observations 𝜏𝑛
when transiting between two architectural states. Observa-
tions 𝜏𝑖 capture leaks via cache and control flow:

CfObs := pc 𝑛 | call 𝑓 | ret 𝑛
MemObs := load 𝑛 | store 𝑛

Obs := MemObs | CfObs
𝜏 := 𝜀 | Obs 𝜏 := ∅ | 𝜏 · 𝜏@𝑡

9

The pc 𝑛, call 𝑓 , and ret 𝑛 observations record the con-
trol flow of the program (denoted as CfObs). The load 𝑛
and store 𝑛 observations record the memory addresses to
capture cache leakage (denoted as MemObs). In addition,
observations are tagged with the same crypto tag of the
instruction that generates the observation.
For a given program 𝑝 and initial architectural state 𝜎0,

the labels of the transitions in run 𝜎0
𝜏1@𝑡1⇝ 𝜎1

𝜏2@𝑡2⇝ . . .
𝜏𝑛@𝑡𝑛⇝ 𝜎𝑛

produce the contract trace J𝑝K(𝜎0) = [𝜏1@𝑡1 · . . . · 𝜏𝑛@𝑡𝑛].
Contract J · Kseqct . This contract specifies the strongest

security guarantee for secure speculation mechanisms (i.e.,
sequential execution model for constant-time leakages). For
example, two rules of J · Kseqct contract are as follows:

(Beqz-Sat)
𝑝 (𝑎(pc)) = beqz 𝑥, ℓ@𝑡 ⟨𝑚,𝑎⟩−→⟨𝑚′, 𝑎′⟩

⟨𝑚,𝑎⟩pc ℓ@𝑡⇝ ⟨𝑚′, 𝑎′⟩
(Load)
𝑝 (𝑎(pc)) = load 𝑥, 𝑒@𝑡 ⟨𝑚,𝑎⟩−→⟨𝑚′, 𝑎′⟩

⟨𝑚,𝑎⟩load 𝑛@𝑡⇝ ⟨𝑚′, 𝑎′⟩
where 𝑛 = J𝑒K(𝑎) is the result of expression 𝑒 given register
assignment 𝑎. J · Kseqct exposes the control flow (pc 𝑛, call 𝑓 ,
and ret 𝑛) and memory addresses (load 𝑛 and store 𝑛) in a
sequential execution model. Note, that the values of loads
and stores are not leaked.

6.2 Cassandra Semantics

In this section, we formalize a contract-informed semantics
for the Cassandra methodology (denoted as {| · |}csd).
As the first step, we define auxiliary contract traces to

enable our contract-informed hardware semantics:

Definition 2 (Crypto control flow trace 𝒞). For a given
program 𝑝 , initial architectural state 𝜎0 and contract J · K𝛼𝛽 ,
𝒞
𝛼
𝛽
(𝑝, 𝜎0) is a subtrace of contract trace J𝑝K𝛼𝛽 (𝜎0) = [𝜏1@𝑡1 ·

. . .·𝜏𝑛@𝑡𝑛], consisting of all crypto control flow observations:
𝒞
𝛼
𝛽
(𝑝, 𝜎0) = [𝜏𝑖@𝒸|1 ≤ 𝑖 ≤ 𝑛, 𝜏𝑖 ∈ CfObs]

We can define the contract memory trace ℳ𝛼
𝛽
(𝑝, 𝜎0) in

the same way where it consists of only memory observations.
Since we target constant-time cryptographic programs, the
𝒞
𝛼
𝛽
(𝑝, 𝜎0) trace is independent from 𝜎0, and we use 𝒞𝛼

𝛽
(𝑝)

for brevity. Note, that 𝒞𝛼
𝛽
(𝑝) (𝑖) refers to the 𝑖𝑡ℎ observation

of the crypto control flow trace of contract J · K𝛼𝛽 .
Hardware configuration. Hardware configuration 𝜔 in

Cassandra consists of (1) the architectural state 𝜎 with the
memory𝑚 and register assignment 𝑎, (2) a global counter
C that counts the number of contract-level control flow ob-
servations, (3) reorder buffer buf with size B, and (4) the
microarchitectural context 𝜇. Microarchitectural context is

Table 2: Signatures of Cassandramicroarchitecture.

Component States Functions

Cache CacheStates access : CacheStates × Vals→ {Hit, Miss}
update : CacheStates × Vals→ CacheStates

Scheduler ScStates next : ScStates→ {Fetch, Execute, Commit}
update : ScStates × Bufs→ ScStates

Trace Cache TcStates access : TcStates × Vals→ {Hit, Miss}
update : TcStates × Vals→ TcStates

the part of the microarchitecture that the attacker can ob-
serve or influence. We use an abstract model for caches and
pipeline scheduler, similar to [16], and also add the trace
cache (specific to the Cassandra semantics, representing
the BTU). Table 2 shows the interface of each component.
For simplicity, we do not include the branch predictor since
it is not accessed or influenced in our semantics.
• Cache: The access function results in a Hit or Miss based
on a given cache state cs and memory address ℓ and the
update function generates a new cache state based on
the input cache state and memory address;
• Scheduler : The next function determines the next proces-

sor step (Fetch, Execute, or Commit) given the scheduler
state sc, and the update function updates the scheduler’s
state based on the reorder buffer state;
• Trace Cache: The access function results in a Hit or Miss

based on a given trace cache state tc and branch PC ℓ . The
update function updates the trace cache state if needed
(e.g., fetching traces for a given branch PC ℓ that misses
in the trace cache).

