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Abstract
In recent years, control flow attacks targeting Intel SGX
have attracted significant attention from the security com-
munity due to their potent capacity for information leakage.
Although numerous software-based defenses have been de-
veloped to counter these attacks, many remain inadequate
in fully addressing other, yet-to-be-discovered side channels.

In this paper, we introduce MDPeek, a novel control flow
attack targeting secret-dependent branches in SGX. To cir-
cumvent existing defenses, such as microarchitectural state
flushing and branch balancing, we exploit a new leakage
source, theMemory Disambiguation Unit (MDU).We present
the first comprehensive reverse engineering on the MDU’s
enable and update logic. Based on our detailed analysis, we
develop a methodology to identify vulnerable workloads in
real-world applications. We demonstrate the effectiveness
of MDPeek with end-to-end attacks on the latest versions of
three SGX-secured applications, including Libjpeg, MbedTLS
and WolfSSL. In addition, we propose a low-overhead mit-
igation technique, store-to-load coupling, which provides
a 7× latency reduction compared to naive techniques like
serialization and load aligning.

CCS Concepts: • Security and privacy→ Side-channel
analysis and countermeasures; Hardware reverse engi-
neering; • Computer systems organization → Architec-
tures.

Keywords: side-channel attack; memory disambiguation
unit; Intel SGX; hardware security
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1 Introduction
Intel SGX is designed to protect the code and data of user
applications from being accessed by other programs or even
untrusted operating systems. Due to the robust security guar-
antees it offers, SGX has been widely adopted in various
security-critical applications [30, 36, 43]. However, since
SGX’s original design doesn’t protect against side-channel
attacks [49], a number of these attacks have been devel-
oped [22, 28, 40, 41, 44, 50, 55, 57, 63, 65], posing a signifi-
cant threat to the security of SGX-based applications. Among
these, control flow attacks on SGX have drawn substantial
attention from researchers due to their ability to extract
instruction-level information.
In response to these growing threats, Intel has recently

introduced AEX-Notify [10], a mechanism to monitor the
interrupts of SGX applications, thereby preventing attackers
from repeatedly hijacking the CPU to perform side-channel
attacks. However, AEX-Notify requires microcode updates to
enable new instruction features, limiting its applicability to
modern servers. For devices with older CPU versions, Intel
shifts the burden to software developers [23], requiring them
to build and validate side-channel-resistant applications.
Currently, software-based defenses against control flow

attacks in SGX primarily fall into three categories. First,
data-oblivious programming eliminates secret-dependent
control flow in applications, effectively blocking all control
flow attacks [46, 60]. However, it imposes a substantial per-
formance overhead [44, 57]. Second, for microarchitecture
side channels with known leakage sources, such as branch
predictors [65, 66] and hardware prefetchers [9], flushing
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1 // if u >= v

2 if (mp_cmp(&u, &v) != MP_LT) {

3 // u = u – v

4 mp_sub(&u, &v, &u);

5 }

6 else {

7 // v = v – u

8 mp_sub(&v, &u, &v);

9 }

1 // if u >= v

2 if (cmp_mpi(&u, &v) >= 0) {

3 // u = |u – v| / 2

4 sub_abs(&u, &u, &v)

5 shift_r(&u, 1)

6 }

7 else {

8 // v = |u – v| / 2

9 sub_abs(&v, &v, &u)

10 shift_r(&v, 1)

11 }

1 // if A >= N

2 if (cmp_abs(A, N) >= 0) {

3 // N->p[0:n] –= A->p[0:n]

4 sub_hlp(n, N->p, A->p)

5 }

6 else {

7 // dummy

8 // for branch balancing

9 sub_hlp(n, A->p, T->p)

10 }

1 // if 8*8 pixels are the same

2 if (inptr[8] == 0 && inptr[16]

3 == 0 && inptr[24] == 0 &&

4 inptr[32] == 0 && inptr[40]

5 == 0 && inptr[48] == 0 &&

6 inptr[56] == 0) {

7 // simpler logic

8 }

9 else {

10 // more complicated logic

11 }

(a) mp_invmod_slow
in WolfSSL v5.7.2

(c) mpi_montmul
in MbedTLS v2.6.1

(b) mbedtls_mpi_gcd
in MbedTLS v3.6.1

(d) jpeg_idct_islow
in Libjpeg v9f

Figure 1. Secret-dependent branches in cryptographic libraries [37, 38, 62] and non-cryptographic libraries [29]. In this
research,we demonstrate attacks against the targets present in (a) and (d).

the microarchitectural state of these units during context
switches, as mentioned in previous research [9, 65], pre-
vents these hardware units from leaking information about
the victim’s execution. Third, for unknown or complex side
channels, such as interrupt-based side channels [41, 44, 63],
reducing observable differences can prevent attackers from
inferring the victim’s control flow. For instance, in the case
of secret-dependent branches, balancing both branch direc-
tions (i.e., ensuring instruction counts and types are identical
on two branch paths) helps to improve control flow indis-
tinguishability. Both flushing known leakage sources and
balancing branches, up to now, have been both practical and
effective in mitigating the control flow attacks on SGX.

Despite these defenses, we aim to show that these vulnera-
bilities persist even with state-flushing and branch-balancing
techniques. In other words, there are still uncovered attack
vectors that can bypass existing defenses and threaten SGX
security. To demonstrate this, we present MDPeek, a novel
side-channel attack that leverages a new leakage source, the
Memory Disambiguation Unit (MDU). The MDU, a recently
studied hardware unit in Intel CPUs, predicts whether a
load can bypass an earlier store to execute out of order [12].
Although the MDU’s design has been partially character-
ized [45], it has not been exploited as a leakage source in
side-channel attacks. This is primarily due to the fact that
several features, such as the conditions for an MDU update
to occur, remain unexplored. Consequently, real-world code
that results in an MDU update has not been straight-forward.
In this study, we first perform an in-depth reverse engi-

neering of the MDU’s enable and update logic. The enable
logic governs when the MDU can trigger predictions or up-
dates, while the update logic dictates how the MDU updates
its internal state. Given that the MDU update relies on stores
with delayed address generation, we also investigate the ca-
pability of various instructions to delay their target operands.
Building upon these insights, we establish a set of exploitable

code patterns for the MDU side channel and, using our auto-
mated analysis methodology, successfully identify multiple
exploitable code snippets in the real-world applications.
Next, we develop an efficient and reliable MDU probing

primitive and implement the first MDU-based side-channel
attack, MDPeek. To demonstrate the practicality of MDPeek,
we carry out end-to-end attacks on the latest versions of
three SGX-secured applications, successfully leaking RSA
keys from WolfSSL [62], RSA-CRT keys from MbedTLS [38],
and images processed by Libjpeg [29]. Finally,we design a
software-basedmitigation technique called store-to-load cou-
pling to prevent MDU updates and effectively defend against
MDPeek, which incurs a performance overhead of less than
20%, and is significantly lower than other naive defenses,
such as instruction serialization and branch balancing on
load PC addresses (resulting in an overhead of up to 140%).
Contributions. The contributions are as follows:

• We propose a novel MDU-based side-channel attack,
MDPeek, capable of bypassing existing defenses such
as branch balancing. To the best of our knowledge, this
is the first side-channel attack exploiting the MDU.

• We perform an in-depth analysis of the MDU’s up-
date mechanism at both the microarchitecture and ISA
levels, developing exploitable code patterns and iden-
tifying vulnerable loads in real-world applications.

• We successfully implement end-to-end attacks on three
real-world applications, achieving a high success rate
with only a single trace.

• We design an efficient defense against MDPeek, called
store-to-load coupling, achieving a performance im-
provement of approximately 7 times than other de-
fenses.

Disclosure. We followed a 90-day disclosure period and
reported the MDU vulnerability to Intel, and it has been
confirmed. Intel has emphasized the critical importance of
implementing side-channel-resistant codes.
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2 Background and Related Work
2.1 Secret-dependent Branches
Secret-dependent branches are a common target in control
flow attacks, where the branch target is determined by a
secret value. In cryptographic libraries, such branches are
often employed in the implementation of integer algorithms,
including modular multiplication [37], greatest common
divisor (GCD) [38], and modular inverse [38, 62]. In non-
cryptographic libraries, these branches are often used to
select different execution paths based on user input [9] or to
optimize performance in specific edge cases [29].
Figure 1 illustrates four code snippets containing secret-

dependent branches. In the binary extension Euclidean algo-
rithm (BEEA) (a) [62] and the Euclidean algorithm (b) [38],
the branches update the larger value during each iteration.
In the Montgomery multiplication algorithm (c) [37], the
branch performs a modular operation. In the inverse discrete
cosine transform (IDCT) algorithm (d) [29], the branch han-
dles edge cases where a block of pixels in the input image is
identical. These algorithms are widely used across various
applications. For example, BEEA and Euclidean algorithms
are used in RSA and RSA-CRT, Montgomery multiplication
is used in ECDSA, and IDCT is used in image decoding.

