
Anvil: A General-Purpose Timing-Safe Hardware
Description Language

Jason Zhijingcheng Yu
∗

yu.zhi@comp.nus.edu.sg
National University of Singapore

Singapore

Aditya Ranjan Jha
∗

arjha@comp.nus.edu.sg
National University of Singapore

Singapore

Umang Mathur

umathur@comp.nus.edu.sg
National University of Singapore

Singapore

Trevor E. Carlson

tcarlson@comp.nus.edu.sg
National University of Singapore

Singapore

Prateek Saxena

prateeks@comp.nus.edu.sg
National University of Singapore

Singapore

Abstract
Hardware designs routinely use stateless signals which change

with their underlying registers. Unintended behaviours arise

when a register is mutated even when its dependent signals

are expected to remain stable (unchanged). Such timing haz-
ards are common because, with a few exceptions, existing

HDLs lack the abstraction for stable values and delegate

this responsibility to hardware designers, who then have to

carefully decide whether a value remains unchanged, some-

times even across hardware modules. This paper proposes

Anvil, an HDL which statically prevents timing hazards with

a novel type system. Anvil is the only HDL we know of that

guarantees timing safety without sacrificing expressiveness

for cycle-level timing control or dynamic timing behaviours.

Instead of abstracting away differences between registers

and signals, Anvil’s type system exposes them fully but cap-

tures timing relationships between register mutations and

signal usages for enforcing timing safety. This, in turn, en-

ables safe composition of communicating hardware mod-

ules by static enforcement of timing contracts that encode
timing constraints on shared signals. Such timing contracts

can be specified parametric on abstract time points that can

vary during run-time, allowing the type system to statically

express dynamic timing behaviour. We have implemented

Anvil and successfully used it for implementing key timing-

sensitive modules in an open-source RISC-V CPU, which

demonstrates its expressiveness and practicality.

1 Introduction
Hardware description languages (HDLs) shape the way peo-

ple think about and describe hardware designs. Ideally, an

HDL should provide easy-to-use abstractions for hardware

designers to express their intention precisely and correctly.

The concurrent and continuous behaviour of hardwaremakes

this challenging.

Unlike software programs, where values are all persistent

(stored either in registers or in memory), hardware designs

∗
Equal contribution.

involve separate notions of signals and registers. While a reg-

ister can store persistent values and be assigned new values

every cycle, signals are stateless, with their values changing

with the registers they depend on. If the hardware designer

expects a signal to remain unchanged across multiple cycles,

they must explicitly ensure the underlying registers are not

mutated. Incorrect timing of register mutation and signal

use thus easily introduces invalid or wrong values during

run-time and may even expose the hardware design to time-

of-check-to-time-of-use (TOCTOU) attacks. We call such

problems timing hazards. The problem of timing hazards is

further exacerbated by the concurrent nature of hardware

designs: a hardware design commonly consists of multiple

modules executing in parallel, and communicating with each

another via sharing signals.

Most existing HDLs such as SystemVerilog [5], VHDL [4],

and Chisel [10], fail to catch timing hazards at compile time,

leaving designers to discover these issues only during sim-

ulation, without any compiler warnings. Indeed, designers

frequently seek help on discussion forums [13, 15, 37] sim-

ply to pinpoint the origins of the errors. Timing hazards are

prevalent even among experienced designers and in widely

used open-source hardware components (please see real-

world examples in Appendix C).

A principled way to eliminate timing hazards is by guaran-

teeing timing safety in the HDL. The key challenge, though,

towards this goal is to simultaneously also provide enough

expressiveness for writing general-purpose hardware de-

sign use cases. Some existing HDLs have been designed to

provide timing safety but at a significant cost of expressive-

ness, making them only suitable for specific applications.

Some high-level synthesis (HLS) languages [2, 6, 9] offer a

software-like programming model for hardware design. Tim-

ing hazards are not a concern in HLS languages since they ab-

stract away cycle latencies as well as the distinction between

wires and registers, making all values stable indefinitely, á la

variables are in software programming. This expressiveness

for cycle-level control and wires is unfortunately absent in

1

ar
X

iv
:2

50
3.

19
44

7v
1

 [
cs

.A
R

]
 2

5
M

ar
 2

02
5

https://orcid.org/0000-0001-6013-157X

Jason Zhijingcheng Yu, Aditya Ranjan Jha, Umang Mathur, Trevor E. Carlson, and Prateek Saxena

such languages. This is an essential abstraction in general-

purpose hardware designs, especially where performance is

a priority. Consequently, the applicability of HLS languages

is limited to speeding up algorithms with programmable

hardware (e.g., FPGA). Other languages focus only on spe-

cific types of hardware designs, such as CPUs [38] and static

pipelines [29, 35].

We present Anvil, the first HDL we know of that guar-

antees timing safety while maintaining expressiveness for

general-purpose hardware design use cases. Anvil allows

hardware designers to seamlessly specify cycle-level delays

and to express whether a value is stored in a register. Anvil

also supports expressing hardware designs with dynamic

timing behaviours easily.

Anvil achieves timing safety statically with a novel type

system which captures the timing relationships between

register mutations and use of signals. Anvil performs type

checking that reasons about whether each use of signal takes

place in the time window in which it carries a stable and

meaningful value and rejects code that is not timing safe.

Designs written in Anvil can thus specify precise cycle-level

behaviour and register updates. This is in contrast to HLS

languages [2] that hide wires and cycles beneath their ab-

stractions. Across hardware modules, Anvil’s type system

guarantees safe composition by statically checking against

timing contracts, which specify constraints regarding com-

municated signals, including constraints about when such

signals must be kept stable. Although Anvil’s type check-

ing is entirely static, it explicitly allows dynamic timing

behaviours, i.e., the number of cycles for a behaviour of the

hardware design can vary during run-time (e.g., caches). The

type system achieves this by capturing time not in terms of

absolute (fixed) number of cycle, but instead as abstract time

points that correspond to events that may occur arbitrarily

late, for example, the event corresponding to the receipt of

data from another module. This is in sharp contrast to recent

work [29] which where the type system, meant to enforce

timing safety, only allows one to express designs with fixed

static timing behaviours.

We have implemented Anvil (Section 6). The Anvil com-

piler performs type checking and compiles Anvil code to

SystemVerilog. Our evaluations highlight the expressiveness

and practicality of Anvil (Section 7). Designs written in Anvil

can be integrated in existing code bases in other HDLs, thus

allowing incremental adoption and making Anvil immedi-

ately useful. We have successfully used Anvil to implement

key latency-sensitive components for an open-source RISC-

V CPU implemented in SystemVerilog. Despite our Anvil

prototype being an early-stage HDL, the measured area and

power footprints of Anvil designs show practical overhead:

power overhead between 0.5% and 6.4% and area overhead

between 0.6% and 25% compared with hand-coded open-

source SystemVerilog implementations. We have released

Anvil publicly at https://github.com/jasonyu1996/anvil.

module Memory (

...

input logic[7:0] inp,

input logic req,

output logic[7:0] out

);

Figure 1. Interface of a memory module in SystemVerilog.

sig req

Clock

Module Top
 address = 0x00

every clock cycle:
 req = ~req
 if req == 1:

 inp = (address++)
 else:
 print (out)

Memory
0x00 Val 0
0x01 Val 1
0x02 Val 2
0x03 Val 3

 0xFF Val 255

sig[8] inp

sig[8] out

0 1 2 3 4 5 6 7 8 9

clk

req

input 0x00 0x01 0x02 0x03 0x04

output Val 0 Val 2

expected Val 0 Val 1 Val 2 Val 3

e1 e2 e3 e4 e5 e6 e7

0 1 2 3

clk

req

input 0x00

output Val 0

[T, T+2)

[T+2, T+3)

Figure 2.Module Top interfaced with Memory.

Our contributions. We introduce Anvil, an novel HDL to

guarantee timing safety without sacrificing expressiveness,

e.g., for cycle-level control and dynamic timing behaviours.

It features a novel abstractions for specifying timing con-

straints and type-checking to enforce them. The system al-

lows for general-purpose hardware design use cases and

incremental interfacing with existing SystemVerilog code.

2 Motivation
Consider the interface of a memory module in SystemVerilog

in Figure 1. Unlike software, hardwaremodules communicate

using signals that can be continuously read and updated.

Consider an interfacing hardware module (Figure 2, top),

Top, which reads a value from a memory module with the

same interface. The implementation of Top sends an address

as a request and expects to read the output in the following

cycle. However, the circuit outputs are incorrect, as evident

when the system is simulated (Figure 2, bottom left). The

culprit is an unexpected timing delay. The module Top is

written under the assumption that the memory subsystem

responds precisely one clock cycle after the req signal is set.

However, the memory subsystem takes two cycles to process

the lookup request and return the output.

In more detail, the module Top requests address 0x00 by
setting the req signal high during cycle [0, 1). It expects the
output in the next cycle, but the memory has not finished

dereferencing the input address. The memory stops pro-

cessing since the req signal is unset in [1, 2). When req is
2

https://github.com/jasonyu1996/anvil

Anvil: A General-Purpose Timing-Safe Hardware Description Language

set again in [2, 3) with address 0x01, the memory is still

resolving 0x00, returning Val 0 in [3, 4). Meanwhile, the

input address changes from 0x01 to 0x02. When req is set
again in [4, 5), the memory starts processing 0x02, skipping
0x01. As a result, unexpected outputs are observed and only

half of the requested addresses are dereferenced.

The above example illustrates a classic case of timing

hazard, where unintended values are used or values in use

are changed unexpectedly. Here, the module Topmodifies its

input while the memory still processes the address lookup

request. It also reads the output before it is ready.

Timing hazards in existing HDLs. Timing hazards arise

in many popular HDLs such as SystemVerilog and VHDL as

they lack an abstraction for the designer to express stable

values across multiple cycles. Further, these languages also

do not provide a mechanism to encode timing constraints

pertaining to modiciation and use of signals shared between

communicating modules.

Some existing HDLs are designed to mitigate or prevent

timing hazards. Bluespec SystemVerilog (BSV) [3] provides

the abstractions of rules and methods. Rules are bundled

hardware behaviours that execute atomically. Modules can

communicate through invoking each other’s exposed meth-

ods, which add to the behaviours to be executed. The BSV

compiler generates hardware logic to choose rules to execute

in each cycle. For example, if Top reads a value from a cache

and enqueues it into a FIFO queue that only accepts requests

when not full, the design would consist of two rules: one

to invoke the cache’s read method and another to enqueue

the retrieved value into the FIFO. BSV’s scheduler ensures

that rules executed in each cycle do not conflict (i.e., mu-

tate the same registers) and each rule executes atomically.

However, rules only describe operations to execute for the

current cycle. Scheduling is also performed for each cycle

independently. BSV does not reason about behaviours across

multiple cycles [3]. Therefore, in the example, the designer

still needs to manually ensure that the response from the

cache remains stable and avoid timing hazards.

Existing HDLs that provide timing safety (i.e., the guaran-

tee of no timing hazards) face challenges in maintaining ex-

pressiveness. Some high-level synthesis (HLS) languages [2]

provide abstractions of stable values similar to variables in

software programs. They abstract away certain aspects of

hardware design such as register placements and cycle laten-

cies.While their abstractions directly prevent timing hazards,

they lack the precise timing and register control desired in

general-purpose hardware design use cases, especially when

the design needs to be latency-sensitive or efficient.

The closest prior work to Anvil is the Filament HDL [29].

Filament exposes cycle latencies and registers to the designer,

and prevents timing hazards through its type system centred

around timeline types. A timeline type encodes constraints

regarding the time window in which each signal is stable and

0 1 2 3 4 5 6 7 8

clk

req

input 0x00 0x01

output Val 0 Val 0 Val 1

cache hit Hit Miss

0 1 2 3 4 5 6

clk

cache ch req res req res

input 0x00 0x01

output Val 0 Val 1

cache hit Hit Miss

e0 | e1 e2 e0 | e1 e2

[T, T+3) [T+3, T+4)

Figure 3. Cache output waveform expressed safely with

static (left) and dynamic (right) timing contract.

can be used. Timeline types also serve to define contracts

at module interfaces, allowing for safe composition of mod-

ules. Our example memory module can be augmented with

such a contract which requires input and req to remain

constant during [𝑇,𝑇 +2), and the output to remain constant

in [𝑇 +2,𝑇 +3). Figure 2 (bottom, right) illustrates the output

waveform for a system using this contract. However, the

timeline type and the contract it represents only capture

timing intervals whose duration is fixed to be a statically

determined, constant number of cycles. Correspondingly,

Filament only aims to support pipelined designs with static

timing. This prevents Filament from expressing common

hardware designs such as caches and page table walkers that

exhibit dynamic timing behaviour.

To see why this is the case, consider a memory subsystem

with a cache. Its timing behaviour varies significantly be-

tween a cache hit and a cache miss. If the designer chooses a

conservative upper bound statically on the response time to

accommodate both cases, the static timing contract would

prevent timing hazards but nullify the advantage of caching.

Figure 3 (left) illustrates the output waveform for such a sys-

tem, where the contract uses the worst-case delay. In such

cases, one must trade off the flexibility of dynamic latencies

for the static guarantee of timing safety.

3 Timing Safety with Anvil
We present Anvil, an HDL with a novel type system that

statically guarantees timing safety while retaining the level

of expressiveness required for a general-purpose HDL. Un-

like HLS languages that abstract away registers and cycle

latencies, Anvil gives the designer full control over regis-

ter mutations and cycle latencies. And unlike Filament [29],

Anvil’s type system can capture and reason about timing

that varies during run-time. Anvil is thus able to enforce dy-
namic timing contracts across modules and precisely express

hardware designs with dynamic timing behaviours.

Channels. Anvil models hardware modules as commu-

nicating processes [20]. It allows specifying modules with

a process abstraction, using the keyword proc . A pair of

communicating processes can share a bidirectional chan-
nel, through which they send and receive values. Channels

are stateless and both sending and receiving are blocking.

Channels are the only way for processes to communicate.

Events. A central concept that enables Anvil to reason

about dynamic timing is events. Events are abstractions of
3

Jason Zhijingcheng Yu, Aditya Ranjan Jha, Umang Mathur, Trevor E. Carlson, and Prateek Saxena

time which may or may not statically map to a fixed cycle.

The start of every clock cycle is an event that is statically

known (constant). An example of a dynamic event is when

two processes exchange a value through the channel. As

described above, sending and receiving values on a channel

are blocking. The exchange of the value thus completes at a

time both sides agree on: when the sender signals the value is

valid and the receiver acknowledges. The completion of this

value exchange defines a dynamic event that may correspond

to varying clock cycles during run-time.

Event Graphs. A key observation enables Anvil to reason

about events: even though we cannot statically know which

exact cycle an event may correspond to, we know of the

relationships among events. For example, we can statically

obtain that event 𝑒1 corresponds to exactly two cycles after

the cycle 𝑒2 corresponds to, and event 𝑒3 corresponds to the

first time a specific value is exchanged on a channel after

the cycle 𝑒2 corresponds to. Such relationships form an event
graph (Section 5.3) which serves as the basis for Anvil’s type

system (Section 5.4 and Appendix A).

Lifetimes and Dynamic Timing Contracts. Anvil’s type

system uses events to encode the lifetime of a value carried

by a signal. The lifetime of a value is identified by a start

and an end event, between which the value is expected to

remain steady. Channel definitions in Anvil specify the tim-

ing contracts for the exchanged values. Since events can

be bound to varying concrete clock cycles at runtime, such

timing contracts can capture dynamic timing characteristics.

Enforcement of timing contracts ensures timing-safe com-

position of two processes when the events mentioned in the

timing contract are known to both processes, e.g., when they

correspond to value exchanges on the same shared channel.

Example. Figure 4 illustrates how Anvil’s type system dis-

tinguishes between safe and unsafe process descriptions. The

description proc Top_Unsafe refers to Anvil’s representation

(desugared for understanding) of the same circuit Top shown

in Figure 2. In contrast, proc Top_Safe refers to the descrip-

tion that captures the timing characteristics of the memory

subsystem with a cache, as depicted in Figure 3 (right). Anvil

first derives the action sequence and verifies whether the

process description adheres to the constraints that the timing

contracts dictate.