Moreover, a reorder buffer records the state of in-flight in-
structions. Expressions in a reorder buffer are initially un-
resolved and they can transform to a resolved state after
execution. A data-independent projection of a reorder buffer
is shown as buf ↓ where resolved expressions are replaced
with R and unresolved expressions with UR. In addition to
[16], we define an examine function that outputs R for a
given buf↓ if all expressions are resolved:

examine(buf↓) =
{
R if all expressions in buf↓ are R
UR otherwise

Cassandra semantics uses a binary relation (↣csd) that
maps hardware configurations to their successors:
(Step-Cassandra)

𝑑 = next(sc) sc′ = update(sc, buf ′)
⟨𝑚,𝑎,C, buf , cs, tc⟩ d−→ ⟨𝑚′, 𝑎′,C′, buf ′, cs′, tc′⟩

⟨𝑚,𝑎,C, buf , cs, tc, sc⟩ ↣csd ⟨𝑚′, 𝑎′,C′, buf ′, cs′, tc′, sc′⟩
Given the current hardware state 𝜔 = ⟨𝑚,𝑎,C, buf , cs, tc, sc⟩,
the rule Step-Cassandra finds the next directive 𝑑 via the
next(𝑠𝑐) and takes an appropriate step (formalized through
the fetch, execution, and commit rules) that produces the
new state 𝜔 ′ = ⟨𝑚′, 𝑎′,C′, buf ′, cs′, tc′, sc′⟩.

10

Most transition rules of Cassandra are standard and
the same as the baseline in [16] and not presented here for
brevity. The difference of the Cassandra rules compared to
the baseline occurs in the fetch stage, when a branch hits
in the cache. While the baseline semantics use the Fetch-
Branch-Hit rule to determine the fetch direction via predic-
tion, Cassandra replaces this with a new set of rules that
determines the next PCs based on the crypto tags and the
J · Kseqct contract. For tagged branches, Cassandra uses the
contract traces to determine the fetch direction. The first
rule handles the case that the branch traces miss in the Trace
Cache (our additions are highlighted):

(Fetch-Branch-Hit-Tagged-Trace-Miss)
𝑎′ = apl(buf , 𝑎)

𝑖 = 𝑎′ (pc) 𝑝 (𝑖) = beqz 𝑥, ℓ@𝒸 | call 𝑓@𝒸 | ret@𝒸

|buf | < B access(cs, 𝑖) = Hit update(cs, 𝑖) = cs′

access(tc, 𝑖) = Miss update(tc, 𝑖) = tc′

⟨𝑚,𝑎,C, buf , cs, tc⟩ fetch−−−→ ⟨𝑚,𝑎,C, buf , cs′, tc′⟩

In this rule, the Trace Cache is updated to bring the missed
traces to hit later3. The second rule handles the case that
branch traces hit in the Trace Cache:

(Fetch-Branch-Hit-Tagged-Trace-Hit)
𝑎′ = apl(buf , 𝑎)

𝑖 = 𝑎′ (pc) 𝑝 (𝑖) = beqz 𝑥, ℓ@𝒸 | call 𝑓@𝒸 | ret@𝒸

|buf | < B access(cs, 𝑖) = Hit

update(cs, 𝑖) = cs′ access(tc, 𝑖) = Hit

update(tc, 𝑖) = tc′ ℓ ′ = 𝒞
seq
ct (𝑝) (C)

⟨𝑚,𝑎,C, buf , cs, tc⟩ fetch−−−→ ⟨𝑚,𝑎,C + 1, buf · pc← ℓ ′, cs′, tc′⟩

In this rule, the next PC is determined through contract-level
observations.

While prior rules handle branches that are tagged by Cas-
sandra, the remaining branches (e.g., the stream loop and
non-crypto branches) need to be handled differently. Here,
we assume the fetch is stalled until all instructions in the
reorder buffer are resolved to enforce the J · Kseqct contract (we
use the examine function for this purpose). This choice is to
guarantee safe interactions between crypto and non-crypto
codes, however, processors can deploy more efficient solu-
tions with J · Kseqct guarantees to handle non-crypto branches.
In §7.3, we explore the design idea of combining Cassandra
and ProSpeCT [14].

3In all rules, apl(buf , 𝑎) obtains the new register assignment 𝑎′ after ap-
plying the changes of resolved instructions in buf [16].

(Fetch-Branch-Hit-Untagged-Unresolved)
𝑎′ = apl(buf , 𝑎)

𝑖 = 𝑎′ (pc) 𝑝 (𝑖) = beqz 𝑥, ℓ@𝜀 | call 𝑓@𝜀 | ret@𝜀
|buf | < B access(cs, 𝑖) = Hit

update(cs, 𝑖) = cs′ examine(buf↓) = UR

⟨𝑚,𝑎,C, buf , cs, tc⟩ fetch−−−→ ⟨𝑚,𝑎,C, buf , cs′, tc′⟩
Once the reorder buffer is resolved, we determine the next
PC to fetch based on the specific branch we are handling.
Here, we only show a selected rule for conditional branches.
The rules for calls and returns also use resolved information
to find the next, sequential direction.
(Fetch-Branch-Hit-Untagged-Resolved-Beqz)
𝑎′ = apl(buf , 𝑎) 𝑖 = 𝑎′ (pc) 𝑝 (𝑖) = beqz 𝑥, ℓ@𝜀
|buf | < B access(cs, 𝑖) = Hit update(cs, 𝑖) = cs′

examine(buf↓) = R ℓ ′ =

{
𝑖 + 1 if 𝑎′ (𝑥) ≠ 0
ℓ if 𝑎′ (𝑥) = 0

⟨𝑚,𝑎,C, buf , cs, tc⟩ fetch−−−→ ⟨𝑚,𝑎,C, buf · pc← ℓ ′, cs′, tc′⟩
Since Cassandra exploits contract-level observations of

the J ·Kseqct , it is guaranteed that no branch mispredictions hap-
pen and there is no need to recover the C state for squashing
branches. In addition, we assume that data flow speculation
is disabled and they cannot cause squashes as well (our ex-
periments and prior work [34] show that disabling or naively
addressing data flow speculation for cryptographic programs
incurs negligible overheads).