2.2 Control Flow Attacks in SGX and Their Defenses
The behavior of SGX applications can influence CPU archi-
tecture (e.g., interrupts) and microarchitectural states (e.g.,
cache [19, 64] and branch prediction units [14, 28, 66]), po-
tentially leaking sensitive information, such as the target
of secret-dependent branches. Current attacks on secret-
dependent branches can achieve instruction-level granular-
ity, allowing attackers to precisely determine which instruc-
tions are executed along the branch path.
Table 1 provides a summary of various branch attacks

targeting SGX. These attacks can be broadly categorized
into architecture-level and microarchitecture-level attacks.
Architecture-level attacks primarily exploit page faults to
trigger CPU interrupts, leaking control flow information
through the order of page faults [20, 58, 63], the timing of
fault handling [44, 57], or the number of instructions between
page faults [41]. Microarchitecture-level attacks, on the other
hand, infer which instructions have been executed by observ-
ing updates to the state of microarchitectural components.
Well-studied components, such as cache [17, 40], TLB [18, 59],
BPU [28, 65, 66], execution port [2], and prefetcher [9], have
been well studied and exploited to develop powerful attacks.

To defend against these attacks, several feasible defenses
have been proposed by the authors of the aforementioned
works. Among these, eliminating the dependence between
secrets and branches through data-oblivious programming
is the most fundamental solution, as it can prevent all such
attacks. However, this approach is algorithm-specific [16]
and inevitably introduces performance overhead [44] (e.g.,

as high as 24× as reported in [11]), making it outside the
scope of this research.

Beyond this, two more general and practical defense tech-
niques have been developed. First, for attacks with known
leakage sources, attackers can be prevented from observing
changes in the state of microarchitectural units by flushing
components during SGX context switches [9, 65].
Second, for architecture-level attacks or those involving

unknown leakage sources, branch balancing can be em-
ployed tomake branch paths hard to distinguish for attackers.
For example, both paths can access the same pages in the
same sequence to mitigate page table attacks [58, 63], or the
program counter (PC) of stores on both paths can be aligned
to 16 bytes from the branch to mitigate frontal attacks [44].
These two defenses are entirely software-based, making

them effective in blocking the attacks listed in Table 1 across
different hardware environments. However, as demonstrated
in this study, these defenses only address disclosed attacks
or known leakage sources. For other, as yet uncovered or
unstudied microarchitectural units, it remains possible to
bypass these defenses and carry out control flow attacks.

2.3 Overview of the Memory Disambiguation Unit
The memory disambiguation unit (MDU) is a hardware unit
recently discovered in the 6th generation and later Intel
CPUs [45], which is used to predict whether a load can be
executed out of order when its data dependence with a pre-
ceding store is unknown, thereby improving the performance
of the load [12]. A similar unit also exists in ARM CPUs [33],
though their design details are different. According to a pre-
vious research [45], as shown in Figure 2, the MDU in Intel
CPUs consists of 256 counters, selected by the lowest 8 bits
of the load’s PC. Each counter has 4 bits, and when a counter
is cleared, the MDU predicts that a load can be executed out
of order. Otherwise, the load is predicted to be blocked until
its data dependence with all preceding stores is resolved.
The functionality of the MDU is illustrated in Figure 2.

When a store’s address generation is delayed, the CPU is
unable to determine the data dependence between the store
and a younger load until the store’s address is generated. In
such cases, the MDU is enabled (❶), and the CPU selects
an MDU counter to make a prediction based on the lowest
8 bits of the load’s PC (❷). The MDU predicts whether to
execute the load out-of-order based on the counter (❸). After
the actual data dependence between the store and load is
resolved, and then in a particular pipeline stage, which have
not been studied before our research, the CPU corrects any
mispredictions (e.g., by rolling back and re-executing the
load if it is incorrectly executed out of order) and updates
the MDU counter (❹). If the store and load are aliased (i.e.,
a data dependence exists between the store and load), the
counter is set to 15. Otherwise, the counter is decreased by
1 until it reaches 0. The load is predicted to execute out of
order when the counter is 0. Otherwise, the load is blocked.



ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Chang Liu et al.

Table 1. Overview of branch attacks on SGX and suggested defenses. We do not include data-oblivious programming in
defenses because it is algorithm-specific and is hard to apply on non-cryptographic libraries, according to [16].

Attack Type / Name

Attack Feature
Suggested and Currently

Available Defenses*Leakage
Source

Granu-
larity

Distinguishable
Difference

Instruction
Required

Page Table [20, 58, 59, 63] — 4 KiB Page — Branch Balancing (page)
Nemisis [57] — 1 B Instruction Type — Branch Balancing (instruction type)
Copycat [41] — 1 B Instruction Count — Branch Balancing (count between pages)
Frontal Attack [44] — 1 B Store PC Store Branch Balancing (store 16-byte aligned)
TLBleed [18] TLB 4 KiB Page — Disable SMT
Branch Shadowing [28] LBR 1 B Instruction PC Branch Branch Obfuscating (Zigzagger)
Bluethunder [22] PHT, PHR 1 B Instruction PC Branch PHT Flushing
NightVision [66] BTB 1 B Instruction PC — BTB Flushing
PathFinder [65] PHT, PHR 1 B Instruction PC Branch PHT and PHR Flushing
PortSmath [2] Port 1 B Instruction Type (uOP) — Disable SMT
Cache [6, 17, 21, 40, 51] Cache 64 B Cache Line — Cache Flushing
AfterImage [9] Prefetcher 1 B Load PC Load Prefetcher Flushing
MDPeek (This Work) MDU 1 B Load PC Load Bypassing All Defenses Above

* We do not include defenses requiring hardware modification because they may not be available currently.

.rep 10

imul $1, %rdi, %rdi

.endr

0x0e: movq $0, (%rdi)

0x15: movl (%rsi), %eax

Delayed
Store

Load

ID Counter

0 0 – 15

… …

0x15

… …

255 0 – 15

Memory Disambigua�on Unit

256 Counters

4 Bits

❷

Instruc�ons CPU Execu�on Engine

? In Order

Out of Order

N

Y
❸

Enable?

MDU Enable Logic
(Uncovered)

❶

MDU Update Logic
(Not fully studied)

Memory Order 
Buffer

Y
Aliasing?

N

Y

❹

Figure 2. The structure and functionality of the MDU. Some
parts still remain unknown before this research.

In prior research [45], incorrect MDU predictions are ex-
ploited to construct a new variant of the Spectre-V4 attack [7].
In this attack, the attacker uses carefully designed code (e.g.,
as shown in Figure 2) to train the MDU and enable it, and
subsequently injects a gadget [27] into the victim’s execution
to trigger speculative execution under incorrect predictions.
However, previous work does not delve into the enable and
update mechanisms of the MDU in detail. As a result, two
critical questions remained unresolved: (1) Under what con-
ditions is the MDU enabled? (2) Which code snippets in
real-world applications can trigger MDU updates?

3 Overview of MDPeek
3.1 Motivation
In this work, we aim to demonstrate that, while the software
defenses described in Table 1 can defend against some of
these attacks, the balanced branches in SGX are still vulner-
able. We select the MDU as a new leakage source to bypass
flushing-based and branch balancing defenses. We hope that

this work encourages researchers to reassess the effective-
ness of balanced branches and consider more robust and
general defenses to protect SGX applications that still con-
tain secret-dependent branches.

3.2 Threat Model
Consistent with SGX’s securitymodel and similar to previous
work, we assume the attacker controls an untrusted OS with
root privileges. The attacker can manage page tables, handle
interrupts, and schedule processes. The attacker aims to
probe balanced and secret-dependent branches in victim
applications through a single trace. The attacker has prior
access to the victim’s code, which contains secret-dependent
branches and load instructions along branch paths that can
update the MDU. During the attack, both the attacker and
the victim execute their processes on the same physical CPU,
allowing them to share the MDU.

The victim is an application running inside SGX, contain-
ing secret-dependent branches. The developers are aware
of side-channel threats and have implemented the defenses
outlined in Table 1. Specifically, the victim disables SMT,
employs eviction sets to flush the cache, prefetcher, and BPU
states during context switches, and implements branch bal-
ancing as described in Table 1 using LLVM [35]. This ensures
both branch sides execute the same instruction types [57],
maintain the same instruction count between pages [41], and
align stores’ PC to 16 bytes from the branch [44].