In our examples, the event named req marks the clock

cycle when the address sent by proc Top_Unsafe or Top_Safe

is acknowledged on the channel, whereas the event named

res refers to the clock cycle when data sent by the memory

sub-system is acknowledged. For memory without a cache,

the expected behaviour is specified in a timing contract,

which is encapsulated by the memory channel definition. It
requires that the address sent by Top_Unsafe remains stable

and available starting from the req event for two clock cycles.

Similarly, it specifies that the data sent by memory must be

available for one clock cycle starting from the res event.

The timing contract is not satisfied by process Top_Unsafe ,

and Anvil can detect it at compile time. In the HDL code for

proc Top_Unsafe , the address is sent over the channel during

[𝑒0, 𝑒0 + 1), but the timing of the acknowledgement is uncer-

tain. The output value is utilized during [𝑒0 + 1, 𝑒0 + 2), but
the occurrence of the res event is unknown, as it depends on

whether the memory system has sent it. As a result, it is stat-

ically unclear whether the following address was sent before

the previous output was received and acknowledged. Fur-

thermore, the input address is modified during [𝑒0 +1, 𝑒0 +2),
which violates the requirement for the address to remain sta-

ble for two cycles after acknowledgement. The static checker

in Anvil enables catching such errors in circuit design.

The contract for the example of memory with cache is

specified in the cache channel definition. It implies that the

address sent by process Top_Safe should be available after the

event req , till the next occurrence of event res as specified

by its lifetime (req, req->res) . Similarly, the data sent by the

memory sub-system has a lifetime from (res, res->req) . As

shown in Figure 4 (right), the process Top_Safe definition

satisfies this contract, and thus it is deemed safe.

Anvil in action. Anvil is designed as a general-purpose

HDL that eliminates timing hazards. It allows the designer

to declare timing contracts directly in the interface and pro-

vides higher-level abstractions to enforce those contracts.

Furthermore, the type system of Anvil ensures that these

contracts are respected.

For instance, consider Figure 4 (bottom). The module Top

retrieves a value from a cache memory subsystem and sends

it to a FIFO. Anvil enforces the timing contract by detecting

violations and guiding the designer toward a timing-safe

implementation that respects the channel contract.

Anvil achieves this without sacrificing expressiveness. It

allows capturing timing characteristics precisely without a

trade-off in circuit performance (latency). Since channels

in Anvil are stateless, message acknowledgements happen

instantly. With dynamic contract definitions, designing cir-

cuits with varying timing characteristics is possible. Figure 3

shows the simulation output for both Anvil’s dynamic con-

tracts (right) and static contracts (left). It can be seen that no

extra clock cycle overhead is introduced.

4 Anvil HDL
In this section, we give a tour of novel language primitives

in Anvil that are relevant to timing safety.

4.1 Channel
Anvil components communicate bymessage passing through

bidirectional channels. They are akin to unbuffered channels

in Go [16], where the send and its corresponding receive op-

erations are required to happen instantaneously. Each chan-
nel type definition in Anvil describes a template for channels.

Figure 5 presents an example of a channel type definition.

4

Anvil: A General-Purpose Timing-Safe Hardware Description Language

Unsafe Description (Memory without cache)

 proc Top_Unsafe:
 loop {

 e0-> send req (address)
 e0-> wait cycle 1
 e1-> let out = recv res
 e1-> dprint (out)
 e1-> address := address+1
 }

memory channel definition

Top => address: [req, req+2)
Memory => data : [res, res+1)

Safe Description (Memory with cache)

cache channel definition

Top => address: [req, req->res)
Cache => data : [res, res->res+1)

 proc Top_Safe:
 loop {

 e0-> send req (address)>>
 e1-> let out = recv res >>
 e2-> dprint (out)
 e2-> address := address+1
 }

C
he

ck
s

at
 C

om
pi

le
 T

im
e

Derived Action Sequence

e1 = e0 + 1
req happens in [e0, ?)
res happens in [e1, ?)
output used in [e1, e1+1)
address is mutated in [e1, e1+1)

Timing Contract Checks

 address constant between [e0, e0+2)
 output used [e0+1,e0+2) when available [?,?)
 address is mutated [e0+1, e0+2), when not being used

 next req happens [e0+2, ?) before previous req expires

 Final Decision: UNSAFE

C
he

ck
s

at
 C

om
pi

le
 T

im
e

Derived Action Sequence

e2≥e1≥e0
req happens in [e0, e1)
res happens in [e1, e2)
output used in [e2, e2+1)
address is mutated in [e2, e2+1)

Timing Contract Checks

 address constant between [e0, e2)

 output used [e2, e2+1) when available [e2, e2+1)

 address is mutated [e2, e2+1), when not being used

 next req happens [e2+1, ?) before previous req expires

 Final Decision: SAFE

Av
oi

di
ng

 T
im

in
g

H
az

ar
ds

 w
ith

 A
nv

il cache channel definition

Top => address: [req, req->res)
Cache => data : [res, res->res+1) send cache.req (address)>>

address := address + 1;
let data = recv cache.res()>>
send fifo.enq_req(data)>>

send cache.req (address)>>
let data= recv cache.res()>>
address :=address+1;

enq_data := data >>
send fifo.enq_req(data)>>

send cache.req (address)>>
let data = recv cache.res()>>

 address := address +1;
send fifo.enq_req(data)>>

BSV Defined Rules:

rule send_cache_req(address)
rule change_address()
rule let data = rule get cache_res()
rule send_fifo_enqueu_req(data)

FIFO channel definition
Top => data: [enq_req, enq_req+1)

Error: Attempted Assignment to Borrowed Register)

Possible Schedule 1:

rule send_cache_req(address)>>
rule change_address() >>
rule let data = rule get cache_res()>>
rule send_fifo_enqueu_req(data)>>

Possible Schedule 3:

rule send_cache_req(address)>>
rule let data = rule get cache_res()>>
rule change_address()>>
rule send_fifo_enqueu_req(data)>>

Possible Schedule 2:

rule change_address()>>
rule send_cache_req(address)>>
rule let data = rule get cache_res()>>
rule send_fifo_enqueu_req(data)>>

Error: Value does not live long enough in send

Figure 4. Top & Middle: Verification of unsafe and safe Top modules (memory without vs. with cache); Bottom: Anvil

guiding to timing-safe design vs. BSV conflict-free schedules.

Messages. The definition specifies the different types of

messages that can be sent and received over a channel. Each

type of message is identified by a unique message identifier

and annotated with its direction, which is left or right.

Message Contracts. Each message is also associated with

a message contract. This contract specifies the data type of
the message and indicates the event after which the message

content is no longer guaranteed to remain stable and should,

therefore, be considered expired. Depending on the specified

event of expiry, a message contract can be either static or

dynamic. For example, message rd_req in Figure 5 has a static

contract: it carries 8 bits of data which expires 1 cycle after

the synchronization on the message takes place. In contrast,

message rd_res has a dynamic contract: it carries 8 bits of

data which expires the next time message rd_req is sent or

received.

Sync Mode. Each message has a synchronization mode (sync
mode for short) for each side of the communication, which

chan mem_ch {

left rd_req : (logic[8]@#1) @#2-@dyn,

left wr_req : (addr_data_pair@#1),

right rd_res : (logic[8]@rd_req) @#rd_req+1-@#rd_req+1,

right wr_res : (logic[1]@#1) @#wr_req+1-@#wr_req+1

}

Figure 5. A channel type definition.

specifies the timing patterns regarding the sending or receiv-

ing of the message. The default sync mode, @dyn , specifies

that a one-bit signal is used to synchronize during run-time.

In the case of wr_req in Figure 5, both the sender and the re-

ceiver use this dynamic sync mode. When static knowledge

is available about when sending or receiving can happen,

the sync mode can encode such knowledge. The left side of

message rd_req has the static sync mode @#2 , which specifies

that it is to be ready to receive the message within at most 2

cycles after the last time the message is received. For the left

side, Anvil statically checks this is upheld. For the right side,

Anvil uses this knowledge to statically check that the ev-

ery time sending of rd_req takes place, the receiver must be

ready to receive it. A sync mode can also be dependent. Both
sides of wr_res have @#wr_req + 1 , which specifies that the

message is sent and received exactly one cycle after wr_req .

4.2 Process
Each Anvil component is represented as a process. A process

is defined with the keyword proc. A process signature spec-

ifies a list of endpoints to be supplied externally when the

process is spawned. The process body includes register defi-

nitions, channel instantiations, other process instantiations,

and threads.

proc memory(ep1: left mem_ch, ep2 : left mem_ch) {/* ... */}

5

Jason Zhijingcheng Yu, Aditya Ranjan Jha, Umang Mathur, Trevor E. Carlson, and Prateek Saxena

4.3 Thread
Each process contains one or more threads that execute

concurrently. Two types of threads are available: loops and
recursives.
Loops. A loop is defined with loop { t } , where t is an

Anvil term (see Section 4.4). This term can represent the

parallel and sequential composition of multiple expressions.

Each time loop_term completes execution, the loop recurses

back to the same behaviour. For example, the code below

increments a counter every two cycles.

loop { set counter := *counter + 1 >> cycle 1 }

Recursives. A recursive, defined with recursive { t } gen-

eralizes loops to allow recursion before t completes. Instead,

recusion is controlled with recurse . As t can restart before it

completes, multiple threads may execute in an interleaving

manner. Such constructs are therefore particularly useful

for expressing simple pipelined behaviours. For example,

the code below pipelines the logic for handling the request.

Recursives provide convenience for pipelining comparable

to what Filament [29] provides.

recursive {

let r = recv ep1.rd_req >>

{ /* handle request */ } ;

{ cycle 1 >> recurse }

}

4.4 Term
Terms are the building block for describing computation and

timing control of threads in Anvil. Each term evaluates to a

value (potentially empty) and the evaluation process poten-

tially takes multiple cycles. In addition to literals and basic

operators for computing (e.g., addition, xor, etc), notable

categories of terms include the following.

Message sending/receiving. The terms send e.m (t) and

recv e.m send or receive a specified message. The evaluation

completes when the message is sent or received.

Cycle delay. The term cycle N evaluates to an empty value

after N cycles and is used entirely for timing control.

Timing control operators. The >> and ; operators are

used for controlling timing. See Section 4.5.

4.5 Wait operator
The wait operator is a novel construct that enables sequential

execution by advancing to a time point. In t1 >> t2 , the eval-

uation of the first term t1 must be completed before the eval-

uation of the second term begins. In contrast, t1; t2 initiates

both term evaluations in parallel. For example, set reg := t

and set reg := t; cycle 1 are equivalent, since register as-

signment takes one cycle to complete.

This design not only provides a way to advance time by

explicitly specified numbers of cycles (e.g., cycle 2 >> ...).

It also serves as an abstraction for managing and composing

concurrent computations, in a way similar to the async-await

paradigm for asynchronous programming. A term may rep-

resent computation that has not completed. Multiple terms

can be evaluated in parallel. When the evaluation result of a

term is needed, one can use >> to wait for it to complete. For

example, the code below waits for messages from endpoints

ep1 and ep2 and processes the data concurrently.

loop {

let v1 = { let r = recv ep1.rd_req >> /* process r */ };

let v2 = { let r = recv ep2.rd_req >> /* process r */ };

v1 >> v2 >> ... /* now v1 and v2 are available */

}

4.6 Revisiting the Running Example
Figure 4 includes snippets of Anvil code for the running

example introduced in Section 2. The code demonstrates how

Anvil exposes cycle-level control and supports expressing

dynamic timing behaviours. The code uses the wait operator

to control when and how time is advanced. It is clear from

the source code when each operation takes place relative to

others. In the bottom right timing-safe Anvil code snippet, for

example, incrementing address and updating enq_data take

place at the same time (connected with ;), and sending of

fifo.enq_req starts one cycle afterwards, when both register

updates complete. Such timing control does not have to rely

on fixed number of cycles. For example, the two register

updates discussed above take place after cache.res is received,

which in turn takes place after cache.req . The exact numbers

of cycles those operations vary during run-time depending

on the interaction between Top and Cache .

Despite those dynamic timing behaviours that Anvil code

can express, Anvil is able to reason about them and ensuring

timing safety statically, as we will discuss in detail next.

5 Safety of Anvil Programs
The type system of Anvil ensures that each process imple-

mentation adheres to the contracts defined by the channels

that it uses. The guarantee the type system provides is as

follows: any well-typed process in Anvil can be composed

with other well-typed processes without timing hazards at

run-time. To provide such guarantees, the type system asso-

ciates each term with an abstract notion of a lifetime, which,
intuitively, captures the time window in which its value is

stable and meaningful. Each register, likewise, is associated

with a loan time, which describes when it is loaned, i.e., needs
to remain unchanged. The abstractions of lifetime and loan

time form the foundation for ensuring safety in Anvil. Based

on them, the type system checks for the following properties

for a process — 1. Using Stable Values: every use of a value
falls in its associated lifetime. 2. Valid Register Mutation:
a register mutation does not take place during its loan time.

3.ValidMessage Send: the time window the data sent needs

6

Anvil: A General-Purpose Timing-Safe Hardware Description Language

to be live for (based on the timing contract) is covered by its

associated lifetime. Additionally, such time windows do not

overlap for two send operations of the same message type.

A formal presentation of the type system and the safety

guarantees of Anvil is available in Section 5.5. We explain

the intuition behind them in this section.

5.1 Events and Event Patterns
Anvil reasons about events which correspond to the times

specific terms complete evaluation. Note that such interest-

ing events as sending and receiving of messages and elapse

of a number of cycles are naturally included, as the those

operations are all represented as terms (Section 4.4). Event
patterns can then be defined based on such events. A basic

event pattern is of the form 𝑒 ⊲ 𝑝 , which consists of an exist-

ing event 𝑒 and a duration 𝑝 and specifies the time when a

condition specified in duration 𝑝 is first satisfied after 𝑒 . The

duration can be either static or dynamic. A fixed duration

specifies a fixed number of clock cycles, in the form of #𝑁 . A

dynamic duration specifies a certain operation 𝜔 , in which

case 𝑒 ⊲ 𝑝 refers to when 𝜔 is first performed after 𝑒 . During

run-time, a dynamic duration can correspond to variable

numbers of cycles. The typical example of a dynamic dura-

tion is the sending or receiving of a specified message type

through a channel. In our discussion, this is represented as

𝜋.𝑚, where 𝜋 is the endpoint name and𝑚 is the message

identifier. Multiple event patterns can be combined as a set of

event patterns {𝑒𝑖 ⊲ 𝑝𝑖 }𝑖 to form a new event pattern, which

refers to the earliest event specified with each 𝑒𝑖 ⊲ 𝑝𝑖 .

5.2 Lifetime and Loan Time

Lifetime. The lifetime represents the interval during which

a value is expected to remain stable (constant). Anvil in-

fers a lifetime for each value, represented by an interval

[𝑒start, 𝑆end), where an event 𝑒start and an event pattern 𝑆end
mark the beginning and end of the interval. During run-time,

the events 𝑒start and 𝑆end will correspond to specific clock

cycles. Since each signal carries a value, it inherently has an

associated lifetime. At any given instant, a signal is termed

live if it falls within its defined lifetime. Conversely, it is

deemed dead.
Loan Time. Since signals and messages may source values

from registers, Anvil tracks the intervals during which a reg-

ister is loaned to a signal by associating each register with a

loan time. The loan time of a register 𝑟 is a collection of in-

tervals. For each interval included in the loan time, 𝑟 should

not be mutated. Anvil infers the lifetime for all associated

values and the loan time for all registers. Consider the exam-

ple in Figure 6 (left) of a component named Encrypt. This
component performs encryption on the plaintext received

through the endpoint ch1 using random noise obtained via

the endpoint ch2 . The following are examples of the lifetimes

and loan times that Anvil infers:

• The signal ptext is bound to a message identified by

enc_req received on the endpoint ch1 . Its lifetime is

inferred from the channel type definition as [𝑒1, 𝑒1 ⊲
ch1.enc_res), where 𝑒1 is the event of the message

being received.

• The signal r1_key is a constant literal and therefore

has an eternal lifetime, represented with∞ as its end

event. i.e., it can always be used.