6.3 Definitions and Theorems

Adversary model. We define the adversary as a projection
function𝒜 that specifies observations from a microarchitec-
tural context. For a given hardware semantics {| · |} and pro-
gram 𝑝 , hardware run𝜔0↣𝜔1↣ . . .↣𝜔𝑛 produces the hard-
ware observations: {|𝑝 |}(𝜎0) = [𝒜(𝜔0)𝒜(𝜔1) . . .𝒜(𝜔𝑛)].

Definition 3 (𝜔 ≈ 𝜔 ′). Two hardware configurations 𝜔 =

⟨𝑚,𝑎,C, buf , cs, tc, sc⟩ and 𝜔 ′ = ⟨𝑚′, 𝑎′,C, buf ′, cs′, tc′, sc′⟩
are indistinguishable, iff𝒜(𝜔) = 𝒜(𝜔 ′).

We consider an adversary that observes the entire microar-
chitectural context, including the reorder buffer, the cache
(which only contains the addresses, not the values), the trace
cache, and the branch predictor.
To express security guarantees of a hardware semantics
{| · |} against a contract J · K, we use Definition 4 [16].

Definition 4 ({| · |} ⊢ J · K). A hardware semantics {| · |} satisfies
a contract J · K if for an arbitrary program 𝑝 and arbitrary
initial architectural states 𝜎, 𝜎 ′:

JpK(𝜎) = JpK(𝜎 ′) ⇒ {|p |}(𝜎) = {|p |}(𝜎 ′).
11

Note, that we require the initial microarchitectural com-
ponents be the same for this definition.

Theorem 1. {| · |}csd ⊢ J · Kseqct .

Proof. Let 𝑝 be an arbitrary program. Moreover, let 𝜎0 =
⟨𝑚,𝑎⟩ and 𝜎 ′0 = ⟨𝑚′, 𝑎′⟩ be two arbitrary initial architectural
states. Two possible cases are:
(1) J𝑝Kseqct (𝜎0) ≠ J𝑝Kseqct (𝜎 ′0): which trivially holds JpK(𝜎0) =

JpK(𝜎 ′0) ⇒ {|p |}(𝜎0) = {|p |}(𝜎 ′0).
(2) J𝑝Kseqct (𝜎0) = J𝑝Kseqct (𝜎 ′0): By unrolling J𝑝Kseqct (𝜎), two con-

tract runs are obtained that agree on all observations
(∀0 ≤ 𝑖 ≤ 𝑛 : 𝜏𝑖 = 𝜏 ′𝑖):

cr := 𝜎0
𝜏1⇝𝜎1

𝜏2⇝ . . .
𝜏𝑛⇝𝜎𝑛 cr′ := 𝜎 ′0

𝜏 ′1⇝𝜎 ′1
𝜏 ′2⇝ . . .

𝜏 ′𝑛⇝𝜎 ′𝑛

and produced hardware runs by {|𝑝 |}csd (𝜎0) and {|𝑝 |}csd (𝜎 ′0)
are:

hr := 𝜔0↣csd 𝜔1↣csd . . . ↣csd 𝜔𝑚
hr′ := 𝜔 ′0↣csd 𝜔

′
1↣csd . . . ↣csd 𝜔

′
𝑚

where hr(𝑖) = 𝜔𝑖 and cr(𝑖) = 𝜎𝑖 . We prove by induction that
{|p |}csd (𝜎0) = {|p |}csd (𝜎 ′0), i.e., ∀0 ≤ 𝑖 ≤ 𝑚 : hr(𝑖) ≈ hr′ (𝑖).
(Induction basis): the initial hardware configurations hr(0)

and hr′ (0) are indistinguishable by definition as they agree
on their microarchitectural components.

(Inductive step): assume that after 𝑖 steps in {|p |}csd: hr(𝑖) ≈
hr′ (𝑖). Since in our hardware semantics observations are
either informed by the contract J · Kseqct (for tagged branches)
or determined based on non-speculative, sequential infor-
mation (for untagged branched), the corresponding contract
runs of cr and cr′ take the same steps 𝑘 . In other words, the
corresponding contract state of hr(𝑖) is cr(𝑘), and the cor-
responding contract state of hr′ (𝑖) is cr′ (𝑘). Based on our
assumptions, (a) hr(𝑖) and hr′ (𝑖) agree on all microarchitec-
tural components and (b) the next steps of {|p |}csd to obtain
hr(𝑖 + 1) and hr′ (𝑖 + 1) are determined by the cr(𝑘 + 1) and
cr′ (𝑘 + 1) observations, which are the same by assumption.
Hence, based on (a) and (b): hr(𝑖 + 1) ≈ hr′ (𝑖 + 1). □

It is interesting to note that Theorem 1 and its proof are
direct result of contract-informed semantics of {| · |}csd, which
ensure the hardware is secure by design.