3.3 Workflow
The attack workflow of MDPeek is illustrated in Figure 3.
First, the attacker manipulates the page table to trigger a
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1 if (secret) {

2 x->a1 = b1; // delayed store

3 int y1 = *p1; // load

4 }

5 else {

6 x->a2 = b2; // optional

7 int y2 = *p2; // optional

8 }

…

Counter 1

…

…

Counter 2

MDU

SGX

A�acker (Untrusted OS)

❶
❷ Reset

❸ Update

❹ Probe and Recover
Page Fault Inaccessible

Analyzer

Traced Control Flow
01001101…

Secret in Branch

Secret in Applica�on

Figure 3. Workflow of MDPeek. The attacker holds the con-
trol of an untrusted OS, and the victim is an application
running in SGX.

page fault both before and after the balanced branch (❶). At
the first page fault, the attacker initializes the MDU counters
in the interrupt handler using code from their own address
space (❷). The attacker then yields the CPU to the victim, al-
lowing the branch to execute. Along different branch paths,
at least one load updates an MDU counter (❸). After the
branch is executed, the attacker regains control of the CPU
through another page fault, uses the probing primitive to
detect changes in the MDU counters, infers the branch path,
and recovers the application’s secret based on the informa-
tion leaked via MDPeek (❹).

To implement MDPeek, it is essential to identify the code
responsible for updating the MDU. In Section 4, we reverse-
engineer the MDU’s enable and update logic from the mi-
croarchitecture perspective. In Section 5, we develop a code
pattern for MDU updates and create an automated tool to
search for exploitable code snippets in real-world applica-
tions. Furthermore, to achieve a high-accuracy, single-trace
attack applicable in scenarios such as RSA key generation,
we design a method for automatically generating efficient
attack primitive, discussed in Section 6.1.

4 Reverse-Engineering the MDU Enable
and Update Logic

In this section, we perform an in-depth reverse engineer-
ing of the MDU’s enable and update logic. The enable logic
governs when the MDU can trigger predictions, while the
update logic dictates how the MDU updates its internal state.

4.1 Method
For an overview of the reverse engineering of the MDU, we
use the microbenchmark shown in Figure 2 to determinis-
tically update the MDU. First, we execute 15 non-aliased
store-load pairs (i.e., store and load instructions with 2 dif-
ferent addresses) to clear a MDU counter. Next, we run an
aliased store-load pair to increase it to 15. Following this
setup, we execute a test case containing non-aliased store-
load pairs 15 times. To ensure that the loads in the test case
and the microbenchmark select the same MDU counter, we

insert nop instructions before the function entry of the test
case, aligning the lowest 8 bits of the load’s PC.
After executing the test case, we rerun the microbench-

mark with an aliased store-load pair. If the test case up-
dates the MDU, the counter will be updated to 0, causing
the MDU to incorrectly predict that the load will execute
out of order, triggering a misprediction. The CPU will then
roll back, squash the load from the reorder buffer (ROB),
and re-execute the load. Conversely, if the test case does not
update the MDU, the load will be predicted to execute in or-
der. We use the Performance Monitor Counter (PMC) event
MACHINE_CLEARS.COUNT [24] to detect if a CPU rollback oc-
curs, allowing us to infer whether the MDU is updated.

For each test, we bind the test case and microbenchmark
to the same CPU core and repeat the execution 10,000 times
to mitigate noise. To prevent the compiler from introducing
unintended stores and loads, we write the test case directly
in assembly. We conduct experiments across 8 different Intel
microarchitectures listed in Section 6 and observe similar
designs. In this section, we present the results from our
experiments on the Intel Core i7-6700K CPU (Skylake) [4].

4.2 Effects of Delay Type
After an instruction is dispatched from the Instruction De-
code Queue (IDQ) to the backend, it passes through several
pipeline stages. For example, a store needs to generate the
data and its address, translate the address, and then send the
request to the cache or memory. If no exceptions occur, the
store proceeds to commit and retire. Each stage can intro-
duce delay, potentially slowing down the store. To study the
impact of delays at different stages of store and load on the
MDU, we design the experiment shown in Figure 4.
We induce delays in the generation of store and load ad-

dresses by introducing port contention [2]. We trigger TLB
misses using PTEditor [39] to delay address translation for
both the store and load. Additionally, we flush the cache
to introduce execution delays, and insert slow instructions,
such as movntdqa [31], before the store and load to delay
their retirement. The results show that the enabling and
update of the MDU depend on two key conditions: (1) the
store address must not yet be generated when it enters the
CPU backend; and (2) the store address generation must take
longer than the load. We also find that delays at other stages
do not affect the enabling or update of the MDU.

4.3 Effects of Unresolved Data Dependence
According to the design motivation of the MDU, predictions
are necessary only when the data dependence between the
store and load is uncertain. To verify this, we conduct the ex-
periment shown in Figure 5. We delay the address generation
of the store (i.e., the generation of rdi) using a preceding
load, and then observe whether a younger load (i.e., the load
accessing the address rsi) updates the MDU. When no other
instructions are present between the store and load, the CPU
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…

Store Address Data

Load Address

Data Genera�on ( )

Transla�on ( )

Execu�on ( )

…

Re�re ( )

Instruc�ons Life Cycle of store and load Instruc�ons A�er Decoding

Transla�on ( )

Port Conten�on TLB Miss

Execu�on ( )

Cache Miss

Re�re ( )

ROB BlockDelay Methods:

Address Genera�on ( )

Address Genera�on ( )

Experiment Results: MDU is updated when and only when and

Figure 4. Experiments on the effects of the delay type on
the MDU update, which shows that only the delay of store’s
address generation enables the MDU.

mdu_update_dependence_1:
movq (%rdi), %rdi
movq $0, (%rdi)
nop
nop
nop
movq (%rsi), %rsi
lfence
ret

mdu_update_dependence_3:
movq (%rdi), %rdi
movq $0, (%rdi)
mov %rdi, %rax
movq $0, %rax
or %rax, %rsi
movq (%rsi), %rsi
lfence
ret

Update rate: 100% Update rate: 100%

mdu_update_dependence_2:
movq (%rdi), %rdi
movq $0, (%rdi)
mov %rdi, %rax
and $0, %rax
or %rax, %rsi
movq (%rsi), %rsi
lfence
ret

Update rate: 0

Figure 5. Experiment codes which prove unresolved data
dependence is necessary to update the MDU. The codes are
written in AT&T assembly code format.

is unable to determine whether rdi and rsi are equal before
rdi is generated, thus it cannot determine the dependence
between the store and load, leading to an MDU update.

Next, we introduce arithmetic instructions before the store
and load, ensuring that they do not alter the semantics of the
test case. For example, we introduce an additional register
rax and establish an explicit data dependence through a bit-
wise operation: rsi = (rdi & 0) | rsi. We observe that the
MDU does not update because the data dependence between
the store and load is now deterministic. The resolved de-
pendence may prevent the MDU from being updated in two
ways. First, the CPU identifies the dependence of the store
and load as soon as they are issued (rdi is computed from
rsi), and directly disables the MDU. Second, it delays the
generation of the load address, causing the update condition
described in Section 4.2 to remain unsatisfied.

Finally, we replace the and instruction with a mov (or alter-
natively, use xor rax, rax), eliminating the data dependence
between rax and rdi. After moving 0, rax no longer acts as
an intermediary register between rdi and rsi. As a result,
the MDU now updates its internal state, indicating that it
has observed an unresolved data dependence. This, in addi-
tion to the delayed store address generation, is a necessary
condition for enabling and updating the MDU.