• The signal ctext_out is used as a value sent as a mes-

sage from the endpoint ch1 . Its inferred lifetime be-

gins at the evaluation of the term, represented as 𝑒5,

and extends until the message on ch1 expires, which is

𝑒9 ⊲ch1.enc_req, where 𝑒9 is the event corresponding
to the completion of the message sending. Therefore,

the lifetime is [𝑒5, 𝑒9 ⊲ ch1.enc_req).
• The signal (ptext ^ r1_key) + noise has a lifetime that

is the intersection of the lifetimes of ptext , r1_key , and

noise , [𝑒3, {𝑒2 ⊲ #1, 𝑒1 ⊲ ch1.enc_res}).
• The register rd2_key is loaned by amessage sent through

the endpoint ch2 and the signal ctext_out . Based on

the specified timing in the channel type definition

rng_ch , the lifetime of the message is [𝑒5, 𝑒8 ⊲ #2),
where 𝑒8 is the event of the message sending com-

pletion. Therefore, rd2_key has an inferred loan time

[𝑒5, 𝑒9 ⊲ ch1.enc_req) ∪ [𝑒5, 𝑒8 ⊲ #2).
See Figure 6 (left) for more examples of inferred lifetimes

annotations.

5.3 Event Graph
Events are related to one another by their associated opera-

tions. For example, an event 𝑒𝑎 may be precisely two cycles

after another event 𝑒𝑏 . As another example, 𝑒𝑎 can refer to the

completion of a specific message that starts at 𝑒𝑏 . In general,

events and their interrelationships form a directed acyclic

graph (DAG), with each node being an event labelled with

its associated operation. We call such a DAG an event graph.
Encrypt in Figure 6 (left), for example, has an event graph

as shown in Figure 6 (right). The event graph captures the

events in one loop iteration only, with event 𝑒0 representing

the start of a loop iteration. The event 𝑒′
0
corresponds to 𝑒0

of the next loop iteration.

An event graph encodes sufficient information to capture

all possible timing behaviours in run-time. Intuitively, once

we replace each non-cycle operation label (e.g., those associ-

ated with 𝑒1, 𝑒2, 𝑒8, 𝑒9, and 𝑒10 in Figure 6 (right)) with a cycle

number that represents the actual amount of time taken

to complete the message passing, we can deterministically

obtain the exact time (in cycles) each event occurs.

5.4 Safety Checks

Building Blocks: ≤𝐺 and ⊆𝐺 . Based on an event graph

𝐺 , Anvil compare pairs of events as to the order in which

they occur during run-time. In particular, Anvil decides if

7

Jason Zhijingcheng Yu, Aditya Ranjan Jha, Umang Mathur, Trevor E. Carlson, and Prateek Saxena

chan encrypt_ch {

left enc_req : (logic[8]@enc_res), right enc_res : (logic[8]@enc_req)

}

chan rng_ch {

left rng_req : (logic[8]@#1), right rng_res : (logic[8]@#2)

}

proc Encrypt(ch1 : left encrypt_ch, ch2 : left rng_ch) {

/* ... register definitions ... */

loop {

𝑒0 let ptext [𝑒1, 𝑒1 ⊲ ch1.enc_res) = recv ch1.enc_req;

𝑒0 let noise [𝑒2, 𝑒2 ⊲ #1) = recv ch2.rng_req;

𝑒0 let r1_key [𝑒0,∞) = 25;

𝑒0 ptext [𝑒1, 𝑒1 ⊲ ch1.enc_res) >>

𝑒1 if ptext != 0 {

𝑒1 noise [𝑒3, 𝑒2 ⊲ #1) >>

𝑒3 set rd1_ctext := (ptext ˆ r1_key) + noise [𝑒3, {𝑒2 ⊲ #1, 𝑒1 ⊲ ch1.enc_res})
𝑒1 } else { rd1_ctext := ptext [𝑒1, 𝑒1 ⊲ ch1.enc_res) };

𝑒1 cycle 1 >>

𝑒5 set r2_key := r1_key ˆ noise [𝑒6, 𝑒2 ⊲ #1) ;
𝑒5 let ctext_out = *rd1_ctext ˆ *r2_key [𝑒5, 𝑒9 ⊲ ch1.enc_req) ;
𝑒5 send ch2.rng_res(*r2_key [𝑒5, 𝑒8 ⊲ #2)) >>

𝑒8 send ch1.enc_res(ctext_out [𝑒8, 𝑒9 ⊲ ch1.enc_req)) >>

𝑒9 send ch1.enc_res(r1_key [𝑒9,∞))
}

}

e0

e1 e2

e3

e4

e5

#1

e'0

e9
ch1.enc_res

e10
ch1.enc_res

e7

loop

e6e8

ch1.enc_req

ch2.rng_res

#1

ch2.rng_req

#1

Figure 6. Left: Encrypt in Anvil, annotated with timing information. Each blue-shaded annotation marks the event corre-

sponding to the time a term evaluation starts. Each yellow-shaded annotation marks the inferred lifetime associated with

the red-circled term next to it. Right: Event graph corresponding to Encrypt. Branch-related constructs which exist in the

event graph actually used in the type system are omitted for brevity. The operations associated with some of the events are

presented in yellow labels.

an event 𝑒𝑎 always occurs no later than another event 𝑒𝑏 ,

denoted as 𝑒𝑎 ≤𝐺 𝑒𝑏 . The simple scenario is when a path

exists from 𝑒𝑎 to 𝑒𝑏 in𝐺 and we directly have 𝑒𝑎 ≤𝐺 𝑒𝑏 . More

complex scenarios involve events with no paths between

them, which Anvil handles by considering the “worst” cases

time gap between when the two events are reached. For ex-

ample, we have 𝑒5 ≤𝐺 𝑒4, as even in the worst case (receiving

ch2.rng_req takes 0 cycles), 𝑒4 and 𝑒5 still occur at the same

time. We naturally extend the definition of ≤𝐺 to cover event

patterns and reuse the notation 𝑆𝑎 ≤𝐺 𝑆𝑏 .

With ≤𝐺 , the Anvil type system can decide that an inter-

val [𝑒𝑎, 𝑆𝑎) is always fully within another interval [𝑒𝑏, 𝑆𝑏),
denoted [𝑒𝑎, 𝑆𝑎) ⊆𝐺 [𝑒𝑏, 𝑆𝑏), if 𝑒𝑏 ≤𝐺 𝑒𝑎 and 𝑆𝑎 ≤𝐺 𝑆𝑏 . It

then decides if the lifetimes and the loan times comply with

the three types of constraints. We use the example in Figure 6

to explain them below.

Using Stable Values. The type system of Anvil verifies

that events at which a signal are used are within its de-

fined lifetime. A use of ptext occurs at 𝑒1 in the expression

if ptext != 0 { ... } , where it has a a lifetime of [𝑒1, 𝑒1 ⊲
ch1.enc_res). It requires ptext to be live for one cycle, i.e.,

in [𝑒1, 𝑒1 ⊲ #1). Anvil checks that [𝑒1, 𝑒1 ⊲ #1) ⊆𝐺 [𝑒1, 𝑒1 ⊲
ch1.enc_res), which holds in this case. Hence Anvil deter-

mines that ptext is guaranteed to be live during this read.

However, in rd1_ctext := (ptext ^ r1_key) + noise , the sig-

nal (ptext ^ r1_key) + noise cannot be statically guaranteed

to be live. In this case, Anvil compares its lifetime of noise ,

[𝑒3, {𝑒2 ⊲ #1, 𝑒1 ⊲ ch1.enc_res}) with the time when it is

used, [𝑒3, 𝑒3 ⊲ #1). It cannot obtain 𝑒3 ⊲ #1 ≤𝐺 {𝑒2 ⊲ #1, 𝑒1 ⊲
ch1.enc_res}. Intuitively, if it takes more cycles to receive

ch1.enc_req (𝑒1) than ch2.rng_req (𝑒2), noise will already be

dead at 𝑒3 when the assignment happens.

Valid Register Mutation. Anvil ensures that each register

value remains constant during its loan time. For the example

in Figure 6, the loan time for r2_key is [𝑒5, 𝑒9⊲ch1.enc_req)∪
[𝑒5, 𝑒8 ⊲#2). To determine if r2_key is still loaned when the as-

signment r2_key := r1_key ^ noise takes place, Anvil checks

if [𝑒5, 𝑒7 ⊲ #1) is guaranteed not to be fully covered by any

interval in its loan time. Note that the assignment takes one

cycle to update the register value, and 𝑒7 is the event that

corresponds to its completion. In other words, 𝑒5 and 𝑒7 are

adjacent cycles in which the register can carry different val-

ues. If an interval in the loan time may contain both 𝑒5 and

𝑒7, at run-time during the interval the register value may

change. In the example, [𝑒5, 𝑒8 ⊲ #2) potentially (surely in

this case) fully covers [𝑒5, 𝑒7 ⊲ #1), hence this assignment

conflicts with the loan time of r2_key and is not allowed by

Anvil. Intuitively, a value sourced from r2_key is sent through

8

Anvil: A General-Purpose Timing-Safe Hardware Description Language

process definition 𝑃 ::= proc 𝑝 (𝜋, . . .) {𝐵}
process body 𝐵 ::= ∅ | reg 𝑟 : 𝛿 ;𝐵 | ch 𝑐 (𝜋, 𝜋) ;𝐵

| spawn 𝑝 (𝜋, . . .) ;𝐵 | loop {𝑡 } 𝐵
term 𝑡 ::= true | false | () | cycle 𝑁 | 𝑥 | ∗𝑟

| 𝑡 ⇒ 𝑡 | let 𝑥 = 𝑡 in 𝑡 | ready (𝜋.𝑚)
| if 𝑥 then 𝑡 else 𝑡 | send 𝜋.𝑚 (𝑥)
| recv 𝜋.𝑚 | 𝑟 := 𝑡 | 𝑡 ★ 𝑡 | D𝑡

𝛿 ∈ data-types ★ ∈ binary-operators D ∈ unary-operators

𝜋 ∈ endpoints𝑥𝑖𝑛identifiers 𝑟 ∈ registers 𝑚 ∈ messages

𝑐 ∈ channels 𝑝 ∈ processes 𝑁 ∈ N
Figure 7. Anvil syntax.

ch2.rng_res at 𝑒5, which requires it to be live until two cycle

after the send completes. However, the value r2_key already

changes one cycle after 𝑒5.

Valid Message Send. In the example in Figure 6, the term

send ch1.enc_res(r1_key) attempts to send a new message

before the previous enc_res message sent by the endpoint

ch1 has expired. During run-time on the other end of channel,

this can lead to signals received through enc_res to change

while they are still expected to be stable according to the

message contract. Anvil detects such violations by examining

whether the required lifetimes of the two send operations

are disjoint. The example violates such constraints as [𝑒8, 𝑒9 ⊲
ch1.enc_req) and [𝑒9, 𝑒10 ⊲ ch1.enc_req) are overlapping.
Anvil also checks that the lifetimes of sent signals cover

the required lifetime specified by the message contract. For

example, the send through ch1.enc_res at 𝑒9 checks that

the lifetime of r1_key covers the required lifetime [𝑒9, 𝑒10 ⊲
ch1.enc_req). In this case, this check passes as [𝑒9, 𝑒10 ⊲
ch1.enc_req) ⊆𝐺 [𝑒9,∞).

5.5 Formalization
Figure 7 presents the syntax of Anvil. Anvil’s type system

guarantees that any well-typed Anvil program is timing-

safe. Due to space limits, we leave the formal details of the

semantics, the type system of Anvil, the safety definitions,

and proofs to Appendices A and B.

6 Implementation
We have implemented Anvil in OCaml. The Anvil compiler

performs type checking on Anvil code and generates synthe-

sizable SystemVerilog. We have publicly released the com-

piler at https://github.com/jasonyu1996/anvil.
The compiler uses the event graph as an intermediate

representation (IR) throughout the compilation process. It

constructs an event graph from the concrete syntax tree of

the Anvil source code, performs type checking on it, and

lowers it to SystemVerilog. Optimizations are applied to the

event graph both before and after type checking. Since event

graph construction and type checking follow the type system

in a straightforward manner, we focus on the optimization

and lowering strategies in this section.

ea eb
#N #N

e'a e'b

.
.
.

.
.
.

ec

ea eb

.
.
.

.
.
.

e'c
#N

ec

.
.
.

.
.
.

ea eb

ec

.
.
.

er

.
.
.

ea

.
.
.

er

.
.
.

eb

ea

eb ec

.
.
.

.
.
.

.
.
.

#N #N

ea

.
.
.

#N

ebc

.
.
.

ebea

.
.
.

.
.
.

ec
#0 #0

.
.
.

ebea

.
.
.

.
.
.

.
.
.

a b
c d

Figure 8. Examples of event graph optimizations. Dotted

edges represent branching and dashed edges represent join-

ing of branches.

6.1 Event Graph Optimizations
Optimizations aim to reduce the number of events in the

event graph while keeping its semantics unchanged. The

Anvil compiler performs optimizations in passes, each ap-

plying an optimization strategy. Figure 8 shows example

optimization passes. In general, two events can be merged

into one if they always occur at the same time. Many of the

optimization passes identify special patterns of such cases.

(a) Merging identical outbound edge labels. This opti-
mization pass merges identifiers outbound edges of an event

𝑒𝑎 that share the same label (e.g., edges labelled with #N to
𝑒𝑏 and 𝑒𝑐). The events those edges connect to are merged.

(b) Removing unbalanced joins. A join is an event that

waits on two predecessor events and . This optimization

pass removes a join 𝑒𝑐 when either of its predecessors (𝑒𝑏)

always occurs no earlier than the other (𝑒𝑎), i.e., 𝑒𝑎 ≤𝐺 𝑒𝑏 .

The outbound edges of 𝑒𝑐 are migrated to 𝑒𝑏 .

(c) Shifting branch joins. A branch join is an event 𝑒𝑐
that joins two branches. When the ending events of the two

branches 𝑒′𝑎 and 𝑒
′
𝑏
are both derived with 𝑁 cycles delay after

their predecessors 𝑒𝑎, 𝑒𝑏 and have no associated actions (i.e.,

register assignments and message sending or receiving), the

branch join can be shifted earlier: instead of delaying by 𝑁

cycles and join, the branches can join to 𝑒′𝑐 and then delay

by 𝑁 cycles.

(d) Removing branch joins. If an event 𝑒𝑐 joins two branches
where the ending events 𝑒𝑎 and 𝑒𝑏 are also the first events of

their branches and they share the same predecessor 𝑒𝑟 , then

𝑒𝑐 can be merged into 𝑒𝑟 .

6.2 Code Generation
The Anvil compiler maps each Anvil process to a SystemVer-

ilog module. For each process, it generates module input/out-

put ports for channel communication and a finite state ma-

chine (FSM) for control flow based on the event graph. Note

9

https://github.com/jasonyu1996/anvil

Jason Zhijingcheng Yu, Aditya Ranjan Jha, Umang Mathur, Trevor E. Carlson, and Prateek Saxena

that the compiler generates no extra code formaintaining life-

times or enforcing timing safety as it reasons about lifetimes

statically and guarantees timing safety through static type

checking. As such, they incur no overhead in the generated

hardware design.

Message lowering. Each message in an endpoint maps to

up to three module ports: data, valid, and ack. The data
port carries the communicated data, while valid and ack
are handshake ports used in the synchronization. The com-

piler only generates both valid and ack when the specified

synchronization mode is dynamic for both the sender and

the receiver. If the synchronization mode for either side is

static or dependent, the compiler omits the corresponding

port (valid for the sender and ack for the receiver). In partic-
ular, both handshake ports are omitted for a synchronization

mode that is not dynamic on either side, leaving data as the

only port generated.

FSM generation. The compiler generates the FSM based on

the event graph structure. For each event, it uses a one-bit

wire current to indicate if the event has been reached. For

some events, the compiler also generates registers to record

the current state. Such events include: (a) Joins: which pre-

decessors have been reached; (b) Cycle delays: cycle count;

(c) Message send/receive events (only those with dynamic

synchronization modes): whether the message has been sent

or received.

7 Evaluation
We aim to answer two questions through evaluation:

1. Expressiveness. Can Anvil express diverse hardware

designs, including ones that cannot be expressed using

static timing contracts?

2. Practicality. Can Anvil scale to real-world hardware

designs and generate reasonably efficient hardware

designs compared with existing HDLs?

