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Abstract

Understanding the behavior of complex systems is becoming a crucial issue as systems grow in size, and
the interconnection and geographical distribution of their components diversifies. The interaction over time
of many components often leads to emergent behavior, which can be harmful to the system. Despite this,
very few practical approaches for the identification of emergent behavior exist, and many are unfeasible
to implement. Approaches using interaction as a measure of emergence have the potential to alleviate
this problem. In this paper, we analyse absolute and relative methods that use interaction as a measure of
emergence. Absolute methods compute a degree of interaction that characterizes a system state as being
emergent. Relative methods compare interaction graphs of the system state with interaction graphs of
systems that have been shown previously to exhibit emergence. We present these approaches and discuss
their advantages and limitations using theoretical and experimental analysis.

1 Introduction

Complex systems often exhibit behavior that cannot be reduced only to the behavior of their individual
components, and component interactions often result in new and unexpected properties (Davis 2005, Johnson
2006, Mogul 2006). These emergent properties are becoming crucial as systems, and in particular software
systems, grow both in size (with respect to the number of components and their behavior and states), but
also in coupling and geographic distribution (Bedau 1997, Holland 1999, Johnson 2006, Mogul 2006).
A plethora of emergent properties examples have been observed and studied, from flocks of birds, ant
colonies, to the appearance of life and traffic jams. In software systems, connection patterns have been
observed in data extracted from social networks (Chi 2009) and trends emerge in big data analytics (Fayyad
and Uthurusamy 2002). More malign examples of emergent behavior include the Ethernet capture effect in
computer networks (Ramakrishnan and Yang 1994), and load-balancer failures in a multi-tiered distributed
system (Mogul 2006). As emergent properties may have undesired and unpredictable consequences, systems
that exhibit them become less credible and difficult to manage.

While emergent properties have been the focus of research since the 1970s (Bedau 1997, Cilliers 1998,
Gardner 1970, Holland 1999, Seth 2008), very few methods are known for their identification, classification,
and analysis (Chen et al. 2007, Kubik 2003, Seth 2008, Szabo and Teo 2012). Moreover, existing methods
are usually employed only on simplified examples that are not often found in real life. Approaches can be
classified broadly from two orthogonal perspectives. In the first perspective, approaches propose to identify
emergence as it happens (Kubik 2003, Szabo and Teo 2012), and aim to use formal models of calculated
composed model states. This requires the identification of attributes that describe the system components,
or the micro level, and the system as a whole, or the macro level, and the relationships and dependencies
between these levels. This allows the specification of emergence as the set difference between macro level
and the micro level, but they are difficult to capture and computationally expensive. In contrast, the second
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perspective uses a definition of an observed emergent property and aims to identify its cause, in terms of
the states of system components and their interaction (Chen et al. 2007, Seth 2008). A key limitation
of this post-mortem perspective is that a prior observation of an emergent property is required, and that
emergent properties need to be defined such that the macro level can be reduced or traced back to the micro
level. The above approaches are demonstrated using simple models such as flocks of birds or predator-prey
but have limiting assumptions and constraints when applied to more complicated systems. For example,
most approaches do not consider mobile agents (Kubik 2003), assume unfeasible a-priori specifications
and definitions of emergent properties (Szabo and Teo 2012), or do not scale beyond models with a small
number of agents (Chen et al. 2007, Kubik 2003). In the multi-agent systems community, approaches focus
more on the engineering of systems to exhibit beneficial emergent behavior and less on its identification
and validation (Bernon et al. 2003, Jacyno et al. 2009, Salazar et al. 2011).

An appealing approach for the formalization of emergence is proposed by Kubik (Kubik 2003), who
introduces the idea of array grammar systems as a formalism for capturing agent behavior. An agent’s
behavior is defined as a language produced by a grammar, and the behavior of the entire system is obtained
by multiple grammars writing symbols on a common tape. Emergence is then defined as the set difference
between the language of all agents written on the common tape (Lwhole) and the superimposition of all
individual agent languages (Lsum). Following the above classification, Lwhole represents the macro level
as system states due to agent interaction, while Lsum represents the superimposition of all micro levels as
systems states composed from all combinations of agent attributes. In our previous work (Teo et al. 2013),
we extended this formalism to model mobile agents and agents of different types. Our study showed that
the calculation of Lsum is very prohibitive in terms of computational cost and, in most cases, this calculation
is unnecessary as the superimposition of individual agent behaviors often leads to illegal states. Instead,
we focus on identifying the states from Lwhole that are not in Lsum, and thus in the set of emergent states.

Following the insight that interaction is one of the main causes of emergent behavior (Chan 2011, Melo
and Veloso 2009, Jacyno et al. 2009), in this paper we evaluate methods of identifying the set of emergent
states Lξ from Lwhole. All methods use interaction as a handle to identify emergence, in two main ways.
Absolute methods calculate a degree of interaction between agents and consider only system states with a
high degree of interaction as emergent. The degree of interaction can be calculated as a distance metric or
using interaction counts. Relative methods compare the system state with states from other systems that
have been previously shown to exhibit emergence. They use an interaction graph formalism and transform
the comparison into a shape similarity problem that can be solved using various distances. We present
these methods and analyse their advantages and disadvantages, both theoretically and through experimental
analysis. The contributions of this work include an in-depth analysis of agent interaction as a measure of
emergence and a discussion of its applicability and limitations.