4.4 Effects of ROB on the MDU
After determining the necessary conditions forMDUupdates,
we aim to investigate how many instructions can be placed

mdu_update_dispatch:
mov $1, %rcx
mov %rdi, %rax
clflush (%rdx)
mfence
lfence
movq (%rdx), %rdx
.rep NUM_NOP
nop
.endr
mov $0, %rdx
div %rcx
mov %rax, %rdi
movq %rdi, (%rdi)
.rep 60
nop
.endr
movq (%rsi), %rsi
lfence
ret

movq (%rdx), %rdx

nop ... (NUM_NOP)

div %rax

mov %rax, %rdi

movq %rdi, (%rdi)

nop ... (60)

movq (%rsi), %rsi

R
O

B
 Size

2
2

4

movq (%rdx), %rdx

nop ... (NUM_NOP)

nop

div %rax

mov %rax, %rdi

movq %rdi, (%rdi)

nop ... (~30)

movq (%rdx), %rdx

nop ... (NUM_NOP)

nop

nop

nop

nop

nop

NUM_NOP
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Figure 6. Experiment code and result which prove the de-
layed store and load should appear in the ROB simultane-
ously, so that the load can enable the MDU.

mdu_update_commit_squash:
movq $0, (%rdx)
clflush (%rdx)
mfence
lfence
movq (%rdx), %rdx
movq (%rdx), %rdx
.rep 10
imul $1, %rdi
.endr
movq %rdi, (%rdi)
movq (%rsi), %rsi
lfence
ret

Store Address(%rdi) Load Address (%rsi) MDU Update

Exp. 1 Valid, TLB Hit Valid, TLB Hit �

Exp. 2 Valid, TLB Miss Valid, TLB Hit �

Exp. 3 Valid, TLB Hit Valid, TLB Miss �

Exp. 4 Valid Invalid �

Exp. 5 Invalid, not generated Valid �

Exp. 6 Invalid, page offset = 0x0 Valid �

Exp. 7 Invalid, page offset = 0x0 Valid, page offset = 0x4 �

Exp. 8 Invalid, page offset = 0x0 Valid, page offset = 0x5 �

Figure 7. Experiment code and result which prove an uncommit-
ted load with a valid physical address can still update the MDU.

between a delayed store and a load while still allowing the
MDU to work and update. To explore this, we conduct the
experiment illustrated in Figure 6. At the top of the ROB, we
insert a load and delay its commit time by inducing a cache
miss. Before this load commits, subsequent instructions, in-
cluding nops, occupy ROB entries but cannot commit. Next,
we use a div instruction to delay the address generation of a
store. The div introduces a substantial delay to store address
generation, allowing us to insert up to 60 nops between the
store and load while ensuring that the store address has not
yet been generated when the load is issued. Prior to the div,
we insert NUM_NOP nops to control whether the store and
load can reside in the ROB simultaneously.
For instance, when NUM_NOP is small, both the store and

load can enter the ROB before the first load commits. When
NUM_NOP reaches around 180, the store and load cannot reside
in the ROB at the same time due to the ROB size limitation
of 224 on Skylake CPU. As shown in Figure 6, we observe
that the MDU updates only when both the store and load are
present in the ROB simultaneously. Therefore, the number
of instructions (more specifically, 𝜇ops) between the store
and load must not exceed the ROB size.

4.5 Effects of Commit and Squash Stages on the MDU
To further analyze the complete MDU update logic, we inves-
tigate when and how a load updates the MDU in this section.
To determine whether the load updates the MDU during the
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Figure 8. Enable logic and update logic in the MDU reverse-engineered in this paper. The MDU is enabled when only when a
store’s address is delayed and CPU cannot determine the dependence of the store and a younger load. The MDU is updated
only when it is enabled and the load’s physical address is valid and ready.

commit stage, we design the experiments (Exp. 1 to Exp. 8)
shown in Figure 7. By accessing an unmapped address, we
trigger a page fault. Similar to the Meltdown attack [32], we
use an interrupt handler to capture the exception and then
probe whether the uncommitted load updates the MDU. The
results from Exp. 1 show that the load can still update the
MDU, indicating that MDU updates occur before commit.
Using PTEditor [39], we modify the address attributes

of the uncommitted store and load to further study when
the MDU updates. Exp. 2 and Exp. 3 show that if the load
encounters a TLB miss, the MDU does not update. Thus,
MDU updates occur after the load’s address translation but
do not depend on the store’s physical address. Exp. 4 indicates
that, for the MDU to update, the load address must be valid
and have a physical address mapping. Exp. 5 and Exp. 6
demonstrate that while the store’s address validity is not
required, the virtual address must be generated for the MDU
to update. Exp. 7 and Exp. 8 reveal that even if the store has
an invalid address, the MDU can still update as long as the
page offsets of the store and load are larger than 4 bytes.
These experiments provide valuable insights for the de-

sign of MDPeek. For instance, when implementing MDPeek,
interrupts used for synchronization do not interfere with the
load’s ability to update the MDU, as the MDU can still be up-
dated due to out-of-order execution even after an interrupt
occurs. Additionally, the experiments indicate that for the
load to update the MDU, it must result in a TLB hit, which
is typically the case in real-world applications.

4.6 Effects of Multiple Stores and Loads on the MDU
After analyzing the enable and update logic, we study the
impact of multiple stores and loads on MDU updates. First,
we find that when multiple stores precede a load, the MDU
can be enabled and trigger predictions as long as the data
dependence between one of the stores and the load is un-
known. However, the update depends solely on the last store

in the sequence. Specifically, only if the last store is delayed
and has indeterminate data dependence with the load will
the MDU update. Therefore, when searching for exploitable
code, we only need to assess whether the store closest to the
load meets the MDU’s enable conditions.
Additionally, when a store is followed by multiple loads,

the CPU evaluates each store-load pair independently to
determine whether the enable conditions are satisfied and
triggers separate predictions and updates for each load. Con-
sequently, even if the CPU determines the dependence be-
tween one store-load pair, it does not affect the MDU update
for other loads. This behavior suggests that multiple loads
following a delayed store can all serve as exploitable targets.

4.7 MDU Reverse Engineering Summary
In this section, through a series of experiments, we compre-
hensively analyze the enable and update logic of the MDU,
summarized in Figure 8.
Enable Logic. The CPU enables the MDU when the fol-
lowing four conditions are met: (1) both the store and load
are present in the ROB, (2) the store’s virtual address is un-
known, (3) the load’s address is valid and has completed
address translation, and (4) the CPU cannot determine the
data dependence between the store and the load.
Update Logic. Once the MDU is enabled, and assuming no
additional stores are present between the store and load, the
CPU evaluates whether the store meets the requirements for
updating the MDU. The MDU will be updated if one of the
following two conditions is satisfied: (1) the store’s address
is valid, or (2) the store’s address is invalid, but its page offset
is less than 4 bytes from the load’s address. The method by
which the MDU updates depends on whether the physical
addresses of the store and load are identical: if they are equal,
the counter associated with the load is set to 15; otherwise,
the counter is decreased by one.
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Figure 9. Code pattern for updating the MDU (left), and
examples to show the effects of the delay capacity on the
MDU update (right).

Compared to previous research [45], it has been shown
that updating the MDU requires not only a specific store-
load pair but also certain conditions related to their address
generation. These findings provide valuable insights into
identifying instruction sequences that can update the MDU
within an application that is not under the attacker’s control.
As a result, our reverse engineering extends the exploita-
tion of the MDU beyond single-process transient execution
attacks to side-channel attacks against SGX. The reverse en-
gineering in this section provides a robust foundation for
identifying exploitable code in real-world applications and
designing MDPeek.

5 Identify Vulnerable Loads in Applications
In Section 4, we perform a comprehensive reverse engineer-
ing on the MDU’s enable and update logic. In this section, we
investigate instruction sequences from the ISA perspective
that can trigger the MDU’s enable and update logic. The
instructions we examine are part of the BASE extension set
from the uops.info instruction database [1], which suffi-
ciently covers most relevant attack scenarios.

The purpose of this study is to automatically identify po-
tentially vulnerable loads in real-world applications. These
loads may be capable of updating the MDU and could be
exploited by an attacker. Our approach marks potentially
vulnerable loads while ensuring that all unmarked loads are
not exploitable, which effectively detects vulnerable loads
and safely reduces overall defense overhead by skipping
unmarked loads. To achieve this, we introduces the delay ca-
pacity model (Section 5.1) for evaluating address generation
latency, and explains how this model is applied to identify
potentially vulnerable loads (Section 5.2).

5.1 Code Pattern and Delay Capacity
Based on the results of the reverse engineering, we model
the simplest code pattern that can update the MDU, with
its pseudocode shown in Figure 9. Given a load instruction
load [rs], where the data address is rs, we assume the
closest preceding store is store [rd], with the data address

rd. We use op@rd to denote the instruction preceding the
store, where rd is the target operand, and op^rd represents
other instructions that do not target rd as the operand.
We define the distance between two instructions as the

number of intermediate instructions along the shortest path
in the control flow graph, which is linearly and positively
correlated with the execution time of an equivalent number
of nop instructions. We refer to the distance between the
store and the load in the code pattern as the LS distance,
and the distance between op@rd and the store as the Def dis-
tance. Additionally, we define the Delay Capacity of op@rd
as the maximum Def distance that results in an MDU up-
date rate greater than 50% when the LS distance is 0. From
an ISA perspective, the update condition for the load is:
Def distance + LS distance < Delay Capacity of op@rd.
We develop a tool to automatically generate instructions

containing a target operand from the uops.info database
and evaluate their delay capacity. Due to space limitations,
we present only a subset of these instructions in Figure 9.
The delay capacity varies significantly across different in-
structions. For example, the delay capacity of div is about 60
greater than that of imul. Furthermore, the delay capacity of
the same instruction can vary considerably depending on the
microarchitectural state. For instance, if a load generates the
store address and there is a cache hit, the delay capacity is
only 16, meaning that the delayed store and the subsequent
vulnerable load must be within 16 instructions of each other.
However, if there is a cache miss, the delay capacity can
approach the size of the ROB, which is 224 on Skylake CPUs.