7.1 Expressiveness
We present four case studies for different atomic characteris-

tics. Three of them cannot be expressed using static timing

contracts. We implement each design in Anvil and measure

its cycle-level timing behaviours, including throughputs and

latencies, against the design goals.

Circuits with State-Dependent Access. Many circuits ex-

hibit timing characteristics that depend on their current state

and input. Anvil can express this behaviour without introduc-

ing any delay overhead. We implemented an 8-bit FIFO cache

with four sets, associativity of four and following a First-In,

First-Out (FIFO) replacement policy. The channel definition

(cache_ch) encodes the contract for both the address and
the associated data.

Circuits forConcurrentRequestHandling.Circuitsmust

efficiently handle concurrent requests when multiple compo-

nents share a single resource. The contract should ensure the

resource is accessed only within the granted time interval.

A static timing contract cannot represent variable access or

waiting times. We implemented an 8-bit FIFO queue with a

size of eight. The queue operates with two parallel threads:

one for enqueuing requests (Min Latency: 1 cycle) and an-

other for dequeuing (Min Latency: 0 cycles). If the queue

is empty, the dequeue thread waits for an enqueue request

to complete before acknowledging the subsequent dequeue

request. Similarly, when the buffer is full, the enqueue thread

waits for a dequeue operation to free space.

Circuits for Asynchronous Processing. Anvil abstracts
synchronous processing using message passing on channels

between processes. To improve the efficiency of dynamically

scheduled circuits, we introduce asynchronous processing

using buffers. The timing contract for such circuits must

guarantee that a request remains available until serviced,

which a static timing contract cannot represent. We imple-

mented an 8-bit priority arbiter connecting four producers

to one consumer. The arbiter uses a priority-based scheme

to allocate resources. Whenever the consumer is ready to

receive a new request, it checks the priority of the currently

available producer requests and grants access accordingly.

The arbiter interfaces with four endpoints of the channel

type producer_ch and one endpoint of the channel type

consumer_ch. The channel definitions encode the necessary
contracts, ensuring access rights remain valid until the con-

sumer completes the request and sends back a response.

Circuits with Static Schedules. We use a static timing

contract for circuits where schedules can be entirely de-

termined [29]. This contract specifies the lifetime of sig-

nals and the corresponding synchronization pattern. While

this type of contract does not emphasize dynamic timing

safety, we demonstrate that Anvil can still accurately capture

its behaviour. We designed a 4-stage pipelined arithmetic

processor to showcase Anvil’s expressiveness in capturing

static schedules. The processor performs 4 operations: Add,
Subtract, AND, and OR. It consists of 4 stages: Instruction
Fetch, Decode, Execute, and Write Back. Each stage takes one

cycle to complete.

Result. Table 1 shows the observed results of the designs

implemented in Anvil against the design goals. All imple-

mented designs reach the design goals: they introduce no

additional cycle latencies or throughput overhead.

Takeaway. Anvil provides cycle-level timing control

and precise expression of dynamic timing behaviours,

with no additional cycle latency or throughput.

7.2 Practicality
We designed Anvil to facilitate our own implementation

effort of experimental extensions to CVA6 [39], an open-

source RISC-V CPU implemented in SystemVerilog. Such a

use case requires not only support for expressing complex

10

Anvil: A General-Purpose Timing-Safe Hardware Description Language

Table 1. Summary of Performance Metrics for Case
Studies in Anvil. The design goals are shown in angle

brackets (<>). Latency and timing are expressed in clock

cycles and throughput in instructions per cycle.

Case Studies Metrics Measured
Cache Hit Latency <#1> #1

Cache Miss Latency <#3> #3FIFO Cache
Variable Output Latency Supported

Enqueue Latency (Not Full) <#1> #1

Dequeue Latency (Not Empty) <#0> #0FIFO Queue
Variable (Enqueue/Dequeue) Latency Supported

Request Selection and Read Latency <#1> #1

New Request Latency <#1+Access Time> #1 + (Access Time)

Minimum Supported Access Time <#1> #1

Priority Arbiter

Variable Access Time Supported

Pipeline Stage Latency <#1> #1Four-Stage Pipelined
Arithmetic Processor Throughput <1> 1

hardware designs, but also integration with an existing Sys-

temVerilog code. We evaluate the practicality of using Anvil

in this context in comparison with existing HDLs. Addition-

ally, for static pipelined designs, we evaluate Anvil against

Filament [29], which provides specialized abstractions for

static pipelines.

Comparison Benchmarks: SystemVerilog. As a base-

line, we choose an off-the-shelf open-source implementation

of RISC-V CPUs: CVA6 [39] (implemented in SystemVer-

ilog). We selected two key modules of a CPU core: the trans-

lation lookaside buffer (TLB) and the page table walker

(PTW), which are highly sensitive to dynamic latencies.

We re-implemented the same logic in Anvil and verified

their functional correctness by replacing the original mod-

els in CVA6 with Anvil-generated code. We synthesize both

Anvil and baseline hardware designs for a commercial 22 nm

ASIC process and target two different clock frequencies of

800 MHz and 2000 MHz. To demonstrate the quality of Anvil-

generated code with respect to the baseline designs, we re-

port the area and power footprints at both frequencies.

Comparison Benchmarks: Filament. We also compare

with Filament for static pipelined designs, the type of de-

signs Filament is specifically designed to support. For this

purpose, we choose a systolic array and a static pipelined

arithmetic logic unit (ALU) implemented in Filament. We

re-implemented both designs in Anvil using recursives (Sec-

tion 4.3). The same synthesis targets for clock frequencies

and ASIC setup as for SystemVerilog are used here as well.

Remark. We also tried to compare with BlueSpec (BSV).

Note that BSV does not provide timing safety guarantees, as

is shown in Figure 4 (Bottom), which yields a timing hazard.

We implemented the pipelined Page Table Walker (PTW)

from another open-sourced RISC-V core called Flute [7] to

evaluate expressiveness. However, we observed about a 25%

overhead in power and area during synthesis for Anvil. Upon

closer inspection, we found that BSV‘s efficiency largely

came from extensive interactions with an external Verilog

module, which is not leveraging BlueSpec. This module was

the primary source of power and area consumption in both

implementations. Therefore, we did not consider it in as an

evaluation of the generated code for BSV and Anvil.

Result. Table 2 summarizes the area and power footprints

of each Anvil design compared to its corresponding baseline.

Takeaway. Anvil is practical for creating real-world
hardware designs with minimal area/power overheads

and seamlessly integrates into existing SystemVerilog.

8 Related Work
Timing-oblivious HDLs. The industry-standard HDLs,

SystemVerilog [5] and VHDL [4], describe hardware be-

haviours with dataflows involving registers and wires within

single cycles. This abstract model equips them with low-

level expressiveness but is not conducive to time-related

reasoning, causing such problems as timing hazards. Em-

bedded HDLs [1, 10, 14, 34] use software programming lan-

guages for hardware designs for their better parameteri-

zation and abstraction capabilities. They follow the same

single-cycle model as in SystemVerilog and VHDL. Bluespec

SystemVerilog [11, 30] provides an abstraction of hardware

behaviours with sequential firing of atomic rules. It is still

limited to describing single-cycle behaviours and does not

provide timing safety. Higher-level HDLs, high-level synthe-

sis (HLS) languages, and accelerator description languages

(ADLs) [2, 6, 21, 35, 38] specialize in specific applications

and abstracts away cycle-level timing and the distinction

between stateless signals and registers.

Timing-aware HDLs. Filament [29] achieves timing safety

with timeline types which only support statically fixed de-

lays. As a result, it is limited to designs with static timing

behaviours. HIR [27] is an intermediate representation (IR)

for describing accelerator designs. It introduces time vari-

ables to specify timing, and allows specifying a static delay

for each function to indicate when it returns. HIR abstracts

away the distinction between signals and registers and does

not capture the notion of lifetimes and only supports static

timing behaviours. Piezo [23] is an IR that supports specify-

ing both static and dynamic timing through timing guards.

Hazard prevention. BaseJump [36] andWire Sorts [12] are

type systems deigned to identify combinational loops, a sep-

arate concern than timing hazards. ShakeFlow [18] proposes

a dynamic control interface to prevent structural hazards

in pipelined designs. Hazard Interfaces [22] generalizes it

further to cover data and control hazards as well. Both focus

on higher-level notions of hazards than timing hazards on

high-level abstractions specialized for pipelined designs.

9 Conclusions
In this work, we formalize the problem of timing hazards

and present Anvil, a new hardware description language that

provides timing safety by capturing and enforcing timing

requirements on shared values in timing contracts. Anvil

ensures safe use of values which are guaranteed to remain

11

Jason Zhijingcheng Yu, Aditya Ranjan Jha, Umang Mathur, Trevor E. Carlson, and Prateek Saxena

Table 2. Summary of area and power footprints of Anvil and baseline designs in SystemVerilog and Filament. The ✗ marks

indicate slack time violations, so the resulting design is not practical.

Hardware Designs Power @ 800 MHz (mW) Area @ 800 MHz (um2) Power @ 2000 MHz (mW) Area @ 2000 MHz (um2)
Baseline Anvil Baseline Anvil Baseline Anvil Baseline Anvil

CVA6 TLB (SV) 3.771 3.791 (0.53%) 5548 5582 (0.61%) 9.458 9.592 (1.42%) 5914 6145 (3.90%)

CVA6 PTW (SV) 0.433 0.459 (6%) 476 576 (21%) 1.082 1.152 (6.4%) 476 595 (25%)

Pipelined ALU (Filament) 0.169 0.345 733.86 414.81 0.606 ✗ 0.863 1083 ✗ 414

Systolic Array (Filament) 2.073 ✗ 1.812 5667 ✗ 2156 5.282 ✗ 4.543 5856 ✗ 2215

unchanged throughout their lifetimes. While achieving this,

it provides the capability of cycle-level timing control and the

expressiveness for describing designs with dynamic timing

characteristics.

Acknowledgments
We thankNUSKISP Labmembers for their feedback, Yaswanth

Tavva and Sai Dhawal Phaye for the help with infrastructure

setup. This research is supported by a Singapore Ministry of

Education (MOE) Tier 2 grant MOE-T2EP20124-0007.

References
[1] [n. d.]. Spinal Hardware Description Language — SpinalHDL documen-

tation. https://spinalhdl.github.io/SpinalDoc-RTD/master/index.html
[2] [n. d.]. XLS: Accelerated HW Synthesis. https://google.github.io/xls/
[3] 2008. Bluespec SystemVerilog Reference Guide.

[4] 2009. IEEE Standard VHDL Language Reference Manual. IEEE Std
1076-2008 (Revision of IEEE Std 1076-2002) (2009), 1–640. https://doi.
org/10.1109/IEEESTD.2009.4772740

[5] 2018. 1800-2017 - IEEE Standard for SystemVerilog–Unified Hardware
Design, Specification, and Verification Language. IEEE, Place of publi-
cation not identified.

[6] 2023. IEEE Standard for Standard SystemC® Language Reference

Manual. IEEE Std 1666-2023 (Revision of IEEE Std 1666-2011) (2023),
1–618. https://doi.org/10.1109/IEEESTD.2023.10246125

[7] 2025. Bluespec/Flute. Bluespec, Inc..

[8] Alexforencich. [n. d.]. Tx signals for raw ethernet frame Issue 121

alexforencich/verilog-ethernet. https://github.com/alexforencich/
verilog-ethernet/issues/121

[9] C. Baay. 2015. Digital Circuits in ClaSH. Ph. D. Dissertation. University
of Twente, Enschede, The Netherlands. https://doi.org/10.3990/1.
9789036538039

[10] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew

Waterman, Rimas Avižienis, John Wawrzynek, and Krste Asanović.

2012. Chisel: Constructing Hardware in a Scala Embedded Language.

In Proceedings of the 49th Annual Design Automation Conference. ACM,

San Francisco California, 1216–1225. https://doi.org/10.1145/2228360.
2228584

[11] Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind.

2020. The Essence of Bluespec: A Core Language for Rule-Based

Hardware Design. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation. ACM, London

UK, 243–257. https://doi.org/10.1145/3385412.3385965
[12] Michael Christensen, Timothy Sherwood, Jonathan Balkind, and Ben

Hardekopf. 2021. Wire sorts: a language abstraction for safe hardware

composition. In Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation (Vir-
tual, Canada) (PLDI 2021). Association for Computing Machinery, New

York, NY, USA, 175–189. https://doi.org/10.1145/3453483.3454037
[13] Abhishek Chunduri. 2020. ’1011’ Overlapping (Mealy) Sequence De-

tector in Verilog.

[14] Jan Decaluwe. 2004. MyHDL: a python-based hardware description

language. Linux J. 2004, 127 (Nov. 2004), 5.
[15] Dimitras-Vtool. [n. d.]. Alu_full_fifo_in_test · Issue #1 · Dimitras-

Vtool/ALU. https://github.com/dimitras-vtool/ALU/issues/1.
[16] Alan A.A. Donovan and Brian W. Kernighan. 2015. The Go Program-

ming Language (1st ed.). Addison-Wesley Professional.

[17] fpgasystems. [n. d.]. Each completion queue contains 2-cycle burst

valid signal | Issue 78 | fpgasystems/Coyote. https://github.com/
fpgasystems/Coyote/issues/78

[18] Sungsoo Han, Minseong Jang, and Jeehoon Kang. 2023. ShakeFlow:

Functional Hardware Description with Latency-Insensitive Interface

Combinators. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2. ACM, Vancouver BC Canada, 702–717. https:
//doi.org/10.1145/3575693.3575701

[19] C. A. R. Hoare. 1978. Communicating Sequential Processes. Com-
mun. ACM 21, 8 (Aug. 1978), 666–677. https://doi.org/10.1145/359576.
359585

[20] Charles A. R. Hoare. 2000. Communicating Sequential Processes
(reprinted ed.). Prentice Hall, New York.

[21] Steven F. Hoover and Ahmed Salman. 2018. Top-Down Transaction-

Level Design with TL-Verilog. CoRR abs/1811.01780 (2018).

arXiv:1811.01780 http://arxiv.org/abs/1811.01780
[22] Minseong Jang, Jungin Rhee, Woojin Lee, Shuangshuang Zhao, and

Jeehoon Kang. 2024. Modular Hardware Design of Pipelined Circuits

with Hazards. Proc. ACM Program. Lang. 8, PLDI, Article 148 (June
2024), 24 pages. https://doi.org/10.1145/3656378

[23] Caleb Kim, Pai Li, Anshuman Mohan, Andrew Butt, Adrian Sampson,

and Rachit Nigam. 2024. Unifying Static and Dynamic Intermediate

Languages for Accelerator Generators. Proceedings of the ACM on
Programming Languages 8, OOPSLA2 (Oct. 2024), 2242–2267. https:
//doi.org/10.1145/3689790

[24] KULeuven-Micas. [n. d.]. Fix ALU valid-ready signal by rgan-

tonio | Pull Request | #163 KULeuven-MICAS/snax_cluster.

https://github.com/KULeuven-MICAS/snax_cluster/pull/163/
commits/be67fbfd7ab821b7c7928ccceb1801d3e34fb316

[25] lowRISC. [n. d.]. Add an INSTR_VALID_ID sig-

nal to completely decouple the pipeline stages,

LOWRISC/IBEX@F5D408D. https://github.com/lowRISC/
ibex/commit/f5d408d7f4523f4f105cf1fe3029bb28dba12d87

[26] lowRISC. [n. d.]. Timing issues in FW_OV "Insert Entropy" feature.

https://github.com/lowRISC/opentitan/issues/10983. GitHub Issue

10983, accessed: 2024-11-12.

[27] KingshukMajumder andUday Bondhugula. 2023. HIR: AnMLIR-based

Intermediate Representation for Hardware Accelerator Description. In

Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
4. ACM, Vancouver BC Canada, 189–201. https://doi.org/10.1145/
3623278.3624767

[28] MITRE. 2024. CWE-1298: Hardware Logic Contains Race Conditions.

https://cwe.mitre.org/data/definitions/1298.html. Accessed: 2024-10-
26.

[29] Rachit Nigam, Pedro Henrique Azevedo De Amorim, and Adrian

Sampson. 2023. Modular Hardware Design with Timeline Types.