7 EVALUATION

7.1 Experimental Setup

Simulation. We implement the Cassandra on top of the
gem5 OoO core implementation and evaluate the design
using gem5’s Syscall Emulation (SE) mode. Table 3 shows the
evaluated system configuration. We use a Golden-Cove-like
microarchitecture [37]. We use McPAT 1.3 [27] and CACTI
6.5 [28] to investigate the power and area impacts.

Table 3: gem5 configuration for simulation.

Pipeline 8 F/D/I/C width, 192/114 LQ/SQ entries, 512 ROB
entries, 96 IQ entries, 280/332 RF (INT/FP), 16 MSHRs,
LTAGE branch predictor

BTU 16 PAT /TRC/CPT entries

L1 DCache 32 KB, 64 B line, 8-way, 2-cycle latency
L1 ICache 32 KB, 64 B line, 4-way, 2-cycle latency
L2 Cache 256 KB, 64 B line, 16-way, 20-cycle latency
L3 Cache 2 MB, 64 B line, 16-way, 40-cycle latency
DRAM 50 ns latency after L2

Workloads. We use the test applications from the BearSSL
library [3]. For the applications with more than 1B instruc-
tion count, we used SimPoint methodology [47] to generate
representative regions for realistic and practical simulation
time-frames (an average of 6 SimPoints per application and
50M instructions per region was seen with our workloads).
In §7.3, we also evaluate the SpectreGuard [15] synthetic
benchmarks that are a mix of crypto and non-crypto code.
Moreover, we used gem5 itself to collect branch traces for
Cassandra, however, other tools can be used as well (e.g.,
Intel Pin [32] and DynamoRIO [5]).

7.2 BearSSL Performance Results

We evaluate four different designs in this section:

• Unsafe Baseline: unprotected baseline OoO processor, vul-
nerable to control flow and data flow speculation;
• Cassandra: our proposed design; addressing control
flow speculation;
• Cassandra+STL: an extension of Cassandra that ad-
dresses data flow speculation as well; it always sends
a request to memory even if there is a load-store ad-
dress match, and also restricts the dependents of by-
passing loads until prior stores resolve, similar to prior
work [12, 31];
• SPT : a prior hardware-level defense [12]. We use the

proposed setting of the work for the Spectre attack model.

Figure 5 shows the execution time of the BearSSL appli-
cations with different designs. Cassandra improves perfor-
mance compared to the Unsafe Baseline by 1.77% on average.
This is mainly because of the elimination of branch mispre-
dictions, and as a result, no ROB squashes due to branch
misprediction occur in our implementation.

In addition, the results show that extending Cassandra to
protect data flow speculation (i.e., Cassandra+STL) achieves
a performance improvement of 1.35%. Prior work also shows
that setting the SSBD control bit in existing CPUs introduces
negligible slowdown (less than 1%), probably due to easy-to-
resolve address calculations in crypto primitives [34].

12

0.00

0.25

0.50

0.75

1.00

1.25

1.50

AES_CTR

ChaCha20
DES

EC_c25519

ECDSA

M
odPow

M
ulti

Hash

Poly1305
RSA

SHA-256

SHAKE

TLS PRF

geom
eanN

o
rm

al
iz

ed
 E

xe
cu

ti
o

n
T

im
e

Unsafe Baseline Cassandra
Cassandra+STL SPT

Figure 5: Execution time of different designs normal-

ized to the Unsafe Baseline. A longer bar means higher

overhead.

Finally, SPT shows a 13.27% performance overhead com-
pared to the Unsafe Baseline, and a 15.31% overhead com-
pared to the Cassandra. SPT has low overheads for some ap-
plications (e.g., 2.5% for DES), but can be significantly higher
(up to 45.4%) for applications like ChaCha20, while Cassan-
dra improves performance by 3.9% for ChaCha20 compared
to the Unsafe Baseline.

7.3 Synthetic Benchmark Performance

Results

In this section, we evaluate the synthetic benchmark from
SpectreGuard [15], which is amix of non-crypto, (s)andboxed
code, and (c)rypto code (s/c indicates the fraction of each
part). We evaluate two designs: (1) ProSpeCT [14], the state-
of-the-art defense for constant-time programs, and (2) Cas-
sandra+ProSpeCT . Note, thatCassandra only protects crypto
branches and needs to be combined with ProSpeCT to pro-
tect non-crypto mispredictions. We use the benchmark and
crypto primitives open-sourced by ProSpeCT authors with
precise annotation of secret and public variables4.
We implement ProSpeCT in gem5 and block execution

under two conditions: (1) the instruction is speculative (i.e.,
there is an older, unresolved control inducer), and (2) the
instruction is about to process a secret (i.e., one or more
operands are tainted). Destination registers of loads from
secret memory regions are taint sources that are propa-
gated during execution. All registers are declassified (i.e.,
untainted) at the end of crypto primitives. Combining Cas-
sandra with ProSpeCT is straightforward; we do not con-
sider crypto branches as control inducers since their direc-
tion is specified by non-speculative, sequential information.