The source operand of op@rd can be traced back to the des-
tination operand of an earlier instruction, such as a sequence
of imul instructions sharing the same destination operand.
In this case, we precompute the delay capacity for a chain
of identical instructions with the same destination operand,
which follows a non-linear pattern. For example, the delay
capacity of a single imul is 6, while for two consecutive imul
instructions, it increases to 20.
For an instruction chain consisting of different instruc-

tions, we compute the delay capacity of an equivalent in-
struction chain for each individual instruction. Then, we take
the maximum delay capacity among them as the delay ca-
pacity of the entire instruction chain. This approach ensures
that we correctly identify potentially vulnerable loads.

This model represents the simplest code pattern, where the
load’s address rs is not under consideration. Nevertheless,
our research demonstrates that this code pattern is sufficient
to identify potentially vulnerable loads in real-world appli-
cations that are vulnerable to MDPeek. More complex code
patterns could reveal even more exploitable code snippets,
which we leave for future work.

5.2 Identify Exploitable Loads
In the LLVM backend, we add a function-level analysis pass
using the code pattern and delay capacity information to
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Table 2. Vulnerable loads we find in applications under
different compilation options. Function jpeg_idct_islow has
2 secret-dependent branches, labeled as b1 and b2.

Application
Functions with

Secret-dependent
Branches

# of Vulnerable Loads

O0 O1 O2 O3

Libjpeg v9f
jpeg_idct_islow (b1) 16 1 1 1
jpeg_idct_islow (b2) 16 8 8 8

MbedTLS v3.6.1 mbedtls_mpi_inv_mod 0 0 0 6
WolfSSL v5.7.2 mp_invmod_slow 0 0 0 18

determine whether the instruction sequence generated by
LLVM [35] contains exploitable loads. For each load, we
identify the closest preceding store in the same basic block or
a preceding block and calculate the LS distance. Then, for that
store, we calculate the Def distance between it and its define
instruction to check whether the difference between the
delay capacity and the Def distance exceeds the LS distance.
If it does, the load is deemed exploitable.
It is important to note that the define instruction can be

traced further back in the instruction stream, allowing us to
continue searching for the source operands corresponding
to the define instruction’s operands, thereby providing more
accurate delay information. Based on empirical observations,
we currently use a 4-level trace-back and select the instruc-
tion with the largest difference between delay capacity and
Def distance for comparison with the LS distance. The com-
plexity of the search algorithm is 𝑂 (𝑛3), where 𝑛 represents
the number of basic blocks in a function. The primary bottle-
neck lies in calculating the distances between instructions,
as determining the distance between instructions in different
basic blocks requires computing the shortest path between
those blocks. We use the Floyd algorithm [26] to calculate the
shortest path, which has a complexity of 𝑂 (𝑛3). The short-
est path may overlook additional instructions at runtime,
which can prevent the MDU from being updated by some
marked loads. However, this approach still achieves its goal
of identifying all potentially vulnerable loads.

Using our methodology, which takes advantage of LLVM,
we search for potentially exploitable code snippets in the
latest versions of Libjpeg, MbedTLS, and WolfSSL. Since the
focus of this paper is on bypassing existing defenses, we
specifically target functions with known secret-dependent
branches and use this code pattern to search for exploitable
loads. Given that different optimization options produce
significantly different instruction sequences, we perform
searches on instruction sequences generated by four dif-
ferent optimization levels passed to LLVM. The results are
summarized in Table 2. In Libjpeg, numerous stores and
loads exist along the secret-dependent branch paths, leading
to many exploitable code snippets. In contrast, developers
of MbedTLS and WolfSSL are aware of the importance of

1 // if u >= v

2 if (mp_cmp(&u, &v) != MP_LT) {

3 // u = u – v

4 mp_sub(&u, &v, &u);

5 }

6 else {

7 // v = v – u

8 mp_sub(&v, &u, &v);

9 }

1 int mp_sub (mp_int * a,mp_int * b,mp_int * c) {

2 int sa, sb, res; sa = a->sign; sb = b->sign;

3 if (sa != sb) {

4 c->sign = sa; res = s_mp_add (a, b, c);

5 } else {

6 if (mp_cmp_mag (a, b) != MP_LT) {

7 c->sign = sa; res = s_mp_sub (a, b, c);

8 } else {

9 c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;

10 res =s_mp_sub (b, a, c);

11 }

12 }

13 return res;

14 }

Inline
(O3)

mov -0x130(%rbp),%rdx

mov %eax,0x8(%rdx)

mov -0x128(%rbp),%rdi

...

call 4e600 <s_mp_sub>

Compile

Vic�m Space
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Vulnerable Loads Loca�on
Vulnerable Load 2
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Vulnerable Load 1 
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Vulnerable Load 3 
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Case 2: branch not taken (u < v)Selected by
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Figure 10. An example of vulnerable loads in WolfSSL and
the workflow of MDPeek for probing the direction of a secret-
dependent branch is as follows. When compiled with -O3, the func-
tion mp_sub within mp_invmod_slow is inlined. The delayed store
occurs when writing to c->sign, while the exploitable load is used
to pass a parameter to the function s_mp_sub. MDPeek exploits the
MDU update by one of the vulnerable loads to leak whether the
secret-dependent branch is taken or not.

branch balancing and have implemented balancing at the
source code level, so exploitable loads are found only with
the -O3 optimization level. This is because -O3 optimiza-
tion inlines certain simple functions, exposing additional
stores and loads. This phenomenon has also been exploited
in previous research [44]. The exploitable loads primarily
appear around function calls, where variables are fetched
from the stack. A typical exploitable code snippet is shown
in Figure 10. After the function mp_sub is inlined, its code
appears along the secret-dependent branch paths. The write
to the variable c->sign results in a delayed store, and the
subsequent call to s_mp_sub retrieves parameters from the
stack, resulting in an exploitable load.

As illusrated in Figure 10, during the MDPeek attack, the
attacker hijacks control before the victim executes the secret-
dependent branch and initializes the MDU counter to 15
using three aliased store-load pairs, where the load PCs are
256-byte aligned (i.e., with the same 8 least significant bits).
If the branch is taken, one of the three vulnerable loads
updates the MDU counter. The attacker then probes the
MDU counters to infer the branch direction.

6 End-to-end Attacks with MDPeek
Since MDPeek uses a new leakage source, it is capable of
bypassing existing flushing-based defenses. Moreover, MD-
Peek exploits the selection of the load PC’s lowest 8 bits,
enabling it to circumvent existing branch balancing defenses.
Through our experiments, we have also demonstrated that
the MDU is shared across different processes running on
the same physical CPU, including processes in SGX. In this
section, we implement end-to-end attacks using MDPeek on
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3 real-world applications, validating the effectiveness and
practicality of MDPeek.
We confirm the effectiveness of MDPeek across 8 Intel

CPUs spanning different microarchitectures, including Core
i7-6700K (Skylake), i7-7567U (Kaby Lake), i7-8650U (Kaby
Lake R), i5-5365U (Whiskey Lake), i9-9900K (Coffee Lake),
i7-10700 (Comet Lake), i7-1065G7 (Ice Lake), and Xeon E-
2314 (Rocket Lake). In this section, we primarily focus on the
i7-6700K CPU. We first introduce the code used to initialize
and probe the MDU state, followed by the attacks on Libjpeg,
MbedTLS, and WolfSSL, respectively.