12

https://spinalhdl.github.io/SpinalDoc-RTD/master/index.html
https://google.github.io/xls/
https://doi.org/10.1109/IEEESTD.2009.4772740
https://doi.org/10.1109/IEEESTD.2009.4772740
https://doi.org/10.1109/IEEESTD.2023.10246125
https://github.com/alexforencich/verilog-ethernet/issues/121
https://github.com/alexforencich/verilog-ethernet/issues/121
https://doi.org/10.3990/1.9789036538039
https://doi.org/10.3990/1.9789036538039
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/3385412.3385965
https://doi.org/10.1145/3453483.3454037
https://github.com/dimitras-vtool/ALU/issues/1
https://github.com/fpgasystems/Coyote/issues/78
https://github.com/fpgasystems/Coyote/issues/78
https://doi.org/10.1145/3575693.3575701
https://doi.org/10.1145/3575693.3575701
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/359576.359585
https://arxiv.org/abs/1811.01780
http://arxiv.org/abs/1811.01780
https://doi.org/10.1145/3656378
https://doi.org/10.1145/3689790
https://doi.org/10.1145/3689790
https://github.com/KULeuven-MICAS/snax_cluster/pull/163/commits/be67fbfd7ab821b7c7928ccceb1801d3e34fb316
https://github.com/KULeuven-MICAS/snax_cluster/pull/163/commits/be67fbfd7ab821b7c7928ccceb1801d3e34fb316
https://github.com/lowRISC/ibex/commit/f5d408d7f4523f4f105cf1fe3029bb28dba12d87
https://github.com/lowRISC/ibex/commit/f5d408d7f4523f4f105cf1fe3029bb28dba12d87
https://github.com/lowRISC/opentitan/issues/10983
https://doi.org/10.1145/3623278.3624767
https://doi.org/10.1145/3623278.3624767
https://cwe.mitre.org/data/definitions/1298.html

Anvil: A General-Purpose Timing-Safe Hardware Description Language

Proceedings of the ACM on Programming Languages 7, PLDI (June
2023), 343–367. https://doi.org/10.1145/3591234

[30] R. Nikhil. 2004. Bluespec System Verilog: efficient, correct RTL from

high level specifications. In Proceedings. Second ACM and IEEE In-
ternational Conference on Formal Methods and Models for Co-Design,
2004. MEMOCODE ’04. 69–70. https://doi.org/10.1109/MEMCOD.2004.
1459818

[31] OpenHW Group. 2024. Issue 145: Clarification of valid-ready hand-

shake dependency. https://github.com/openhwgroup/core-v-xif/
issues/145 Accessed: 2024-11-12.

[32] OpenHW Group. 2024. Issue 194: Hansdhake rules additional note.

https://github.com/openhwgroup/core-v-xif/issues/194 Accessed:

2024-11-12.

[33] Pulp-Platform. [n. d.]. Add missing w_valid pulp-

platform/core2axi@25eba94. https://github.com/pulp-platform/
core2axi/commit/25eba94af4a58249cfa65e1c259ed4b4c5bbfd12

[34] Andy Ray, Benjamin Devlin, Fu Yong Quah, and Rahul Yesantharao.

2023. Hardcaml: An OCaml Hardware Domain-Specific Language for

Efficient and Robust Design. arXiv:2312.15035 [cs]

[35] Frans Skarman and Oscar Gustafsson. 2022. Spade: An HDL Inspired

by Modern Software Languages. In 2022 32nd International Conference
on Field-Programmable Logic and Applications (FPL). 454–455. https:
//doi.org/10.1109/FPL57034.2022.00075

[36] Michael Bedford Taylor. 2018. Basejump STL: systemverilog needs a

standard template library for hardware design. In Proceedings of the
55th Annual Design Automation Conference (San Francisco, California)

(DAC ’18). Association for Computing Machinery, New York, NY, USA,

Article 73, 6 pages. https://doi.org/10.1145/3195970.3199848
[37] titan. 2014. Synchronizing Multiplier with Adder to Form Mac.

[38] Drew Zagieboylo, Charles Sherk, Gookwon Edward Suh, and An-

drew C. Myers. 2022. PDL: A High-Level Hardware Design Lan-

guage for Pipelined Processors. In Proceedings of the 43rd ACM SIG-
PLAN International Conference on Programming Language Design
and Implementation. ACM, San Diego CA USA, 719–732. https:
//doi.org/10.1145/3519939.3523455

[39] F. Zaruba and L. Benini. 2019. The Cost of Application-Class Pro-

cessing: Energy and Performance Analysis of a Linux-Ready 1.7-GHz

64-Bit RISC-V Core in 22-Nm FDSOI Technology. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 27, 11 (Nov. 2019), 2629–
2640. https://doi.org/10.1109/TVLSI.2019.2926114

13

https://doi.org/10.1145/3591234
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1109/MEMCOD.2004.1459818
https://github.com/openhwgroup/core-v-xif/issues/145
https://github.com/openhwgroup/core-v-xif/issues/145
https://github.com/openhwgroup/core-v-xif/issues/194
https://github.com/pulp-platform/core2axi/commit/25eba94af4a58249cfa65e1c259ed4b4c5bbfd12
https://github.com/pulp-platform/core2axi/commit/25eba94af4a58249cfa65e1c259ed4b4c5bbfd12
https://arxiv.org/abs/2312.15035
https://doi.org/10.1109/FPL57034.2022.00075
https://doi.org/10.1109/FPL57034.2022.00075
https://doi.org/10.1145/3195970.3199848
https://doi.org/10.1145/3519939.3523455
https://doi.org/10.1145/3519939.3523455
https://doi.org/10.1109/TVLSI.2019.2926114

Jason Zhijingcheng Yu, Aditya Ranjan Jha, Umang Mathur, Trevor E. Carlson, and Prateek Saxena

message definitions 𝑀 ::= {𝜋.𝑚 : 𝑝, · · · }
message set Σ ::= {𝜋.𝑚, · · · }
composition 𝜅 ::= 𝑡 | 𝜅 ∥Σ 𝜅

program P ::= (loop{𝑡}, 𝑀) | P ∥Σ P

Figure 9. Anvil abstract syntax

A Formalization Details
A.1 Abstract Syntax
For convenience of formal reasoning, we also define an abstract syntax of Anvil programs, shown in Figure 9, allowing us to

discuss parallel composition in a style similar to communicating sequential processes (CSP) [19]. The ∥Σ notation represents

parallel composition with the two sides communicating through messages specified in the set Σ.𝑀 maps each message to the

associated duration requirement.

A.2 Semantics

Execution log. An execution log is simply a sequenceL = ⟨𝛼0, · · · , 𝛼𝑘⟩, where 𝛼𝑖 is represents the set of operations performed

during cycle 𝑖 . Operations can be one of the following — 1. ValCreate representing the creation of a new value that depends

on a set of registers and existing values, 2. ValUse, representing the use of a value, 3. RegMut, denoting mutation of a register,

4. ValSend, for sending of a value through a message, and 5. ValRecv, denoting the receipt of a value through a message.

Following this, we define the set of execution logs corresponding to a term, compositions, and finally programs. To capture the

non-determinism of message passing and branching in an execution log of a term, we delay each send and receive operation

by any non-negative number of cycles and allow each branching term to take either branch. Execution logs of compositions

are obtained by combining two execution logs, with the requirement that any send and receive operations for messages in Σ
must match and align in pairs, and each pair must use the same value identifier. In the combined execution log, the matching

send and receive operations are eliminated. This reflects that they have now become internal details, no longer affecting the

semantics of the composition. For programs, we take into consideration the looping semantics of each looping thread. We

achieve this by mapping a program to a set of compositions, where each composition is obtained by appending 𝑡 in each

looping thread loop{𝑡} arbitrarily many times. Any execution log of any such composition is an execution log of the program.

The semantics of those constructs is then defined by their sets of execution logs, which captures all their possible behaviours.

Definition A.1 (Execution log). An execution log consists of a sequence of sets L = ⟨𝛼0, 𝛼1, · · · , 𝛼𝑘⟩. The finite set 𝛼𝑖 contains
the actions in the 𝑖-th cycle, each of the following form:

• ValCreate(𝑣, {𝑟1, 𝑟2, · · · , 𝑟𝑚}, {𝑣1, 𝑣2, · · · , 𝑣𝑛}) (creating a value with name 𝑣 that depends on registers 𝑟1, 𝑟2, · · · , 𝑟𝑚 and

values 𝑣1, 𝑣2, · · · , 𝑣𝑛)
• ValUse(𝑣) (using the value identified by 𝑣)

• RegMut(𝑟) (mutating the register identified by 𝑟)

• ValSend(𝜋.𝑚, 𝑣, 𝑝) (send a value with name 𝑣 through message 𝜋.𝑚 with duration 𝑝)

• ValRecv(𝜋.𝑚, 𝑣, 𝑝) (receive a value with name 𝑣 through message 𝜋.𝑚 with duration 𝑝)

Definition A.2 (Local execution log). A log L is a local execution log of a term 𝑡 if Γ; 𝐼 , 𝑀 ⊢ 𝑡 ; L ◁ 𝑣 , which is defined by

the following inference rules.

Γ; {𝑣}, 𝑀 ⊢ cycle #𝑘 ; (∅𝑘+1 ◦ ⟨{ValCreate(𝑣, ∅, ∅)}⟩) ◁ 𝑣
(E-Cycle)

Γ; {𝑣}, 𝑀 ⊢ 𝑛 ; ⟨{ValCreate(𝑣, ∅, ∅)}⟩ ◁ 𝑣
(E-Literal)

Γ; 𝐼1, 𝑀 ⊢ 𝑡1 ; L1 ◁ 𝑣1 Γ; 𝐼2, 𝑀 ⊢ 𝑡2 ; L2 ◁ 𝑣2
𝐼1 ∩ 𝐼2 = ∅

shift(Γ, |L1 | − 1); (𝐼1 ∪ 𝐼2), 𝑀 ⊢ 𝑡1 => 𝑡2 ; (L1 ◦ L2) ◁ 𝑣2
(E-Wait)

14

Anvil: A General-Purpose Timing-Safe Hardware Description Language

Γ; 𝐼1, 𝑀 ⊢ 𝑡1 ; L1 ◁ 𝑣1 Γ, 𝑥 : (|L1 | − 1, 𝑣1); 𝐼2, 𝑀 ⊢ 𝑡2 ; L2 ◁ 𝑣2

Γ; (𝐼1 ∪ 𝐼2), 𝑀 ⊢ let 𝑥 = 𝑡1 in 𝑡2 ; (L1 ⊎ L2) ◁ 𝑣2
𝐼1 ∩ 𝐼2 = ∅

(E-Let)

Γ(𝑥) = (𝑘, 𝑣)
Γ; ∅, 𝑀 ⊢ 𝑥 ; ∅𝑘+1 ◁ 𝑣

(E-Ref)

Γ; 𝐼 , 𝑀 ⊢ 𝑡 ; L ◁ 𝑣 𝑣 ′ ∉ 𝐼

Γ; 𝐼 ∪ {𝑣 ′}, 𝑀 ⊢ 𝑟 := 𝑡 ; L ⊎ ⟨{ValUse(𝑣), RegMut(𝑟)}, {ValCreate(𝑣 ′, ∅, ∅)}⟩ ◁ 𝑣 ′
(E-RegAssign)

Γ; 𝐼 , 𝑀 ⊢ 𝑡 ; L ◁ 𝑣 𝑣 ′ ∉ 𝐼 𝑘 ∈ N
Γ; (𝐼 ∪ {𝑣 ′}), 𝑀 ⊢ send 𝜋.𝑚(𝑡) ; ∅𝑘+1 ◦ ⟨{ValSend(𝜋.𝑚, 𝑣,𝑀 (𝜋.𝑚)),ValCreate(𝑣 ′, ∅, ∅)}⟩ ◁ 𝑣 ′

(E-Send)

𝑘 ∈ N, 𝑢 ≠ 𝑣

Γ; ({𝑣,𝑢}), 𝑀 ⊢ recv 𝜋.𝑚 ; ∅𝑘◦
⟨{ValRecv(𝜋.𝑚, 𝑣,𝑀 (𝜋.𝑚)),ValCreate(𝑢, ∅, {𝑣})}⟩ ◁ 𝑢

(E-Recv)

Γ; 𝐼1, 𝑀 ⊢ 𝑡1 ; L1 ◁ 𝑣1
Γ; 𝐼2, 𝑀 ⊢ 𝑡2 ; L2 ◁ 𝑣2
Γ; 𝐼3, 𝑀 ⊢ 𝑡3 ; L3 ◁ 𝑣3

𝐼1 ∩ (𝐼2 ∪ 𝐼3) = ∅ 𝐼2 ∩ 𝐼3 = ∅
Γ; (𝐼1 ∪ 𝐼2 ∪ 𝐼3), 𝑀 ⊢ if 𝑡1 then 𝑡2 else 𝑡3 ; L1 ⊎ L2 ⊎ ⟨{ValUse(𝑣1)}⟩ ◁ 𝑣2

(E-IfThen)

Γ; 𝐼1, 𝑀 ⊢ 𝑡1 ; L1 ◁ 𝑣1
Γ; 𝐼2, 𝑀 ⊢ 𝑡2 ; L2 ◁ 𝑣2
Γ; 𝐼3, 𝑀 ⊢ 𝑡3 ; L3 ◁ 𝑣3

𝐼1 ∩ (𝐼2 ∪ 𝐼3) = ∅ 𝐼2 ∩ 𝐼3 = ∅
Γ; (𝐼1 ∪ 𝐼2 ∪ 𝐼3), 𝑀 ⊢ if 𝑡1 then 𝑡2 else 𝑡3 ; L1 ⊎ L3 ⊎ ⟨{ValUse(𝑣1)}⟩ ◁ 𝑣3

(E-IfElse)

∅; {𝑣}, 𝑀 ⊢ ∗𝑟 ; ⟨{ValCreate(𝑣, {𝑟 }, ∅)}⟩ ◁ 𝑣
(E-RegEval)

∅; {𝑣}, 𝑀 ⊢ ready(𝜋.𝑚) ; ⟨{ValCreate(𝑣, ∅, ∅)}⟩ ◁ 𝑣
(E-Ready)

Where ⟨𝛼0, 𝛼1, · · · , 𝛼𝑘⟩ ◦ ⟨𝛽0, 𝛽1, · · · , 𝛽𝑙 ⟩ = ⟨𝛼0, 𝛼1, · · · , (𝛼𝑘 ∪ 𝛽0), 𝛽1, · · · , 𝛽𝑙 ⟩.
The merge operator ⊎ is defined as (without loss of generality, assuming 𝑘 ≤ 𝑙): ⟨𝛼0, 𝛼1, · · · , 𝛼𝑘⟩ ⊎ ⟨𝛽0, 𝛽1, · · · , 𝛽𝑙 ⟩ =

⟨𝛼0 ∪ 𝛽0, 𝛼1 ∪ 𝛽1, · · · , 𝛼𝑘 ∪ 𝛽𝑘 , 𝛽𝑘+1, · · · , 𝛽𝑙 ⟩.
𝛼𝑘 = ⟨𝛼0, · · · , 𝛼𝑘−1⟩ where for all 𝑖 = 0, 1, · · · , 𝑘 − 1, 𝛼𝑖 = 𝛼 .

The function shift(Γ, 𝑘) shifts all delays in Γ by 𝑘 cycles. Formally,

shift(∅, 𝑘) = ∅
shift((Γ, 𝑥 : (𝑘 ′, 𝑣)), 𝑘) = shift (Γ, 𝑘), 𝑥 : (max(0, 𝑘 ′ − 𝑘), 𝑣)

Definition A.3 (Compositional execution log). L is an execution log of a 𝜅 if:

• 𝜅 = 𝑡 and L is a prefix of an execution log of 𝑡

• 𝜅 = 𝜅1 ∥Σ 𝜅2, L1,L2 are execution logs of 𝜅1 and 𝜅2 respectively, and let L1 = ⟨𝛼0, · · · , 𝛼𝑚⟩,L2 = ⟨𝛽0, · · · , 𝛽𝑚⟩, the
following holds:

– For all 𝜋.𝑚 ∈ Σ, 0 ≤ 𝑖 ≤ 𝑚, ValSend(𝜋.𝑚, 𝑣, 𝑝) ∈ 𝛼𝑖 if and only if ValRecv(𝜋.𝑚, 𝑣, 𝑝) ∈ 𝛽𝑖 , and ValRecv(𝜋.𝑚, 𝑣, 𝑝) ∈ 𝛼𝑖
if and only if ValSend(𝜋.𝑚, 𝑣, 𝑝) ∈ 𝛽𝑖 .