Figure 6 shows the performance impacts of ProSpeCT and
Cassandra+ProSpeCT for two settings, running different

4https://github.com/proteus-core/prospect/

0.0% 0.0% 0.1% 0.1% 0.8%
2.5%

4.6%
8.0%

12.6%
15.0%

-0.2% -0.4% -0.7% -0.5% -2.8% -0.6% -1.1% -3.3% -3.7%
-6.7%-10%

-5%
0%
5%

10%
15%
20%

90s/10c
75s/25c

50s/50c
25s/75c

all-c
rypto

90s/10c
75s/25c

50s/50c
25s/75c

all-c
rypto

chacha20 curve25519

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

T
im

e
O

ve
rh

ea
d

ProSpeCT Cassandra+ProSpeCT

Figure 6: Execution time of ProSpeCT and Cassan-

dra+ProSpeCT for synthetic benchmark, normalized

to the respective Unsafe Baseline of each configuration.

Negative numbers mean performance improvement.

In chacha20 the stack is marked as public, while it is

secret in curve25519.

primitives for the crypto component (HACL* chacha20 [63]
and curve25519 [13]). For chacha20, ProSpeCT incurs no
overhead for all combinations, and Cassandra shows mar-
ginal performance improvements. In this setting, the overall
performance is dominated by the non-crypto component
which limits the benefits of Cassandra. We evaluate the
case where only the crypto primitive runs (all-crypto, sim-
ilar to Figure 5). Cassandra+ProSpeCT shows a 2.8% per-
formance improvement in this case, and ProSpeCT incurs
negligible overhead of 0.8%.

For curve25519, ProSpeCT marks the stack as secret, un-
like chacha20. Curve25519 is more complex and it is not triv-
ial to manually avoid spilling secrets to the stack. In this case,
ProSpeCT can see slowdowns. Additionally, curve25519 is
more control intensive compared to chacha20 and has higher
impact on the overall performance. Figure 6 shows that
ProSpeCT incurs an overhead between 2.5% and 12.6% when
increasing the crypto component from 10c to 75c. This over-
head reaches its peak when only crypto code runs (15.0% for
all-crypto). Interestingly,Cassandra can relax ProSpeCT ’s
restrictions for the crypto code and improve performance by
increasing the crypto component (0.6% for 90s/10c and 3.7%
for 25s/75c). Finally, Cassandra improves performance for
all-crypto by 6.7%. Note, that ProSpeCT is still enabled to
prevent unintended leaks due to non-crypto mispredictions.
The main reasons for Cassandra’s improvements are: (1)
Cassandra can relax most of ProSpeCT ’s restrictions due to
crypto branches, and (2) it eliminates the penalties of crypto
branch mispredictions and squash cycles.

7.4 Power and Area Impacts

Figure 7 shows power consumption and area of Cassandra
compared to Unsafe Baseline. The results show that Cas-
sandra is able to reduce the power consumption compared
to the Unsafe Baseline by 2.73%. The main reason is that
crypto branches avoid accessing and updating the BPU and

13

https://github.com/proteus-core/prospect/

Table 4: Analysis time for trace generation of BearSSL programs (see Algorithm 2 for the details of each step).

Numbers are in seconds. *Note, that we exclude the branches that have a single target.

Program

#static Branch detection Raw trace collection B Vanilla trace transformation C DNA transformation D 𝑘-mers compression E
branches* A Avg Max Avg Max Avg Max Avg Max

RSA-2048 159 631.170 6.609 88.171 0.625 31.578 0.214 11.742 3.115 144.881
EC_c25519 83 914.978 13.280 320.508 1.509 72.852 0.539 27.502 6.411 290.633
DES 53 1164.927 76.872 713.818 5.160 72.429 0.743 11.589 9.476 138.620
AES-128 27 0.390 0.497 0.540 0.041 0.051 0.041 0.048 0.964 1.099
ChaCha20 24 0.737 0.452 0.498 0.041 0.044 0.040 0.043 0.939 1.010
Poly1305 28 0.462 0.446 0.469 0.041 0.048 0.041 0.042 0.927 0.953
SHA-256 30 4.098 0.479 0.498 0.051 0.210 0.042 0.056 0.957 1.129

Average 57.7 388.109 14.091 160.643 1.067 25.316 0.237 7.289 3.256 82.618

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100
%
110

%

Unsafe Baseline

Cassandra

Unsafe Baseline

Cassandra

A
re

a
Po

w
er

Instruction Fetch Unit Renaming Unit Load Store Unit
Execution Unit Branch Trace Unit

Figure 7: Power and area of Cassandra, normalized to

the total power and area of the Unsafe Baseline.

access BTU as a smaller and simpler unit (see the reduction
in Instruction Fetch Unit). Our results confirm that Cassan-
dra will not add power overheads, nevertheless, the benefits
might not be as high when combined with non-crypto work-
loads. Finally, BTU has an area overhead of 1.26%.

7.5 Upfront Trace Generation Runtime

Overhead

Table 4 shows the analysis time for each step of the trace gen-
eration procedure (steps A - E in Algorithm 2) for BearSSL
programs. We use Intel Pin [32] for dynamic analysis and
gathering raw traces. Branch detection (step A) is executed
once per application and it takes 388 seconds on average
(i.e., 6 minutes and 28 seconds). Steps B - E are executed per
static branch. The results show that collecting raw traces
(step B) takes 14 seconds on average per branch and 𝑘-mers
compression (step E) takes about 3 seconds on average.