6.1 The MDPeek Attack Primitive
In the attack on RSA key generation (e.g. in WolfSSL and
MbedTLS), the generated key differs with each execution,
requiring us to complete MDPeek in a single trace without
the ability to reduce noise by repeatedly running the victim.
Therefore, we need code that shows strong resistance to
noise to initialize and probe the MDU state. Using a method
similar to that described in Section 5.1, we automatically se-
lect data-dependent instructions and place them both before
the store and after the load.
We use a non-aliased store-load pair to measure the exe-

cution time under two conditions: when the MDU counter
equals 0 and when it is greater than 0, obtaining distinct tim-
ing distributions. If the counter equals 0, the MDU predicts
that the load can execute out of order, leading to shorter
execution times. Conversely, if the counter is greater than 0,
the MDU predicts that the load will be blocked, allowing it to
execute only after the store’s address is generated, resulting
in longer execution times. Let 𝑇1 represent the timing distri-
bution when the MDU equals 0, and 𝑇2 represent the timing
distribution when the MDU is greater than 0. We define an
evaluation function 𝐹 as follows:

𝐹 (𝑇1,𝑇2) =𝑊 (𝑇1,𝑇2)−15(𝑉 (𝑇1)+𝑉 (𝑇2))−
1
4
(𝑀 (𝑇1)+𝑀 (𝑇2)) .

where 𝑀 represents the mean of the distribution, 𝑉 rep-
resents the variance, and𝑊 represents the 1-Wasserstein
distance [48] between the two distributions to measure their
difference. The evaluation function 𝐹 selects code sequences
where the distributions 𝑇1 and 𝑇2 are smaller, more stable,
and exhibit a significant difference, making them suitable
for probing the MDU state.
We automatically enumerate different instruction types

and counts of data-dependent instruction sequences, and
select the code with the greatest 𝐹 . Based on the results, we
select the lea instruction to introduce delays and amplify
the timing difference, executing it 50 times both before the
store and after the load. The probing code is shown in the
snippet in Figure 11, indicating that the timing distributions
for the two MDU states are stable and show approximately
a 150-cycle difference, allowing for accurate probing of the
MDU counter. We also use this code to initialize the MDU.

stld_probe:
mov $-8, %r9
.rep 50
lea 0x40(%rdi,%r9,8), %rdi
.endr
mov %rdi, (%rdi)
mov (%rsi), %rax
.rep 50
lea 0x40(%rax,%r9,8), %rax
.endr
lfence
ret

D
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Execu�on Time / Cycle

> 0
= 0

Figure 11. Code to initialize and probe the MDU counters
(left), and the time distribution for two MDU states (right).

1 1 2 2original recovered original recovered

Figure 12. Example of recovered images from Libjpeg attack
through MDPeek.

Specifically, we execute 3 store-load pairs with the same
address to initialize a MDU counter to 15.

6.2 Attacking Libjpeg
Victim Code. During image decoding, Libjpeg uses an in-
verse discrete cosine transform (IDCT) to convert compressed
frequency-domain data back into spatial-domain data. The
algorithm processes 8x8 pixel blocks sequentially, scanning
the image from the top-left to the bottom-right, and calls
the jpeg_idct_slow function for each block, as shown in
Figure 13(a). For each invocation, the algorithm executes
eight iterations, each containing secret-dependent branches.
In the case of a black-and-white image, the branch direction
depends on the distribution of black and white pixels in the
block, following a specific pattern.
Method. We synchronize with the victim code using the
page fault sequence shown in Figure 13(a) and performMDU
initialization and probing. To facilitate page table manipula-
tion, we use SGX-Step[56]. We observe that the number of
taken and no-taken branches varies according to the pixel
distribution pattern. For each branch, after all eight itera-
tions, we perform a probe to record how many times the
branch is taken, as shown in Figure 13(a). Finally, we use a
precomputed mapping table to map the results to specific
pixel distributions, in order to reconstruct the image.
Evaluation. We evaluate the effectiveness of the attack us-
ing fingerprint images from the FVC2004 dataset [15]. MD-
Peek takes 7.8 minutes to leak a 640 × 480 image on average,
achieving an accuracy of 98.76% in recovering the pixels in
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Figure 13. Examples of attack procedures and side channels for three applications. For Libjpeg (a), each secret-dependent
branch is executed 8 times in each each idct_slow function call, and we only interrupt this function twice. For MbetTLS
(b) and WolfSSL (c) attacks, we trigger a page fault of the instruction page before and after each secret-dependent branch to
initilize and probe, and then infer the branch direction using the MDU side channel.

the reconstructed image that match the original image. Fig-
ure 12 shows 2 examples. Although some side-channel noise
introduces small image artifacts in the form of noise dots, it
does not significantly affect the overall image contours.

6.3 Attacking MbedTLS
Victim Code. When implementing the RSA-CRT key gener-
ation algorithm, MbedTLS uses the BEEA (Binary Extended
Euclidean Algorithm) to compute 𝑞−1 mod 𝑝 . The inputs
to BEEA are large prime numbers 𝑝 and 𝑞, and the algo-
rithm repeatedly executes three steps: u-loop, v-loop, and
sub-step [3]. The u-loop and v-loop are deterministic and
can be directly obtained through the page fault sequence.
The branches we attack occur in the sub-step phase, which
is executed once in each iteration.
Method. We synchronize with the victim using the page
fault sequence shown in Figure 13(b). Similarly, we imple-
ment it using SGX-Step. For each sub-step, there are three
exploitable loads in each branch direction. We can probe
any of these to recover the branch direction. We initialize
the counter to 15, and if a load is executed, the counter is
updated to 14, as shown in the example in Figure 13(b). Fi-
nally, based on the branch direction in the sub-step and the
number of u-loop and v-loop executions in each iteration,
we can calculate the iteration values for each iteration, ul-
timately recovering 𝑝 and 𝑞. By using multiple load probe
results and applying a voting mechanism, we can select the
branch direction and reduce noise.
Evaluation. We use MDPeek to recover the randomly gen-
erated large primes 𝑝 and 𝑞 during the RSA-CRT generation
of a 2048-bit key. We perform 1000 attacks with different pri-
vate keys. Each attack takes about 830 ms. We probe different
MDU counters selected by various loads to reduce the noise.
The success rate for a single load exceeds 97%. By using two
loads, the noise can be effectively mitigated, allowing the
key to be recovered with nearly 100% accuracy.

6.4 Attacking WolfSSL
Victim Code. In WolfSSL’s RSA algorithm, BEEA is used
to compute 𝑒−1 mod 𝜆, where 𝑒 is the public key, typically a
small integer such as 65537. Besides, we have 𝜆 = (𝑝 −1) (𝑞−
1)/𝐺 , where 𝐺 = gcd(𝑝 − 1, 𝑞 − 1).
Method. We synchronize with the victim using the page
fault sequence shown in Figure 13(c), and then use a method
similar to the one mentioned in Section 6.3 to recover the
branch direction during the sub-step process. After obtaining
𝜆, we test all possible 𝐺 from 2 to 𝜆. For a given 𝐺 , we let
Φ(𝑁 ) = 𝜆𝐺 . We let 𝑁 = 𝑝𝑞, which is also a part of the public
key, and computer the candidate 𝑝 and 𝑞 as:

𝑝, 𝑞 =
(𝑁 + 1 − Φ(𝑁 )) ±

√︁
|𝑁 + 1 − Φ(𝑁 ) |2 − 4𝑁
2

.

We use the Newton-Raphson algorithm [25] to test whether
the recovered values are integers. If they are, we return 𝑝

and 𝑞. Otherwise, we continue testing the next possible 𝐺 .
Evaluation. We use MDPeek to recover the randomly gen-
erated large primes 𝑝 and 𝑞 during the RSA key generation
process for a 2048-bit key. Similar to MbedTLS attack, we per-
form 1000 attacks with different keys and use various loads
to reduce noise. Each attack takes approximately 880 ms. The
success rate for a single load exceeds 95%. When more than
5 loads are used, the attack success rate approaches 100%.

7 Impact and Limitations of MDPeek
7.1 Practical Impact
MDPeek demonstrates a novel side-channel attack against
SGX. In addition to bypassing the defense strategies outlined
in Table 1, it also has practical implications for certain side-
channel defenses and the design of future TEEs.
Impact on constant-time implementation. Some existing
defense techniques employ constant-time implementations
to mitigate side-channel attacks. For example, the state-of-
the-art defense technique Obelix [60] obscures the program’s
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control flow by reordering instruction sequences. To defend
against program counter (PC) leaks, such as the Frontal At-
tack [44], Obelix places memory access instructions into
64-byte aligned instruction slots, ensuring memory access
alignment. However,MDPeek shows that the alignment gran-
ularity still needs to be increased. Specifically, the alignment
should be raised to 256 bytes.
Impact on future TEEs. MDPeek requires two critical fac-
tors. First, the MDU is not flushed during context switches.
Second, SGX can be interrupted by the attacker. While SGX-
Step, the tool used in this work, is specific to Intel SGX, a
recent study [61] shows that similar attack frameworks can
also be applied to Intel TDX, the latest version of Intel’s TEE.
Furthermore, we observe that the MDU design has not been
updated in the latest 13th and 14th-generation Intel Core
CPUs. Given these factors, Intel’s current and future TEEs
should still account for the potential threat of MDPeek at-
tacks. We leave the feasibility of MDPeek on Intel TDX and
future TEEs for future work.