– L = ⟨𝛾0, · · · , 𝛾𝑚⟩, 𝛾𝑖 = 𝛼𝑖 ∪ 𝛽𝑖 − {ValSend(𝜋.𝑚, 𝑣, 𝑝) | 𝜋.𝑚 ∈ Σ} − {ValRecv(𝜋.𝑚, 𝑣, 𝑝) | 𝜋.𝑚 ∈ Σ}.
15

Jason Zhijingcheng Yu, Aditya Ranjan Jha, Umang Mathur, Trevor E. Carlson, and Prateek Saxena

Definition A.4 (Concretization). A composition 𝜅 is a concretization of program P, written P ; 𝜅 , by the following inference

rules:

(loop{𝑡}, 𝑀) ; 𝑡
(C-Base)

(loop{𝑡}, 𝑀) ; 𝑡 ′

(loop{𝑡}, 𝑀) ; 𝑡 ′ => 𝑡
(C-Extend)

P1 ; 𝜅1 P2 ; 𝜅2

P1 ∥Σ P2 ; 𝜅1 ∥Σ 𝜅2
(C-Compose)

Definition A.5 (Program execution log). L is an execution log of program P if there exists composition 𝜅 such that P ; 𝜅

and L is an execution log of 𝜅.

A.3 Type System

Event graph. The type system of Anvil is based on the event graph. An event graph, denoted 𝐺 = (𝑉 , 𝐸), is a directed acyclic

graph that describes the time ordering among events in an Anvil process. Each node (i.e., event) is labelled to indicate how

its corresponding starting time relates to those of its direct predecessors. Types in Anvil reference the event graph as part

of the typing environment to convey timing constraints. We choose this strategy because the timing constraints associated

with a term are not always local. Take the example of send ch.m1 (x) => recv ch.m2 , where ch.m1 specifies a duration of ch.m2.
It is necessary to be aware of the first ch.m2 event that occurs after ch.m1. This event does not appear in the expression

send ch.m1 (x) itself, but rather in the surrounding context in which send ch.m1 (x) appears, to ensure that x lives long enough.

We choose the event graph as it is a simple structure that captures all the necessary information to reason about such timing

constraints. As a shorthand, we use the notation 𝑒1 → 𝑒2 ∈ 𝐺 to say that 𝐺 contains an edge from event 𝑒1 to event 𝑒2. We

use 𝐺 (𝑒2) to denote ⟨𝜔, {𝑒1 | 𝑒1 → 𝑒2 ∈ 𝐺}⟩, which consists of the operation label 𝜔 of 𝑒2 as well as the set of all its direct

predecessors.

Types. Intuitively, a type encodes a lifetime by referencing the event graph and is a pair:

𝑇 ::= (𝑒𝑙 , 𝑆𝑑),
where 𝑒𝑙 is an event graph node that encodes the start time, and 𝑆𝑑 is a set of event patterns 𝑒𝑑 ⊲ 𝑝 , the earliest match of which

defines the end time. An empty 𝑆𝑑 indicates that the lifetime is eternal. Each time pointer specifier is a pair of event identifier

𝑒𝑑 and duration 𝑝 , which implies the first time 𝑝 is matched (the specified number of cycles have elapsed or a specified message

is sent or received) after 𝑒𝑑 is reached.

Typing Rules. A typing judgment is of the form

Γ;𝐺, 𝑅,𝑀,𝐶, 𝑒𝑐 ⊢ 𝑡 : 𝑇 .
The typing environment consists of Γ which maps each let-binding to its type, the event graph 𝐺 introduced above, 𝑅 which

maps a register to its loan time,𝑀 which maps a message specifier (an endpoint and a message identifier, of the form 𝜋.𝑚) to

the duration that specifies its lifetime requirement, 𝐶 which is a set of identifiers associated with all branch conditions that

have appeared, and 𝑒𝑐 which references a node in 𝐺 as an abstract specifier of the time at which 𝑡 is to be evaluated.

The typing rules use the ≤𝐺 and <𝐺 relations to apply timing constraints. Their complete and formal definitions are available

in Section A. Intuitively, 𝑎 ≤𝐺 𝑏 if the time specified by 𝑎 is always no later than that by 𝑏 in the event graph 𝐺 , and 𝑎 <𝐺 𝑏

if the time specified by 𝑎 is always strictly before that by 𝑏 in 𝐺 . Here 𝑎 and 𝑏 can be nodes or timing patterns in 𝐺 . In our

implementation, we use sound approximations of ≤𝐺 and <𝐺 .

Γ;𝐺, 𝑅,𝑀,𝐶, 𝑒𝑐 ⊢ 𝑡 : 𝑇
Γ, 𝑥 : 𝑇 ′

;𝐺, 𝑅,𝑀,𝐶, 𝑒𝑐 ⊢ 𝑡 : 𝑇
(T-Weaken)

𝐺 (𝑒𝑙) = ⟨#𝑘, {𝑒𝑐 }⟩
∅;𝐺, 𝑅,𝑀, ∅, 𝑒𝑐 ⊢ cycle 𝑘 : (𝑒𝑙 , ∅)

(T-Cycle)

Γ;𝐺, 𝑅,𝑀,𝐶1, 𝑒𝑐 ⊢ 𝑡1 : (𝑒𝑙 , 𝑆𝑑)
Γ;𝐺, 𝑅,𝑀,𝐶2, 𝑒𝑙 ⊢ 𝑡2 : 𝑇2 𝐶1 ∩𝐶2 = ∅
Γ;𝐺, 𝑅,𝑀,𝐶1 ∪𝐶2, 𝑒𝑐 ⊢ 𝑡1 => 𝑡2 : 𝑇2

(T-Wait)

16

Anvil: A General-Purpose Timing-Safe Hardware Description Language

𝑀 (𝜋.𝑚) = 𝑝 𝐺 (𝑒𝑙) = ⟨𝜋.𝑚, {𝑒𝑐 }⟩
∅;𝐺, 𝑅,𝑀, ∅, 𝑒𝑐 ⊢ recv 𝑚 : (𝑒𝑙 , {𝑒𝑙 ⊲ 𝑝})

(T-Recv)

𝑥 : (𝑒𝑙 , 𝑆𝑑) ∈ Γ 𝐺 (𝑒′
𝑙
) = ⟨#0, {𝑒𝑐 , 𝑒𝑙 }⟩

Γ;𝐺, 𝑅,𝑀, ∅, 𝑒𝑐 ⊢ 𝑥 : (𝑒′
𝑙
, 𝑆𝑑)

(T-Ref)

Γ;𝐺, 𝑅,𝑀,𝐶, 𝑒𝑐 ⊢ 𝑡 : (𝑒𝑙 , 𝑆𝑑)
𝐺 (𝑒′

𝑙
) = ⟨𝜋.𝑚, {𝑒𝑐 }⟩

𝑒𝑙 ≤𝐺 𝑒𝑐 𝑒′
𝑙
⊲𝑀 (𝜋.𝑚) ≤𝐺 𝑆𝑑

Γ;𝐺, 𝑅,𝑀,𝐶, 𝑒𝑐 ⊢ send 𝜋.𝑚(𝑡) : (𝑒′
𝑙
, ∅)

(T-Send)

Γ;𝐺, 𝑅,𝑀,𝐶1, 𝑒𝑐 ⊢ 𝑡1 : (𝑒1, 𝑆1)
Γ;𝐺, 𝑅,𝑀,𝐶2, 𝑒𝑐 ⊢ 𝑡2 : (𝑒2, 𝑆2)

𝐺 (𝑒′
𝑙
) = ⟨#0, {𝑒1, 𝑒2}⟩ 𝐶1 ∩𝐶2 = ∅

Γ;𝐺, 𝑅,𝑀,𝐶1 ∪𝐶2, 𝑒𝑐 ⊢ 𝑡1 ★ 𝑡2 : (𝑒′𝑙 , 𝑆1 ∪ 𝑆2)
(T-BinOp)

Γ;𝐺, 𝑅,𝑀,𝐶, 𝑒𝑐 ⊢ 𝑡 : (𝑒𝑙 , 𝑆𝑑)
∀(𝑒, 𝑆) ∈ 𝑅(𝑟) : 𝑒𝑐 <𝐺 𝑒 ∨ 𝑆 ≤𝐺 𝑒𝑐

𝑒𝑙 ≤𝐺 𝑒𝑐 𝑒𝑐 ⊲ #1 ≤𝐺 𝑆𝑑 𝐺 (𝑒′
𝑙
) = ⟨#1, {𝑒𝑐 }⟩

Γ;𝐺, 𝑅,𝑀,𝐶, 𝑒𝑐 ⊢ 𝑟 := 𝑡 : (𝑒′
𝑙
, ∅)

(T-RegAssign)

∃(𝑒, 𝑆) ∈ 𝑅(𝑟) : 𝑒 ≤𝐺 𝑒𝑐 ∧ 𝑒𝑐 ≤𝐺 𝑆𝑑 ∧ 𝑆𝑑 ≤𝐺 𝑆

∅;𝐺, 𝑅,𝑀, ∅, 𝑒𝑐 ⊢ ∗𝑟 : (𝑒𝑐 , 𝑆𝑑)
(T-RegEval)

Γ;𝐺, 𝑅,𝑀,𝐶1, 𝑒𝑐 ⊢ 𝑡1 : (𝑒1, 𝑆1)
Γ;𝐺, 𝑅,𝑀,𝐶2, 𝑒

′
𝑐 ⊢ 𝑡2 : (𝑒2, 𝑆2)

Γ;𝐺, 𝑅,𝑀,𝐶3, 𝑒
′′
𝑐 ⊢ 𝑡3 : (𝑒3, 𝑆3)

𝑒1 ≤𝐺 𝑒𝑐 ∧ 𝑒𝑐 ≤𝐺 𝑆1
𝑐 ∉ 𝐶1 ∪𝐶2 ∪𝐶3 𝐶1 ∩ (𝐶2 ∪𝐶3) = 𝐶2 ∩𝐶3 = ∅

𝐺 (𝑒′𝑐) = 𝐺 (𝑒′′𝑐) = ⟨&𝑐, {𝑒𝑐 }⟩ 𝑒′𝑐 ≠ 𝑒′′𝑐
𝐺 (𝑒′

𝑙
) = ⟨⊕, {𝑒2, 𝑒3}⟩

Γ;𝐺, 𝑅,𝑀,𝐶1 ∪𝐶2 ∪𝐶3 ∪ {𝑐}, 𝑒𝑐 ⊢ if 𝑡1 then 𝑡2 else 𝑡3 : (𝑒′𝑙 , 𝑆1 ∪ 𝑆2 ∪ 𝑆3)
(T-Cond)

Γ;𝐺, 𝑅,𝑀,𝐶1, 𝑒𝑐 ⊢ 𝑡1 : (𝑒1, 𝑆1)
Γ;𝐺, 𝑅,𝑀,𝐶2, 𝑒𝑐 ⊢ 𝑡2 : (𝑒2, 𝑆2)

𝐺 (𝑒′
𝑙
) = ⟨#0, {𝑒1, 𝑒2}⟩ 𝐶1 ∩𝐶2 = ∅

Γ;𝐺, 𝑅,𝑀,𝐶1 ∪𝐶2, 𝑒𝑐 ⊢ 𝑡1; 𝑡2 : (𝑒′𝑙 , 𝑆2)
(T-Join)

(𝜋.𝑚, 𝑝) ∈ 𝑀

∅;𝐺, 𝑅,𝑀, ∅, 𝑒𝑐 ⊢ ready(𝜋.𝑚) : (𝑒𝑐 , {𝑒𝑐 ⊲ #1})
(T-Ready)

Well-typedness. We define well-typed terms, processes, and programs based on the above.

Definition A.6 (Well-typed Anvil term). An Anvil term 𝑡 is well-typed under the context𝑀 if there exist 𝐺 , 𝑅, 𝑒0, 𝐶 , and 𝑇

such that 𝐺 (𝑒0) = ⟨0, ∅⟩ and ∅;𝐺, 𝑅,𝑀,𝐶, 𝑒0 ⊢ 𝑡 : 𝑇 .

Definition A.7 (Well-typed Anvil process). Under the context 𝑀 , we say a process loop loop{𝑡} is well-typed if the term

𝑡 ⇒ 𝑡 is well-typed under𝑀 .

Definition A.8 (Well-typed Anvil program). A program P is well-typed if

• P = (loop{𝑡}, 𝑀) and loop{𝑡} is well-typed under𝑀 .

• P = P1 ∥Σ P2, and Σ = 𝑀P1
∩𝑀P2

, where𝑀P𝑖
is the union of all𝑀s that appear in P𝑖 .

17

Jason Zhijingcheng Yu, Aditya Ranjan Jha, Umang Mathur, Trevor E. Carlson, and Prateek Saxena

A.3.1 Auxiliary Definitions. We define ≤𝐺 and <𝐺 that appear in the typing rules.

Definition A.9 (Timestamp). A function 𝜏𝐺 : 𝑉 → N is a timestamp function of event graph 𝐺 = (𝑉 , 𝐸) if for all 𝑒 ∈ 𝑉 :

• If 𝐺 (𝑒) = ⟨0, 𝑆⟩, then 𝜏𝐺 (𝑒) = 0.

• If 𝐺 (𝑒) = ⟨#𝑘, 𝑆⟩, then 𝜏𝐺 (𝑒) = max𝑒′∈𝑆 (𝜏𝐺 (𝑒′) + 𝑘).
• If 𝐺 (𝑒) = ⟨𝜋.𝑚, 𝑆⟩, then 𝜏𝐺 (𝑒) ≥ max𝑒′∈𝑆 𝜏𝐺 (𝑒′)
• If 𝐺 (𝑒) = ⟨&𝑐, 𝑆⟩ ∧ 𝜏𝐺 (𝑒) = max𝑒′∈𝑆 𝜏𝐺 (𝑒′), then ∀𝑒′ ∈ 𝑉 : (𝑒′ ≠ 𝑒 ∧𝐺 (𝑒) = ⟨&𝑐, 𝑆⟩) → 𝜏𝐺 (𝑒′) = ∞
• If 𝐺 (𝑒) = ⟨⊕, 𝑆⟩, then 𝜏𝐺 (𝑒) = min𝑒′∈𝑆 𝜏𝐺 (𝑒′).

It is obvious that for any event graph𝐺 , at least one timestamp function exists. We now extend this definition of timestamps

to event patterns.

Definition A.10 (Event pattern timestamp). Let 𝐺 be an event graph and 𝜏𝐺 be a timestamp function of 𝐺 . We define 𝑒 ⊲ 𝑝:

• 𝜏𝐺 (𝑒 ⊲ #𝑘) = 𝜏𝐺 (𝑒) + 𝑘
• 𝜏𝐺 (𝑒 ⊲ 𝜋.𝑚) = min𝐺 (𝑒′)=⟨𝜋.𝑚,𝑆 ⟩,𝜏𝐺 (𝑒)<𝜏𝐺 (𝑒′) 𝜏𝐺 (𝑒′) (or∞ if no such 𝑒′ can be found).

Definition A.11 (≤𝐺 and <𝐺). Let 𝐺 be an event graph. We say 𝑒1 ⊲ 𝑝1 ≤𝐺 𝑒2 ⊲ 𝑝2 if for all timestamp functions 𝜏𝐺 of 𝐺 , it

holds that 𝜏𝐺 (𝑒1 ⊲ 𝑝1) ≤ 𝜏𝐺 (𝑒2 ⊲ 𝑝2). Similarly, we say 𝑒1 ⊲ 𝑝1 <𝐺 𝑒2 ⊲ 𝑝2 if for all timestamp functions 𝜏𝐺 of 𝐺 , it holds that

𝜏𝐺 (𝑒1 ⊲ 𝑝1) < 𝜏𝐺 (𝑒2 ⊲ 𝑝2).

It is easy to prove the following two lemmas.