8 RELATEDWORK

Hardware-only Spectre defenses. Prior works have in-
vestigated hardware defenses to protect constant-time pro-
grams [12, 31]. These defenses are complex to design as they
need to track speculation taints in all potential microarchi-
tectural components which can also incur high performance
overheads due to limited knowledge about the running ap-
plications and their security policy. Cassandra only adds a
small structure (i.e., BTU), which has better performance and

less power compared to the baseline, with modest changes
in the microarchitecture.
Software-only Spectre defenses. To harden programs

on existing CPUs, compiler passes were designed that take
the speculative execution model of CPUs into account and
insert protections as needed [11, 49, 61]. However, software-
level defenses can result in prohibitive slowdowns.
Hardware/software co-designed defenses. Similar to

Cassandra, some prior defenses require the cooperation
of both hardware and software [14, 15, 34, 43, 50, 58]. Ser-
berus [34] is the state-of-the-art compiler mitigation that
addresses all speculation primitives on existing hardware.
Serberus shows different slowdowns depending on the cipher
buffer size (21% slowdown for small buffers of 64B and 8%
for large buffers of 8KB). For our results, a buffer size of 4KB
is used in the synthetic benchmark and the default buffers of
BearSSL tests are used (e.g., ChaCha20 uses a buffer size of
400B) [3]. The performance gap between Serberus and Cas-
sandra will be smaller for larger buffers. ProSpeCT [14] is
the state-of-the-art defense for future hardware that requires
manual secret annotations in the program and blocking the
execution for transient instructions that process secrets. We
provide a detailed performance comparison with Cassandra
in §7.3. Additionally, ProSpeCT reports a 17% increase in the
number of slice LUTs and a 2% increase for the critical path
when their hardware is synthesized for an FPGA [14].

Profile-guided branch analysis. There have been stud-
ies to use runtime profiles of applications to eliminate branch
mispredictions [21, 22, 60]. These techniques mainly target
data center applications since they have large code footprints
and frequent branch mispredictions. For example, Whis-
per [22] proposes a profile-guided approach that provides
hints per static branch to help the branch predictor avoid
mispredictions. However, the goal of these solutions is to
build approximately accurate branch histories, but still rely
on the branch predictor to steer the fetch direction.

14

9 CONCLUSION

In this work, we propose Cassandra, a novel hardware-
software mechanism to protect constant-time cryptographic
programs against speculative execution attacks. To achieve
this, we perform an offline branch analysis step to signifi-
cantly compress sequential branch traces and communicate
them with the hardware. During execution, the processor
uses the branch traces to determine fetch directions and
to avoid accessing the branch predictor. Moreover, we for-
malize and prove the security of Cassandra by introducing
contract-informed hardware semantics that ensures the hard-
ware adheres to a strong security contract by design. Despite
providing a high security guarantee, Cassandra counterin-
tuitively improves performance by 1.77%.

REFERENCES

[1] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential pat-
terns. In Proceedings of the eleventh international conference on data
engineering, pages 3–14. IEEE, 1995.

[2] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupres-
soir, and Michael Emmi. Verifying constant-time implementations. In
USENIX Security Symposium, 2016.

[3] BearSSL - constant-time crypto library. https://www.bearssl.org, Ac-
cessed 22-11-2023.

[4] Gary Benson. Tandem repeats finder: a program to analyze dna se-
quences. Nucleic acids research, 27(2):573–580, 1999.

[5] Derek Bruening and Saman Amarasinghe. Efficient, transparent, and
comprehensive runtime code manipulation. 2004.

[6] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, et al. Fallout: Leaking data on meltdown-
resistant cpus. In ACM Conference on Computer and Communications
Security (CCS), 2019.

[7] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-
jamin Von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin,
and Daniel Gruss. A systematic evaluation of transient execution
attacks and defenses. In USENIX Security Symposium, 2019.

[8] Chandler Carruth. RFC: Speculative load hardening (a Spectre variant
1 mitigation). https://lists.llvm.org/pipermail/llvm-dev/2018-March/
122085.html, 2018.

[9] Sunjay Cauligi, Craig Disselkoen, Klaus v Gleissenthall, Dean Tullsen,
Deian Stefan, Tamara Rezk, and Gilles Barthe. Constant-time foun-
dations for the new Spectre era. In ACM Conference on Programming
Language Design and Implementation (PLDI), 2020.

[10] Sunjay Cauligi, Craig Disselkoen, Daniel Moghimi, Gilles Barthe, and
Deian Stefan. SoK: Practical foundations for software Spectre defenses.
In IEEE Symposium on Security and Privacy (SP), 2022.

[11] Rutvik Choudhary, Alan Wang, Zirui Neil Zhao, Adam Morrison, and
Christopher W Fletcher. Declassiflow: A static analysis for modeling
non-speculative knowledge to relax speculative execution security
measures. In ACM Conference on Computer and Communications
Security (CCS), 2023.

[12] Rutvik Choudhary, Jiyong Yu, Christopher Fletcher, and Adam Morri-
son. Speculative privacy tracking (SPT): Leaking information from
speculative execution without compromising privacy. In IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2021.

[13] curve25519-donna. https://code.google.com/archive/p/curve25519-
donna/, Accessed 05-04-2024.

[14] Lesly-Ann Daniel, Marton Bognar, Job Noorman, Sébastien Bardin,
Tamara Rezk, and Frank Piessens. ProSpeCT: Provably secure specu-
lation for the constant-time policy. In USENIX Security Symposium,
2023.

[15] Jacob Fustos, Farzad Farshchi, and Heechul Yun. SpectreGuard: An
efficient data-centric defense mechanism against Spectre attacks. In
ACM/IEEE Design Automation Conference (DAC), 2019.

[16] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. Hardware-
software contracts for secure speculation. In IEEE Symposium on
Security and Privacy (SP), 2021.