7.2 Comparisons and Limitations
Noise resistance. Some SGX side-channel attacks require
repeated experiments to reduce noise and improve success
rates. For instance, the Frontal Attack [44] requires 1000
repetitions to achieve a 60% success rate. This requires that
the victim use the same key across multiple executions, such
as in RSA decryption, which limits other attack scenarios
that rely on single-trace analysis, like RSA key generation.

In contrast, MDPeek demonstrates better noise resistance,
achieving a high success rate with a single execution. This
is because the state of the MDU is less susceptible to inter-
ference from interrupt handling and context switching. To
further verify this, we analyze the update of all 256 MDU
counters during a page fault and context switch, observing
the stability of their counts. Specifically, we find that 210
counters maintain a stable count with a probability of 95%,
either remaining unchanged or consistently decreasing by
a fixed value. As a result, MDPeek shows superior noise
resistance compared to previous research.
Practicality. Compared to other side-channel attacks [41, 44,
51, 57] and transient execution attacks [8, 50, 55] targeting
SGX, MDPeek does not require the use of the APIC for single-
step execution, nor does it need complex configurations to
trigger specific microarchitectural behaviors. This simplifies
the attack and enhances its feasibility.
Limitations. Compared to other attacks, MDPeek imposes
higher requirements on the victim’s code. For example, BPU
attacks [14, 65] only require a branch instruction, with no
specific requirements for the instructions along the branch
path. Similarly, some attacks leveraging cache and prefetch-
ers [9, 40] only require the presence of a load instruction
along the branch path. However, MDPeek requires a store-
load pair along the branch path, which limits its attack sur-
face and increases the difficulty of software analysis. We

leave the development of more efficient and accurate soft-
ware analysis techniques for identifying MDPeek-usable
code to future work.

7.3 Other Security Implications
Other attacks on Intel CPUs. In addition to side-channel
attacks targeting SGX, the reverse engineering of the MDU
reveals that it can also be updated during transient execution.
Therefore, similar to previous studies [5, 47], the MDU can
serve as a new covert channel, allowing attackers to leak
data during transient execution. Furthermore, we discover
that the MDU is time-multiplexed between two hyperthreads
on the same physical core. As a result, the MDU could also
become a new source of leakage, potentially enabling covert
channels or side-channel attacks across logical cores [52].
Similar attacks on other architectures. Recent studies [33,
34] have shown that, similar to the MDU, both AMD and
Arm CPUs have implemented components for memory dis-
ambiguation. However, unlike Intel, Arm CPUs do not have
counters for the MDU [33], while counters on AMD’s mem-
ory access predictors are selected by physical addresses [34],
which may increase the complexity of the attack. We leave
the exploration of similar attacks on AMD for future work.

8 Defenses against MDPeek
8.1 Proposed Defense Mechanisms
Under the threat model proposed in this paper, the attacker
can disable hardware features such as ASLR [13] and Specu-
lative Store Bypassing Disable (SSBD) [24], making current
hardware-based defenses ineffective against MDPeek. In this
section, based on our reverse engineering, we present several
software-based defenses and evaluate their performance. We
implement these defenses in the LLVM backend.
Serialization. According to the MDU’s enable logic, both
the store and loadmust be present in the ROB simultaneously
for the MDU to trigger an update. Therefore, inserting an
lfence between the store and load prevents the MDU from
updating. We implement this defense in LLVM by inserting
an lfence either after the store or before the load.
Balancing. Based on the MDU’s selection mechanism, MD-
Peek cannot distinguish between loads with the identical
lowest 8 bits of their PCs (i.e., loads aligned to 256 bytes). We
place these loads at the entry of basic blocks and use LLVM’s
API to ensure the basic blocks are aligned to 256 bytes.
Store-to-load coupling. According to the MDU’s enable
logic, the MDU only predicts and updates when the CPU
is uncertain about the data dependence between the store
and load. To address this, we insert arithmetic instructions
between the store and load to couple them. As shown in
Figure 5, we add an and instruction, using the store address
as the source and the load address as the destination operand,
allowing the CPU to recognize the dependence between the
store and load. Based on our analysis in Section 4.6, for
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Figure 14. Performance evaluation of defenses. We normalize the execution time of each benchmark according to the baseline
(i.e., complied without defenses). The performance overhead of store-to-load coupling is much smaller than other defenses.

each exploitable load, we only need to identify the nearest
store and couple them. This method delays the store address
generation (i.e., 𝑡𝑠2 in Figure 4) but does not block out-of-
order execution in subsequent stages, thereby minimizing
the performance loss.
Evaluation. We evaluate the performance of the abovemeth-
ods using the SPEC 2017 intrate benchmark suite. Bench-
marks without any defenses serve as the baseline, and we
compare the performance overhead of each defense method.
The results are shown in Figure 14. The lfence defense,
which prevents out-of-order execution after the store or load,
incurs the highest overhead, with an average performance
loss of 140% for store fencing and 170% for load fencing.
The balancing defense disrupts the program’s spatial local-
ity, reducing the effectiveness of the cache and prefetcher,
leading to a performance overhead of approximately 160%.
In contrast, store-to-load coupling preserves as much CPU
out-of-order execution and cache performance as possible,
resulting in an average performance overhead of 20%, a sig-
nificant improvement of 7 times compared to other defenses.

8.2 Discussion and Future Work
Software-based Defenses. In addition to using the xor in-
struction, there are other ways to explicitly establish data
dependence. For example, YSNB [42] employs the xor and
lahf instructions to enforce data dependence by linking
registers stored at branch boundaries or the EFLAGS regis-
ter with sensitive data accessed within the branch, thereby
mitigating Spectre-V1 attacks [27]. Additionally, other arith-
metic instructions can also be leveraged to establish data
dependence and prevent MDU updates. Evaluating the per-
formance overhead introduced by different instructions for
explicitly establishing data dependence remains an open
research question, which we leave for future work.
Hardware-based Defenses. Under the threat model consid-
ered in this work, existing hardware-based defense mecha-
nisms are ineffective. For example, while Intel CPUs provide
SSBD to mitigate the Spectre-V4 attack by disabling theMDU
and speculative execution of the loads, an attacker with root
privileges can simply disable this protection. Nevertheless,
future CPU or TEE designs could incorporate mitigations
against MDU-based side-channel attacks, aiming to prevent
MDPeek while minimizing performance overhead.

For example, store and load instructions with unresolved
dependence can be dynamically identified during execution.
Compared to software-based approaches, this would allow
for more precise detection and blocking of vulnerable loads
that update the MDU. A similar approach has been proposed
for identifying vulnerable loads in Spectre attacks [53].
Besides, for vulnerable loads, a more fine-grained serial-

ization mechanism can be employed to prevent execution or
MDU updates. For example, the CSF architecture [54] imple-
ments a lightweight dfence instruction, which prevents the
execution of loads with unresolved memory disambiguation
without blocking other instructions. This mechanism can be
extended to restrict loads from updating the MDU, thereby
enabling more efficient load hardening.

9 Conclusion
In this paper, we present MDPeek, the first side-channel at-
tack that leverages the Memory Disambiguation Unit (MDU).
MDPeek is capable of bypassing existing defenses and com-
promising control flow in SGX, such as balanced branches.
To implement MDPeek, we perform an in-depth reverse engi-
neering on the MDU’s enable and update logic and develop a
code pattern for automatically identifying exploitable loads
in Libjpeg, MbedTLS, and WolfSSL. We successfully imple-
ment three end-to-end attacks. Finally, we propose a defense
to protect the applications within SGX against MDPeek. This
research highlights the need for further considerations in
defending against control flow attacks in SGX, particularly
regarding the potential impact of new leakage sources.
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A Artifact Appendix
A.1 Abstract
This artifact consists of two main components: first, a proof-
of-concept (PoC) code demonstrating that the Memory De-
pendence Unit (MDU) is not isolated within or outside of
SGX; and second, an end-to-end attack on MbedTLS RSA
using MDPeek. The PoC code leverages ecall to establish
a covert channel inside and outside SGX using the MDU,
encoding a bit into an MDU counter on each execution. This
process transmits the bit from inside SGX to outside. This
experiment not only validates the feasibility of MDPeek but
also demonstrates how to initialize and probe the MDU coun-
ters, as detailed in Section 6.1.
The MbedTLS attack uses SGX-Step to synchronize the

attacker and victim. The attacker manipulates the page ta-
bles to interrupt the victim’s execution at a 4KiB granularity,
and initializes and probes the MDU at the appropriate times,
as shown in Figure 3. By observing changes in the MDU
counters, the attacker infers the branching direction depen-
dent on secret data in the modular inversion algorithm of
MbedTLS, thus leaking the large prime numbers 𝑝 and 𝑞,
completing the attack described in Section 6.3.