Lemma A.12. If (𝑒1 → 𝑒2) ∈ 𝐺 , then 𝑒1 ≤𝐺 𝑒2.

Lemma A.13. 𝑆 ∪ 𝑆 ′ ≤𝐺 𝑆 .

A.4 Safety
Definition A.14 (Register dependency set). We define that the value 𝑣 has the register dependency set 𝐷 in the execution log

L, written L ⊢ 𝑣 ↓ 𝐷 , by the following inference rules:

⟨⟩ ⊢ 𝑣 ↓ ⊥
(R-Base)

L ⊢ 𝑣 ↓ 𝐷
L · ⟨∅⟩ ⊢ 𝑣 ↓ 𝐷

(R-Empty)

L · ⟨𝛼𝑖⟩ ⊢ 𝑣 ↓ 𝐷
𝑜 ∉ {ValCreate(𝑣, 𝑆𝑟 , 𝑆𝑣) | 𝑆𝑟 ∈ 2

RegId, 𝑆𝑣 ∈ 2
ValId}

L · ⟨𝛼𝑖 ∪ {𝑜}⟩ ⊢ 𝑣 ↓ 𝐷
(R-NonCreate)

L · ⟨𝛼𝑖⟩ ⊢ 𝑣1 ↓ 𝐷1 𝐷1 ≠ ⊥
...

L · ⟨𝛼𝑖⟩ ⊢ 𝑣𝑘 ↓ 𝐷𝑘 𝐷𝑘 ≠ ⊥
L · ⟨𝛼𝑖 ∪ {ValCreate(𝑣, 𝑆𝑟 , {𝑣1, · · · , 𝑣𝑘 })}⟩ ⊢ 𝑣 ↓ 𝑆𝑟 ∪ 𝐷1 ∪ · · · ∪ 𝐷𝑘

(R-Create)

Note: · is the normal concatenation operator.

Other auxiliary definitions, assuming L = ⟨𝛼0, 𝛼1, · · · , 𝛼𝑘⟩,
• UseSet(L, 𝑣) = {𝑖 | ValUse(𝑣) ∈ 𝛼𝑖 ∨ ValCreate(𝑣, 𝑆𝑟 , 𝑆𝑣) ∈ 𝛼𝑖 ∨ ValRecv(𝜋.𝑚, 𝑣, 𝑝) ∈ 𝛼𝑖 ∨ ValSend(𝜋.𝑚, 𝑣, 𝑝) ∈ 𝛼𝑖 }
• MutSet(L, 𝐷) = {𝑖 | 𝑟 ∈ 𝐷 ∧ RegMut(𝑟) ∈ 𝛼𝑖 }
• LtRecv(L, 𝑣) = ⋂

𝑢∈DepSet(L,𝑣),ValRecv(𝜋.𝑚,𝑢,𝑝) ∈𝛼𝑖 LtFun(L, 𝑖, 𝑝)
• LtSend(L, 𝑣) = ⋃

𝑢∈DeriveSet(L,𝑣),ValSend(𝜋.𝑚,𝑢,𝑝) ∈𝛼𝑖 LtFun(L, 𝑖, 𝑝)
• LtFun(L, 𝑖, 𝜋 .𝑚) = [𝑖,𝑤) where𝑤 is the lowest 𝑗 ≥ 𝑖 , such that ValSend(𝜋.𝑚, 𝑣, 𝑝) ∈ 𝛼 𝑗 or ValRecv(𝜋.𝑚, 𝑣, 𝑝) ∈ 𝛼 𝑗

• LtFun(L, 𝑖, #𝑙) = [𝑖, 𝑖 + 𝑙)

Defining safety. We first define when an execution log should be deemed safe. This notion, then, can be naturally lifted to

define the safety of a term, composition of terms and of an entire Anvil program.

18

Anvil: A General-Purpose Timing-Safe Hardware Description Language

Definition A.15 (Safety of execution log). An execution log L is safe if for every value 𝑣 , there exists an interval [𝑎, 𝑏] such
that UseSet(L, 𝑣) ∪ LtSend(L, 𝑣) ⊆ [𝑎, 𝑏] ⊆ LtRecv(L, 𝑣), and for 𝐷 such that L ⊢ 𝑣 ↓ 𝐷 , MutSet(L, 𝐷) ∩ [𝑎, 𝑏) = ∅.

UseSet(L, 𝑣) includes all time points (cycle numbers) at which the value 𝑣 is used, LtSend(L, 𝑣) captures when 𝑣 needs to

be live as required by all send operations that involve 𝑣 or other values that depend on it, LtRecv(L, 𝑣) captures when 𝑣 is

guaranteed to be live through received messages from the environment, L ⊢ 𝑣 ↓ 𝐷 states that 𝑣 directly or indirectly depends

on the set of registers 𝐷 , and MutSet(L, 𝐷) captures when any register in 𝐷 is mutated. Intuitively, the safety definition above

states that all uses of a value 𝑣 and the lifetime promised to the environment should fall within a continuous time window.

During this time window, values received from the environment through receive are live, and no register that 𝑣 depends on is

mutated.

Since the set of all execution logs of a term, composition, or program captures all its possible run-time timing behaviours,

we define safety for those constructs as follows.

Definition A.16 (Term, composition, and program safety). A term, composition, or program is safe if all its execution logs are

safe.

Safety guarantees. We present a sketch of the proof of the safety guarantees of Anvil by providing the key lemmas. The

detailed proofs of the lemmas are available in Section B of the Appendix.

First, we show that well-typedness implies safety for terms.

Lemma A.17 (Safety of terms). A well-typed term is safe.

Then, by matching the LtSend(L, 𝑣) and LtRecv(L′, 𝑣) when obtaining the execution logs of well-typed compositions, we

prove that well-typedness implies safety also for compositions.

Lemma A.18 (Safety of compositions). A well-typed composition is safe.

Then, to account for the looping semantics in programs, we show that well-typedness for an Anvil process loop{𝑡} is
sufficient to guarantee that any number of 𝑡s joined together by wait (⇒) is also well-typed.

Lemma A.19 (Two iterations are sufficient). Let 𝑡 be an Anvil term and 𝑡𝑘 , 𝑘 = 1, 2, · · · be inductively defined as 𝑡1 = 𝑡 and

𝑡𝑘+1 = 𝑡𝑘 ⇒ 𝑡 . If 𝑡2 is well-typed, 𝑡𝑘 is well-typed for all 𝑘 = 2, · · · .

With the results above, it easily follows that we obtain the following theorem that describes the main safety guarantees of

Anvil.

Theorem A.20 (Anvil safety guarantees). A well-typed Anvil program is safe.

B Proofs
B.1 Additional Lemmas
Lemma B.1. If a term 𝑡 is well-typed and ∅;𝐺, 𝑅,𝑀, ∅, 𝑒0 ⊢ 𝑡 : 𝑇 , then for every local execution log L = ⟨𝛼0, · · · , 𝛼𝑘⟩
of 𝑡 , there exists a timestamp function 𝜏𝐺 of 𝐺 , such that if Γ;𝐺, 𝑅,𝑀,𝐶, 𝑒𝑐 ⊢ 𝑡 ′ : (𝑒𝑙 , 𝑆𝑑) appears during inference of

∅;𝐺, 𝑅,𝑀, ∅, 𝑒0 ⊢ 𝑡 : 𝑇 , and Γ′; 𝐼 ′, 𝑀 ⊢ 𝑡 ′ ; L′ ◁ 𝑣 appears during inference of ∅; 𝐼 , 𝑀 ⊢ 𝑡 ; L ◁ 𝑣0, let L′ = ⟨𝛼 ′
0
, · · · , 𝛼 ′

𝑙
⟩,

then ∀0 ≤ 𝑖 ≤ 𝑙 : 𝛼 ′
𝑖 ⊆ 𝛼𝑖+𝜏𝐺 (𝑒𝑐) and 𝜏𝐺 (𝑒𝑐) + 𝑙 = 𝜏𝐺 (𝑒𝑙). And for all 𝑟 ∈ 𝐷,L ⊢ 𝑣 ↓ 𝐷 , there exists (𝑒, 𝑆) ∈ 𝑅(𝑟), such that

𝑒 ≤𝐺 𝑒𝑙 and 𝑆𝑑 ≤𝐺 𝑆 .

Proof. We first show that such a function 𝜏𝐺 , if it exists, is a timestamp function of𝐺 . Consider the sub-terms 𝑡 ′ that appear
both in typing inference and evaluation. If Γ;𝐺, 𝑅,𝑀,𝐶, 𝑒𝑐 ⊢ 𝑡 ′ : (𝑒𝑙 , 𝑆𝑑) appears during inference of ∅;𝐺, 𝑅,𝑀, ∅, 𝑒0 ⊢ 𝑡 : 𝑇 , and
Γ′; 𝐼 ′, 𝑀 ⊢ 𝑡 ′ ; L′ ◁ 𝑣 appears during inference of ∅; 𝐼 , 𝑀 ⊢ 𝑡 ; L ◁ 𝑣0, we show that 𝜏𝐺 (𝑒𝑐) + 𝑙 = 𝜏𝐺 (𝑒𝑙) is consistent with
the timestamp function definition. In addition, we show ∀(𝑥 : (𝑘, 𝑣 ′)) ∈ Γ′ : Γ(𝑥) = (𝑒′

𝑙
, 𝑆 ′

𝑑
) → 𝑘 = max(0, 𝜏𝐺

(
𝑒′
𝑙

)
− 𝜏𝐺 (𝑒𝑐)).

This is shown by considering all possibilities for the rules applied and for each case replacing one constraint for the timestamp

with a stricter equation. For example:

• T-Cycle and E-Cycle: 𝐺 (𝑒𝑐) = ⟨#𝑘, {𝑒𝑙 }⟩, 𝑙 = 𝑘 .

• T-Wait and E-Wait: 𝜏𝐺 (𝑒𝑐) + 𝑙1 = 𝜏𝐺

(
𝑒′
𝑙

)
, 𝜏𝐺

(
𝑒′
𝑙

)
+ 𝑙2 = 𝜏𝐺 (𝑒𝑙) , 𝑙 = 𝑙1 + 𝑙2.

• T-Ref and E-Ref: 𝑙 = 𝑘,𝐺 (𝑒𝑙) = ⟨#0, {𝑒𝑐 , 𝑒′𝑙 }⟩.
Let 𝑘 be the number of all such sub-terms, then there are 𝑘 linear equations, and each equation involves at least one unique

variable. Hence any subset of those equations contain at least as many variables as equations. Therefore, the system of linear

equations has at least one solution. In other words, 𝜏𝐺 exists and is a timestamp function of 𝐺 .

19

Jason Zhijingcheng Yu, Aditya Ranjan Jha, Umang Mathur, Trevor E. Carlson, and Prateek Saxena

Now we prove that with such a 𝜏𝐺 , ∀0 ≤ 𝑖 ≤ 𝑙 : 𝛼 ′
𝑖 ⊆ 𝛼𝑖+𝜏𝐺 (𝑒𝑐) , where L′ = ⟨𝛼 ′

0
, · · · , 𝛼 ′

𝑙
⟩. This is shown by induction.

By induction, we can prove that for all 𝑟 ∈ 𝐷,L ⊢ 𝑣 ↓ 𝐷 , there exists (𝑒, 𝑆) ∈ 𝑅(𝑟), such that 𝑒 ≤𝐺 𝑒𝑙 and 𝑆𝑑 ≤𝐺 𝑆 . □

B.2 Lemma A.17
Proof. Let 𝑡 be a well-typed Anvil term. From the definition of well-typedness, ∅;𝐺, 𝑅,𝑀, ∅, 𝑒0 ⊢ 𝑡 : 𝑇 . We show that for every

local execution log L = ⟨𝛼0, · · · , 𝛼𝑘⟩, ∅; 𝐼 , 𝑀 ⊢ 𝑡 ; L ◁ 𝑣0, the timestamp function in Lemma B.1 satisfies that for every value

𝑣 , if Γ′; 𝐼 ′, 𝑀 ⊢ 𝑡 ′ ; L′ ◁ 𝑣 appears during inference of ∅; 𝐼 , 𝑀 ⊢ 𝑡 ; L ◁ 𝑣0, and Γ;𝐺, 𝑅,𝑀,𝐶, 𝑒𝑐 ⊢ 𝑡 ′ : (𝑒𝑙 , 𝑆𝑑) appears in
during inference of ∅;𝐺, 𝑅,𝑀, ∅, 𝑒0 ⊢ 𝑡 : 𝑇 , let 𝑎 = 𝜏𝐺 (𝑒𝑙) , 𝑏 = 𝜏𝐺

(
min𝑒⊲𝑝∈𝑆𝑑 , 𝜏𝐺 (𝑒 ⊲ 𝑝)

)
, then UseSet(L, 𝑣) ⊆ [𝑎, 𝑏] and for all

𝐷 such that L ⊢ 𝑣 ↓ 𝐷 , MutSet(L, 𝐷) ∩ [𝑎, 𝑏) = ∅.
Consider each member 𝑖 ∈ UseSet(L, 𝑣). By induction, it is obvious that one of the following must hold:

• ValUse(𝑣) ∈ 𝛼 ′
0
by E-IfThen, E-IfElse, and E-RegAssign. By Lemma B.1, 𝑖 = 𝜏𝐺 (𝑒𝑐)

• ValCreate(𝑣, 𝑆𝑟 , 𝑆𝑣) ∈ 𝛼 ′
0
by E-RegVal. Similarly, 𝑖 = 𝜏𝐺 (𝑒𝑙)

• ValCreate(𝑣, 𝑆𝑟 , 𝑆𝑣) ∈ 𝛼 ′
𝑘
by E-Cycle. In this case, 𝑖 = 𝜏𝐺 (𝑒𝑙)

In each case, we get 𝑖 ∈ [𝑎, 𝑏]. Thus UseSet(L, 𝑣) ⊆ [𝑎, 𝑏].
Now we prove for L ⊢ 𝑣 ↓ 𝐷,MutSet(L, 𝐷) ∩ [𝑎, 𝑏) = ∅. Consider each 𝑖 ∈ MutSet(L, 𝐷). By definition, we have some

𝑟 ∈ 𝐷, RegMut(𝑟) ∈ 𝛼𝑖 . By Lemma B.1, there must be applications of E-RegAssign and T-RegAssign where 𝜏𝐺 (𝑒𝑐) = 𝑖 and

there exists (𝑒, 𝑆) ∈ 𝑅(𝑟) such that 𝑒 ≤𝐺 𝑒𝑙 and 𝑆𝑑 ≤𝐺 𝑆 . Either 𝑒𝑐 <𝐺 𝑒 or 𝑆 ≤𝐺 𝑒𝑐 . If 𝑒𝑐 <𝐺 𝑒 , by definition of <𝐺 and ≤𝐺 , we

have 𝑖 = 𝜏𝐺 (𝑒𝑐) < 𝜏𝐺 (𝑒) ≤𝐺 𝜏𝐺 (𝑒𝑙) = 𝑎. Hence, 𝑖 ∉ [𝑎, 𝑏). If 𝑆 ≤𝐺 𝑒𝑐 , similarly, we have 𝑏 = 𝜏𝐺 (𝑆𝑑) ≤𝐺 𝜏𝐺 (𝑆) ≤𝐺 𝜏𝐺 (𝑒𝑐) = 𝑖 .