[17] Ali Hajiabadi, Andreas Diavastos, and Trevor E Carlson. NOREBA:
a compiler-informed non-speculative out-of-order commit processor.
In ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2021.

[18] Jann Horn. speculative execution, variant 4: speculative store bypass,
2018.

[19] Affected processors: Guidance for security issues on intel processors.
https://software.intel.com/content/www/us/en/develop/articles/
software-security-guidance/secure-coding/mitigate-timing-side-
channel-crypto-implementation.html, Accessed 20-11-2023.

[20] Speculative execution side channel mitigations. https://www.intel.
com/content/www/us/en/developer/articles/technical/software-
security-guidance/technical-documentation/speculative-execution-
side-channel-mitigations.html, Accessed 20-11-2023.

[21] Daniel A Jiménez, Heather L Hanson, and Calvin Lin. Boolean formula-
based branch prediction for future technologies. In International
Conference on Parallel Architectures and Compilation Techniques (PACT),
2001.

[22] Tanvir Ahmed Khan, Muhammed Ugur, Krishnendra Nathella, Dam
Sunwoo, Heiner Litz, Daniel A Jiménez, and Baris Kasikci. Whisper:
Profile-guided branch misprediction elimination for data center appli-
cations. In IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2022.

[23] Khaled N Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu
Song, Dmitry Evtyushkin, Dmitry Ponomarev, andNael Abu-Ghazaleh.
SafeSpec: Banishing the spectre of a meltdown with leakage-free
speculation. In ACM/IEEE Design Automation Conference (DAC), 2019.

[24] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In IEEE Symposium on Security and Privacy
(SP), 2019.

[25] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu
Song, and Nael B Abu-Ghazaleh. Spectre returns! speculation attacks
using the return stack buffer. InWOOT@ USENIX Security Symposium,
2018.

[26] Esmaeil Mohammadian Koruyeh, Shirin Haji Amin Shirazi, Khaled N
Khasawneh, Chengyu Song, and Nael Abu-Ghazaleh. Speccfi: Miti-
gating spectre attacks using cfi informed speculation. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 39–53. IEEE, 2020.

[27] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M
Tullsen, and Norman P Jouppi. The McPAT framework for multicore
and manycore architectures: Simultaneously modeling power, area,
and timing. ACM Transactions on Architecture and Code Optimization
(TACO), 2013.

[28] Sheng Li, Ke Chen, Jung Ho Ahn, Jay B Brockman, and Norman P
Jouppi. CACTI-P: Architecture-level modeling for sram-based struc-
tures with advanced leakage reduction techniques. In IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2011.

[29] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading kernel

15

https://www.bearssl.org
https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html
https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html
https://code.google.com/archive/p/curve25519-donna/
https://code.google.com/archive/p/curve25519-donna/
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html

memory from user space. In USENIX Security Symposium, 2018.
[30] Hardware lock elision overview. https://www.intel.com/content/

www/us/en/docs/cpp-compiler/developer-guide-reference/2021-
8/hardware-lock-elision-overview.html, Accessed 23-11-2023.

[31] Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai, Ofir Weisse, Satish
Narayanasamy, and Baris Kasikci. DOLMA: Securing speculation
with the principle of transient Non-Observability. In USENIX Security
Symposium, 2021.

[32] Chi-Keung Luk, Robert Cohn, RobertMuth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. Pin: building customized program analysis tools with dynamic
instrumentation. In ACM conference on Programming language design
and implementation (PLDI), 2005.

[33] Guillaume Marçais and Carl Kingsford. A fast, lock-free approach for
efficient parallel counting of occurrences of k-mers. Bioinformatics,
27(6):764–770, 2011.

[34] NicholasMosier, HamedNemati, John CMitchell, and Caroline Trippel.
Serberus: Protecting cryptographic code from Spectres at compile-
time. In IEEE Symposium on Security and Privacy (SP), 2023.

[35] Shruti Padmanabha, Andrew Lukefahr, Reetuparna Das, and Scott
Mahlke. Mirage cores: The illusion of many out-of-order cores us-
ing in-order hardware. In IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2017.

[36] Arash Pashrashid, Ali Hajiabadi, and Trevor E Carlson. Hidfix: Effi-
cient mitigation of cache-based Spectre attacks through hidden roll-
backs. In IEEE/ACM International Conference on Computer Aided Design
(ICCAD), 2023.

[37] Popping the hood on golden cove. https://chipsandcheese.com/2021/
12/02/popping-the-hood-on-golden-cove/.

[38] Charles Reis, Alexander Moshchuk, and Nasko Oskov. Site isolation:
Process separation for websites within the browser. InUSENIX Security
Symposium, 2019.

[39] Eric Rotenberg, Steve Bennett, and James E Smith. Trace cache: a low
latency approach to high bandwidth instruction fetching. In IEEE/ACM
International Symposium on Microarchitecture (MICRO), 1996.

[40] Eric Rotenberg, Quinn Jacobson, Yiannakis Sazeides, and Jim Smith.
Trace processors. In IEEE/ACM International Symposium on Microar-
chitecture (MICRO), 1997.

[41] Gururaj Saileshwar and Moinuddin K Qureshi. CleanupSpec: An"
undo" approach to safe speculation. In IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), 2019.

[42] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean,
and Magnus Själander. Efficient invisible speculative execution
through selective delay and value prediction. In ACM/IEEE Inter-
national Symposium on Computer Architecture (ISCA), 2019.