Both the PoC and MbedTLS attack require SGX and must
therefore be executed on Intel CPUs that support SGX. The
MbedTLS RSA attack specifically requires SGX-Step as the
attack framework to allow the attacker to hijack the victim’s
control flow at the page granularity. As an example, this
section describes how to run the artifact on an Intel i7-6700K
CPU with the Ubuntu 18.04 operating system and Linux
kernel version 5.4.0.

A.2 Artifact check-list (meta-information)
• Program: A proof of concept (PoC) demonstrating that the
MDU is not isolated inside and outside Intel SGX, along
with an end-to-end MDPeek attack against MbedTLS RSA,
as described in Section 6.3.

• Compilation: GCC version 7.5.0 and G++ version 7.5.0.
• Binary: A precompiled static library of MbedTLS version X
(replace with version number).

• Run-time state: ASLR disabled, SGX-Step enabled.
• Run-time environment: Ubuntu 18.04, Linux kernel ver-
sion 5.4.0, Python 3.12.8, make, sudo.

• Hardware: Intel i7-6700K.
• Execution: For the PoC, a covert channel is exploited to
simulate the MDPeek attack; for the MbedTLS attack, SGX-
Step is used to break a list of pages, and the MDU is probed
at specific pages to leak the secret-dependent control flow.

• Output: For the PoC, a string inside SGX is leaked to the
attacker outside SGX and printed on the command line. For
the MbedTLS attack, after several attempts, the private big
primes 𝑝 and 𝑞 are leaked and printed on the command line,
which can be further verified through the normal output key
file of MbedTLS.

• Disk space required (approximately): 3 GiB.

• Time required to prepare theworkflow (approximately):
2 hours.

• Time required to complete experiments (approximately):
1 minute.

• Publicly available?: Yes.
• Code license (if publicly available): Apache-2.0 License.
• Archived (provide DOI)?: 10.5281/zenodo.14776190.

A.3 Description
A.3.1 How to access. The code can be accessed from
Zenodo: https://doi.org/10.5281/zenodo.14776190, or from
GitHub: https://github.com/CPU-THU/MDPeek.

A.3.2 Hardware dependencies. SGX must be enabled,
and specific configurations of SGX-Step are required. To
enable SGX-Step, we recommend using devices where SGX-
Step has been demonstrated to work. For example, we use the
Intel i7-6700K to run the artifact. For more details, please re-
fer to the SGX-Step repository: https://github.com/jovanbulck/
sgx-step.

A.3.3 Software dependencies. C and C++ compilers are
required to build the attack program. For instance, we use
gcc 7.5.0, g++ 7.5.0, and make 4.1 to compile the attack
program. The SGX SDK is required to build the PoC, while
the SGX-Step driver and source code are necessary to build
the end-to-end attack program.

A.3.4 Code Organization. The code is located in /home/
mdpeekae/MDPeek, and it is organized in two main directo-
ries, each corresponding to a different experiment.

• PoC (Proof of Concept) demo of MDPeek: located in the
directory attack-demo, containing the PoC attack demon-
stration to verify the MDU-based side-channel attack (i.e.,
MDPeek) proposed in our paper.

• End-to-end attacks through MDPeek: located in the di-
rectory attack-mbedtls, corresponding to the MbedTLS
attack in the paper in Section 6.3 and containing the setup
and scripts of the MbedTLS Attack in Section 6.3.

A.4 Installation
A.4.1 PoC. Please ensure the SGX SDK and SGX driver
have been installed before building the PoC. For more details
on SGX installation, please refer to https://github.com/intel/
linux-sgx. If SGX SDK in installed, update the SGX SDK path
in Makefile if necessary. SGX SDK path locates in line 34 of
Makefile:

SGX_SDK ?= <path-to-sgx-sdk> # SDK path

Then we can build the attack framework:

make

We need to ensure that the least significant 8 bits of the
load PC should be aligned, so that the code in the enclave

https://doi.org/10.5281/zenodo.14776190
https://github.com/CPU-THU/MDPeek
https://github.com/jovanbulck/sgx-step
https://github.com/jovanbulck/sgx-step
https://github.com/intel/linux-sgx
https://github.com/intel/linux-sgx
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selects the same MDU counter. Please follow the readme.md
file to check the alignment. If the loads in the enclave are not
aligned with the loads outside, please follow the instructions
in the readme.md file to adjust them.

A.4.2 MbedTLS Attack. This attack uses the SGX-Step
framework to trigger page faults and hijack the control flow
of the victim. Please install SGX-Step following instructions
in their repository. By default, the SGX SDK will be installed
to /opt/intel/sgxsdk. After building the SGX-Step, insert
the kernel module:

sudo insmod <path-to-sgx-step>/kernel/sgx-step.ko

Next, update the SGX-Step and SGX SDK paths inMakefile
if necessary. SGX SDK path locates in line 34 of Makefile,
and SGX-Step path locates in line 77 of Makefile.
To avoid the complicated control flow hijacking setup,

update the libsgx_mbedcrypto.a in SGX SDK. The default
path is /opt/intel/sgxsdk/lib64:

sudo cp lib/libsgx_mbedcrypto.a
<path-to-sgx-sdk>/lib64

Finally, build the attack framework:

make

A.5 Experiment workflow
A.5.1 PoC. The attacker, located outside SGX, first ini-
tializes two MDU counters corresponding to two store-load
pairs on the two paths of a secret-dependent branch within
SGX. Then, the attacker triggers the execution of the branch
via ecall. During execution, the branch path is determined
by a specific bit from a byte of the secret string. After the
branch execution, the attacker regains control and probes
the updates to the two MDU counters. The secret bit can
be inferred from the update of one of the MDU counters.
Each bit of the secret string is leaked through a single trace,
meaning each bit is leaked only once.

A.5.2 MbedTLS Attack. Using the method proposed in
Section 5, the attacker first analyzes the modular inversion
function of MbedTLS to identify exploitable store-load pairs
in the paths of the secret-dependent branch. Since the gen-
eration of load instructions is closely tied to the compiler
version and compilation options, the artifact uses a precom-
piled static library of MbedTLS as the victim program. The
attacker manages the page tables and hijacks the victim’s ex-
ecution through page faults, enabling the MDU side-channel
attack. The attacker identifies which MDU counters are as-
sociated with the loads in the victim’s address space and

places a load in their own address space, aligned to 256 bytes,
thereby creating a shared MDU counter.

To determine when to initialize and probe the MDU coun-
ters, the attacker constructs a fixed page fault chain inde-
pendent of the secret. Specifically, the attacker triggers page
faults sequentially across a set of pages, performing theMDU
side-channel attack on specific page faults while using oth-
ers to obtain the victim’s current control flow information.
Therefore, the attacker must have prior knowledge of the
victim’s control flow at the page granularity and disable
ASLR. Given the attacker’s root privileges, these actions are
entirely feasible.

The workflow of the MbedTLS attack is shown in Figure 3.
Before reaching the secret-dependent branch and executing
the store-load pair, the attacker uses a set of store-load pairs
in the attacker’s own address space to execute stores and
loads at the same address, setting the two MDU counters to
15. After the victim executes the secret-dependent branch, a
load on one of the branch paths updates the MDU counter
to 14, while the other load is not executed, leaving the corre-
sponding MDU counter at 15. The attacker then probes the
MDU counters again to observe which counter is updated,
inferring the branch direction. Finally, the attacker uses a
Python script to reconstruct the secret values 𝑝 and 𝑞 from
the branch directions.

A.6 Evaluation and expected results
A.6.1 PoC. To run the PoC, execute:

./app

The attack procedure will leak the secret string, which will
be displayed on the command line. The secret string can be
modified to further demonstrate the feasibility of MDPeek.
For more details, please refer to the readme.md file.

A.6.2 MbedTLS Attack. First, disable ASLR because the
attacker has the root privilege:

sudo ./scripts/disable_aslr.sh

Second, run the attack:

python3 attack.py

Note that the python version should be later than 3.7. If the
attack procedure gets stuck due to a communication issue,
please kill the process and try again.
The attack procedure will try at most 10 times to leak 𝑝

and 𝑞 of the RSA private keys. When a 𝑝 and 𝑞 larger than 0
is leaked, the procedure will print the values and exit. The
output of MbedTLS (the ground truth) is recorded in file
rsa_output.txt. We can print the real 𝑝 and 𝑞 from this
private key file to verify that the attack is successful.
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