Hence, we also have 𝑖 ∉ [𝑎, 𝑏). Therefore, MutSet(L, 𝑣) ∩ [𝑎, 𝑏) = ∅.
By definition of safety, 𝑡 is safe. □

B.3 Lemma A.18
Proof. Let L be an execution log of 𝑡1 ∥Σ 𝑡2. By definition, L can be obtained by combining L1 and L2, each an execution

log of 𝑡1 and 𝑡2, respectively. Since 𝑡1 and 𝑡2 are well-typed, 𝑡1 and 𝑡2 are safe, and L1,L2 are also safe. By definition of

safety, for every value 𝑣 , there exists 𝑎1, 𝑏1, 𝑎2, 𝑏2, such that UseSet(L1, 𝑣) ∪ LtSend(L1, 𝑣) ⊆ [𝑎1, 𝑏1] ⊆ LtRecv(L1, 𝑣),L ⊢ 𝑣 ↓
𝐷1,MutSet(L1, 𝐷1) ∩ [𝑎1, 𝑏1) = ∅, and UseSet(L2, 𝑣) ∪ LtSend(L2, 𝑣) ⊆ [𝑎2, 𝑏2] ⊆ LtRecv(L2, 𝑣),L ⊢ 𝑣 ↓ 𝐷2,MutSet(L2

, 𝐷2) ∩ [𝑎2, 𝑏2) = ∅.
For 𝑖 ∈ {1, 2}, if a ValCreate(𝑣, 𝑆𝑟 , 𝑆𝑣) appears in L𝑖 , or, if no ValCreate(𝑣, 𝑆𝑟 , 𝑆𝑣) appears in either L𝑖 or L3−𝑖 but

LtRecv(𝜋.𝑚, 𝑣) appears in L𝑖 , we say that L𝑖 owns 𝑣 . Obviously every 𝑣 that appears in L is owned by either L1 or L2

but not both. We show that the following 𝑎, 𝑏 satisfies that UseSet(L, 𝑣) ∪ LtSend(L, 𝑣) ⊆ [𝑎, 𝑏] ⊆ LtRecv(L, 𝑣),L ⊢ 𝑣 ↓
𝐷,MutSet(L, 𝐷) ∩ [𝑎, 𝑏) = ∅:

1. If 𝑣 does not appear in L, then 𝑎 = 𝑎1, 𝑏 = 𝑏1.

2. If 𝑣 appears in L, and is owned by L𝑖 , 𝑎 = 𝑎𝑖 , 𝑏 = 𝑏𝑖 .

Case 1 is trivial.

For Case 2, by induction on the structure of DepSet(L, 𝑣), it is easy to obtain that UseSet(L, 𝑣) ∪ LtSend(L, 𝑣) ⊆
UseSet(L𝑖 , 𝑣) ∪ LtSend(L𝑖 , 𝑣) and LtRecv(L𝑖 , 𝑣) ⊆ LtRecv(L, 𝑣). Therefore, we get UseSet(L, 𝑣) ∪ LtSend(L, 𝑣) ⊆ [𝑎𝑖 , 𝑏𝑖] ⊆
LtRecv(L, 𝑣). Now we prove that MutSet(L, 𝐷) ∩ [𝑎𝑖 , 𝑏𝑖) = ∅. Without loss of generality, we assume 𝑖 = 1.

We use induction on DepSet(L, 𝑣). Consider the following cases:

1. DepSet(L, 𝑣) = ∅. In this case, either ValCreate(𝑣, 𝑆𝑟 , ∅) or LtRecv(𝜋.𝑚, 𝑣) appears in both L1 and L. In both cases,

MutSet(L, 𝐷) = MutSet(L1, 𝐷1). Since MutSet(L1, 𝐷1) ∩ [𝑎1, 𝑏1) = ∅, MutSet(L, 𝐷) ∩ [𝑎1, 𝑏1) = ∅.
2. DepSet(L, 𝑣) = 𝑆𝑣 . In this case, ValCreate(𝑣, 𝑆𝑟 , 𝑆𝑣) is in both L1 and L. Consider each 𝑢 ∈ 𝑆𝑣 . Either 𝑢 is owned by

L1, or it is owned by L2. Let 𝑎
′, 𝑏′ be selected such that UseSet(L 𝑗 , 𝑢) ∪ LtSend(L 𝑗 , 𝑢) ⊆ [𝑎′, 𝑏′] ⊆ LtRecv(L 𝑗 , 𝑢) and

MutSet(L 𝑗 , 𝐷
′) ∩ [𝑎′, 𝑏′), where L 𝑗 is the owner of 𝑢. Let 𝑎0, 𝑏0 be selected such that UseSet(L1, 𝑢) ∪ LtSend(L1, 𝑢) ⊆

[𝑎0, 𝑏0] ⊆ LtRecv(L1, 𝑢) and MutSet(L1, 𝐷0) ∩ [𝑎0, 𝑏0). If 𝑗 = 1, then 𝑎0 = 𝑎′𝑢, 𝑏0 = 𝑏′𝑢 . If 𝑗 = 2, there must be a send op-

eration involving 𝑢 in L2 and a matching receive operation in L1. We have [𝑎0, 𝑏0] ⊆ LtRecv(L1, 𝑢) ⊆ LtSend(L2, 𝑢) ⊆
[𝑎′𝑢, 𝑏′𝑢]. In both cases, we have [𝑎0, 𝑏0] ⊆ [𝑎′𝑢, 𝑏′𝑢]. By induction assumptions, [𝑎′, 𝑏′) ∩ MutSet(L, 𝐷𝑢) = ∅, hence
[𝑎0, 𝑏0) ∩MutSet(L, 𝐷𝑢) = ∅. Combining all 𝑢 ∈ 𝑆𝑣 , by definition of LtRecv(L1, 𝑣), MutSet(L1, 𝑣), and MutSet(L, 𝑣):
[𝑎, 𝑏] ⊆ ⋂

𝑢∈𝑆𝑣 LtRecv(L1, 𝑢) ⊆
⋂

𝑢∈𝑆𝑣 [𝑎′𝑢, 𝑏′𝑢],MutSet(L, 𝑣) = MutSet(
L1, 𝑣)∪

⋃
𝑢∈𝑆𝑣 MutSet(L, 𝑢). Hence [𝑎, 𝑏) ⊆ ⋂

𝑢∈𝑆𝑣 [𝑎′𝑢, 𝑏′𝑢), and [𝑎, 𝑏)∩MutSet(L, 𝑣) ⊆ ⋂
𝑢∈𝑆𝑣 [𝑎′𝑢, 𝑏′𝑢)∩

⋃
𝑢∈𝑆𝑣 MutSet(L, 𝑢) =

∅.
20

Anvil: A General-Purpose Timing-Safe Hardware Description Language

Figure 10. Anvil can assist in picking up bugs.

By induction, if 𝑣 is owned by L𝑖 , UseSet(L, 𝑣) ∪ LtSend(L, 𝑣) ⊆ [𝑎𝑖 , 𝑏𝑖] ⊆ LtRecv(L, 𝑣) and [𝑎𝑖 , 𝑏𝑖) ∩MutSet(L, 𝐷) = ∅.
Combining Case 1 and Case 2, we have shown that for all value 𝑣 , there exists such 𝑎 and 𝑏. Therefore, the composition 𝑡1 ∥Σ 𝑡2
is safe.

□

B.4 Lemma A.19
Proof. We show that for 𝑘 ≥ 2, if 𝑡𝑘 is well-typed, 𝑡𝑘+1 is also well-typed. By induction, this implies that if 𝑡2 is well-typed,

𝑡𝑘 (𝑘 = 2, · · ·) are all well-typed.
Since 𝑡𝑘 is well-typed, we have ∅;𝐺, 𝑅,𝑀, ∅, 𝑒0 ⊢ 𝑡𝑘 : 𝑇 . Because 𝑡𝑘 = 𝑡𝑘−1 => 𝑡 , there exists ∅;𝐺, 𝑅,𝑀,𝐶1, 𝑒0 ⊢ 𝑡𝑘−1 : (𝑒1, 𝑆1)

and ∅;𝐺, 𝑅,𝑀,𝐶2, 𝑒1 ⊢ 𝑡 : (𝑒2, 𝑆2) which appear during inference. It is obvious that 𝑒1 is a cut vertex in 𝐺 , i.e., there exists a

partition of 𝑉 = 𝑉1 ∪𝑉2 ∪ {𝑒1}, such that all paths between 𝑉1 and 𝑉2 go through 𝑒1, and it can be found such that 𝑉2 ∪ {𝑒1} is
the set of all nodes that appear in the inference rules used to obtain ∅;𝐺, 𝑅,𝑀,𝐶2, 𝑒1 ⊢ 𝑡 : (𝑒2, 𝑆2). Let 𝐺2 be the subgraph of 𝐺

with 𝑉 ′ = 𝑉2 ∪ {𝑒1}. Let 𝐺 ′
2
be a graph obtained by relabelling nodes of 𝐺2 such that 𝑒1 is relabelled 𝑒2 and nodes in 𝑉2 are

relabelled to nodes in𝑉3, where𝑉3 ∩𝑉 = ∅. Now let𝐺 ′ = 𝐺 ∪𝐺 ′
2
. Obviously, assuming <𝐺 and ≤𝐺 always hold, we can obtain

∅;𝐺 ′, 𝑅′, 𝑀,𝐶′, 𝑒0 ⊢ 𝑡𝑘+1 : 𝑇 ′
such that the same nodes appear in rules inferring for 𝑡𝑘 , and additionally there are rules inferring

for 𝑡 that simply map nodes used inferring ∅;𝐺, 𝑅,𝑀,𝐶2, 𝑒1 ⊢ 𝑡 : (𝑒2, 𝑆2) from 𝑉2 ∪ {𝑒1} to 𝑉3 ∪ {𝑣2}. Therefore, if 𝑡𝑘+1 is not
well-typed, there must be some unattainable <𝐺 or ≤𝐺 that appear in those rules. Consider different cases:

• Some 𝑒𝑎 <𝐺 𝑒𝑏 or 𝑒𝑎 ≤𝐺 𝑒𝑏 , which only involves nodes but not event patterns, does not hold. Obviously, {𝑒𝑎, 𝑒𝑏} ∈
𝑉1 ∪ {𝑒1} or {𝑒𝑎, 𝑒𝑏} ∈ 𝑉2 ∪ {𝑒1} or {𝑒𝑎, 𝑒𝑏} ∈ 𝑉3 ∪ {𝑒2}. This always implies that a corresponding typing judgment does

not hold for inferring well-typedness of 𝑡𝑘 , contradicting the assumption.

• Some typing judgment that involves 𝑒𝑎 ⊲𝑝 does not hold. This similarly imply a contradiction a rule involved in inferring

the well-typedness of 𝑡𝑘 does not hold.

By contradiction, 𝑡𝑘+1 is well-typed.
□

C Safety Analysis on Real-World Errors
We were motivated to design Anvil by our own frustrating experience implementing an experimental CPU architecture. The

frequent timing hazard we encountered during development required significant debugging effort. We demonstrate how Anvil

can help designers address the following challenges with minimal effort:

1. Enforcing concrete timing contracts

2. Challenges in implementing timing contracts

Case 1: Enforcing Concrete Timing Contracts. The vulnerability class highlighted in CWE-1298 [28] illustrates a hardware

bug from HACK@DAC’21. This bug arose from a missing timing contract in the DMA module of the OpenPiton SoC. The

module was intended to verify access to protected memory using specific address and configuration signals. However, it

assumed these inputs would remain stable during processing without any mechanism to enforce this assumption. This created

a timing vulnerability across module interactions.

If designed in Anvil, the DMA channel definition would explicitly require that input signals remain stable until the request

is completed, as shown in Figure 10. Anvil would enforce this stability requirement, ensuring that only compatible modules

interact without introducing timing risks. When the DMA module interfaces with non-Anvil modules, Anvil imposes a

21

Jason Zhijingcheng Yu, Aditya Ranjan Jha, Umang Mathur, Trevor E. Carlson, and Prateek Saxena

Table 3. Summary of Issues in some open source repositories

Repository Issue Analysis How can Anvil help?

OpenTitan
(Issue [26])

In OpenTitan’s entropy source module, firmware (FW) is supposed to insert

verified entropy data into the RNG pipeline. However, a timing hazard

prevented reliable data writing and control over the SHA operation.

Solution Proposed in discussion: Add signals for FW to control the entropy

source state machine and a ready signal to safely write data into the pipeline.

If implemented in Anvil, FW would

inherently control the state machine when

asserting data without explicit implementa

-tion ensuring synchronization is built-in.

Coyote
(Issue [17])

The completion queue has a 2-cycle valid signal burst instead of one cycle.

The issue is still open. This happens when a write request is issued on the

sq_wr bus, and the cq_wr is observed for completion. The valid signal is

high for 2 cycles instead of one.

Core Issue: The timing contract was not properly implemented, though the

designer defined it. The timing control was deeply embedded within

interconnected state machines, making the bug difficult to detect even with

a thorough inspection.

Anvil implements the FSM for timing

contracts implicitly, providing synchroniza

-tion primitives to control the state and

ensure an error-free FSM implementation.

ibex
(Commit [25])

Commit Message: “Add an instr_valid_id signal to completely decouple the

pipeline stages, hopefully, it fixes the exception controller"

Commit Summary: Despite the pipeline being statically scheduled, the valid

signal was added later to enforce the timing contract only after unexpected

behaviour was observed.

In Anvil, even for statically scheduled

pipelines, stage-to-stage handshakes are

enforced implicitly, ensuring timing

contracts are upheld even if the

schedule isn’t strictly adhered to.

snax-cluster
(Commit [24])

Commit changes

assign a_ready_o = acc_ready_i && c_ready_i && (a_valid_i && b_valid_i);
assign b_ready_o = acc_ready_i && c_ready_i && (a_valid_i && b_valid_i);

Commit Summary: Fixes the implementation of the timing contract on the ALU

interface by adding the missing valid signal in the handshake.

Anvil implicitly handles handshake impl

-ementation for interfacing signals,

ensuring the enforcement of timing

contracts.

core2axi
(Commit [33])

Commit changes: w_valid_o = 1’b1;

Commit Summary: Ensure compliance with the timing contract by asserting

the missing valid signal when sending a new write request on the bus.

In Anvil, the assertion of valid signals and

synchronization is handled implicitly

whenever a message is sent

one-clock-cycle lifetime on external signals. If the DMA implementation does not follow the contract, Anvil triggers an error:

“Value does not live long enough. . . ,” implying the need to register the signal immediately.

Similarly, designers using custom test benches with open-source hardware often struggle to follow strict timing contracts.

This is particularly challenging when there is no mechanism to enforce timing contracts. For instance, in this GitHub issue [8],

the designer observed unexpected behaviour during simulation while integrating a Verilog-based Ethernet interface into

their module. This Ethernet module required a complex timing contract to be enforced on the interfacing module for proper

operation. However, without a language that enforces this contract, the designer struggled to explicitly meet these timing

requirements and manage synchronization.

Case 2: Challenges in Implementing Timing Contracts. Designers often face challenges in implementing synchronization

primitives and dynamic timing contracts, even when they intend to define them clearly. This difficulty is evident in various

open-source project commit histories and issue trackers. For example, in Table 3, we highlight a few instances from GitHub

that showcase how designers have struggled with these aspects. Our analysis demonstrates that Anvil could have prevented

these issues or helped catch the bugs before compilation.

Even when contracts are explicitly defined, the instructions for compliance can be ambiguous. A case in point is the

documentation for CV-X-IF, where one issue [32] reveals the complications involved in adhering to the timing contract.

Another issue [31] illustrates that the complexity of a static schedule necessitated additional notes to clarify the implementation

guidelines for the interfacing module.

In contrast, Anvil simplifies the implementation of synchronization and finite state machines (FSM) that handle timing

contracts. Designers only need to define the contract within the corresponding channel, which can utilize dynamic message-

passing events. The synchronization primitives (handshakes) are implemented implicitly and efficiently, ensuring no clock

cycle overhead. Additionally, the wait construct allows designers to express the dynamic times required to process a state. In

ambiguous process descriptions, Anvil flags the description to make necessary changes to guarantee runtime safety statically.

22

	Abstract
	1 Introduction
	2 Motivation
	3 Timing Safety with Anvil
	4 Anvil HDL
	4.1 Channel
	4.2 Process
	4.3 Thread
	4.4 Term
	4.5 Wait operator
	4.6 Revisiting the Running Example

	5 Safety of Anvil Programs
	5.1 Events and Event Patterns
	5.2 Lifetime and Loan Time
	5.3 Event Graph
	5.4 Safety Checks
	5.5 Formalization

	6 Implementation
	6.1 Event Graph Optimizations
	6.2 Code Generation

	7 Evaluation
	7.1 Expressiveness
	7.2 Practicality

	8 Related Work
	9 Conclusions
	References
	A Formalization Details
	A.1 Abstract Syntax
	A.2 Semantics
	A.3 Type System
	A.4 Safety

	B Proofs
	B.1 Additional Lemmas
	B.2 Lemma A.17
	B.3 Lemma A.18
	B.4 Lemma A.19

	C Safety Analysis on Real-World Errors