[43] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling, Flo-
rian Kargl, and Daniel Gruss. ConTExT: A generic approach for
mitigating Spectre. In The Network and Distributed System Security
Symposium (NDSS), 2020.

[44] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-
privilege-boundary data sampling. In ACM Conference on Computer
and Communications Security (CCS), 2019.

[45] Martin Schwarzl, Pietro Borrello, Andreas Kogler, Kenton Varda,
Thomas Schuster, Michael Schwarz, and Daniel Gruss. Robust and
scalable process isolation against Spectre in the cloud. In European
Symposium on Research in Computer Security, 2022.

[46] scikit-bio python library. https://scikit.bio/docs/latest/index.html, Ac-
cessed 23-11-2023.

[47] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder.
Automatically characterizing large scale program behavior. In ACM
International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2002.
[48] Basavesh Ammanaghatta Shivakumar, Jack Barnes, Gilles Barthe,

Sunjay Cauligi, Chitchanok Chuengsatiansup, Daniel Genkin, Sioli
O’Connell, Peter Schwabe, Rui Qi Sim, and Yuval Yarom. Spectre
declassified: Reading from the right place at the wrong time. In IEEE
Symposium on Security and Privacy (SP), 2023.

[49] Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin Gré-
goire, Vincent Laporte, Tiago Oliveira, Swarn Priya, Peter Schwabe,
and Lucas Tabary-Maujean. Typing high-speed cryptography against
spectre v1. In IEEE Symposium on Security and Privacy (SP), 2023.

[50] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. Context-
sensitive fencing: Securing speculative execution via microcode cus-
tomization. In ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2019.

[51] Paul Turner. Retpoline: a software construct for preventing branch-
target-injection. https://support.google.com/faqs/answer/7625886,
2018.

[52] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yu-
val Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the
intel sgx kingdom with transient out-of-order execution. In USENIX
Security Symposium, 2018.

[53] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lippi, Marina
Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and
Frank Piessens. Lvi: Hijacking transient execution through microar-
chitectural load value injection. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 54–72. IEEE, 2020.

[54] Stephan Van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
RIDL: Rogue in-flight data load. In IEEE Symposium on Security and
Privacy (SP), 2019.

[55] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay
Cauligi, Rami Gökhan Kıcı, Ranjit Jhala, Dean Tullsen, and Deian Ste-
fan. Automatically eliminating speculative leaks from cryptographic
code with blade. ACM Symposium on Principles of Programming Lan-
guages (POPL), 2021.

[56] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F Wenisch, and Baris
Kasikci. NDA: Preventing speculative execution attacks at their source.
In IEEE/ACM International Symposium on Microarchitecture (MICRO),
2019.

[57] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christo-
pher Fletcher, and Josep Torrellas. InvisiSpec: Making speculative
execution invisible in the cache hierarchy. In IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2018.

[58] Jiyong Yu, Lucas Hsiung, Mohamad El’Hajj, and Christopher W
Fletcher. Data oblivious isa extensions for side channel-resistant
and high performance computing. In The Network and Distributed
System Security Symposium (NDSS), 2019.

[59] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrel-
las, and Christopher W Fletcher. Speculative taint tracking (STT)
a comprehensive protection for speculatively accessed data. In
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2019.

[60] Siavash Zangeneh, Stephen Pruett, Sangkug Lym, and Yale N Patt.
BranchNet: A convolutional neural network to predict hard-to-predict
branches. In IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2020.

[61] Zhiyuan Zhang, Gilles Barthe, Chitchanok Chuengsatiansup, Peter
Schwabe, and Yuval Yarom. Ultimate SLH: Taking speculative load
hardening to the next level. In USENIX Security Symposium, 2023.

16

https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/hardware-lock-elision-overview.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/hardware-lock-elision-overview.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/hardware-lock-elision-overview.html
https://chipsandcheese.com/2021/12/02/popping-the-hood-on-golden-cove/
https://chipsandcheese.com/2021/12/02/popping-the-hood-on-golden-cove/
https://scikit.bio/docs/latest/index.html
https://support.google.com/faqs/answer/7625886

[62] Zirui Neil Zhao, Houxiang Ji, Mengjia Yan, Jiyong Yu, Christopher W
Fletcher, Adam Morrison, Darko Marinov, and Josep Torrellas. Specu-
lation invariance (InvarSpec): Faster safe execution through program
analysis. In IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2020.

[63] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan
Protzenko, and Benjamin Beurdouche. HACL*: A verified mod-
ern cryptographic library. In ACM Conference on Computer and
Communications Security (CCS), 2017.

17

	Abstract
	1 Introduction
	2 Background
	2.1 Constant-Time Programming
	2.2 Speculation Primitives
	2.3 Evolution of Spectre Defenses

	3 Threat Model
	4 Branch Analysis of Cryptographic Programs
	4.1 Key Insights
	4.2 Detailed Branch Analysis
	4.3 Trace Generation Procedure

	5 Design of Cassandra
	5.1 Overview
	5.2 Trace Representation and Communication
	5.3 Details of the Microarchitecture
	5.4 Discussion

	6 Formal Security Analysis
	6.1 Preliminaries on Hardware-Software Contracts
	6.2 Cassandra Semantics
	6.3 Definitions and Theorems

	7 Evaluation
	7.1 Experimental Setup
	7.2 BearSSL Performance Results
	7.3 Synthetic Benchmark Performance Results
	7.4 Power and Area Impacts
	7.5 Upfront Trace Generation Runtime Overhead

	8 Related Work
	9 Conclusion
	References