2 Related Work

An emergent property can be defined as “a property of an assemblage that could not be predicted by
examining the components individually” (Bedau 1997). Significant research interest in the past thirty years
has led to the identification and analysis of various characteristics of emergent properties and behavior, such
as radical novelty, as properties not previously observed in the system; self-organization, in which system
components organize themselves without pre-defined rules; and evolution as the product of a dynamical
process that continuously changes (Holland 1999). Research has also identified interaction, usually short-
ranged, where the interaction happens only with close neighbors, as one of the causes of emergence. A
large number of approaches distinguish between a whole (or macro) system perspective, in which system
properties are captured and analyzed, and an individual (or micro) system perspective, in which properties
and interactions of individual components are considered (Holland 1999). The distinction between the
micro and the macro perspective aids in emergence definitions that look at the“whole as more than the sum
of its parts” (Bedau 1997). More formally, weak emergence is defined as the properties of the whole, or
the macro level, which result from the properties of the parts, or the micro level, and the interaction at the

208



Szabo, Teo, and Chengleput

micro level. Moreover, it is not trivial to infer the properties of the whole, and that extensive simulation
studies are required to analyze and understand emergent behavior (Holland 1999).

Emergent behavior analysis follows two main perspectives. If an unexpected behavior or property
has been observed then post-mortem or trace analysis can be performed on the system execution logs
in order to determine its causes. This requires that detailed system logs are kept and that these logs
permit analysis following an operational definition of emergence. In contrast, live or on the fly system
analysis proposes to identify emergent behavior as it happens, i.e., as the system is executing, and without
any system expert knowledge. Variations of this perspective analyze the system logs after the system
has finished execution, but without any prior knowledge about emergence (Kubik 2003). We distinguish
between these perspectives in our analysis, and also group existing work into three main categories, namely,
grammar-based, variable-based, and event-based, as discussed below.

Grammar-based methods are live emergence analysis methods which aim to identify emergence in
agent-based systems using two grammars, Lwhole to describe the properties of the system as a whole, and
Lsum to describe the properties obtained from the reunion of the parts, and a definition of emergence as the
difference between Lwhole and Lsum (Kubik 2003). Lwhole and Lsum can be easily calculated as sets of words
that are constructed following the defined output in agent behavior descriptions. This method does not
require a prior observation of the system, which makes it suitable for large-scale composed models where
such observations are almost impossible. However, the nature of the formalism and the computation of the
composed model states make it difficult to scale, despite recent attempts at reducing state space explosion.
Teo et al. proposed dividing Lsum and Lwhole into smaller state spaces but the calculation of these spaces
is still an open problem (Teo et al. 2013). Event-based methods are post-mortem analysis approaches in
which behavior is defined as a series of simple and complex events that change the system state (Chen
et al. 2007). Complex events are defined as compositions of simple, atomic events. Emergence is defined
by a system expert as a complex event, and the approach focuses on determining its causes in terms of the
sequence of complex and simple events in the system.

In variable-based methods, a specific variable or metric is chosen to describe emergence. Changes in
the values of this variable signify the presence of emergence properties (Seth 2008). For example, the centre
of mass of a bird flock could be used as an example of emergence in bird flocking behavior, as shown in
(Seth 2008). The approach uses Granger causality to establish the relationships between a macro-variable
and micro-variables and propose the metric of G-emergence. This has the advantage of providing an easy to
implement process for emergence identification. However, the approach requires system expert knowledge.
Szabo and Teo (Szabo and Teo 2013) propose the use of reconstructability analysis to determine which
components interacted to cause a particular emergent property (defined through a set of variables). They
identify the interactions that cause birds to flock (Reynolds 1987), the cells that cause the glider pattern
in Conway’s Game of Life (Gardner 1970) , and the causes of traffic jams. However, the accuracy of
their method is heavily dependant on the choice micro and macro level variables. Other approaches use
metrics such as Shannon entropy (Gershenson and Fernandez 2012, Prokopenko, Boschetti, and Ryan
2009) and variety (Holland 2007, Yaneer 2004) to measure emergence in a system. These approaches do
not require system expert knowledge as they employ general definitions that are rooted in complex systems
theory. However, to date they have only been applied to simple examples. Gore and Reynolds propose a
taxonomy for analyzing emergent behavior based on reproducibility, predictability, and temporality (Gore
and Reynolds 2007). However, the process of identifying the emergent behavior according to these criteria
is not addressed.

3 Interaction as a Measure of Emergence

Our approach (Teo et al. 2013) extends Kubik’s grammar-based approach (Kubik 2003) to calculate Lξ ,
the set of emergent property states as:

Lξ = Lwhole−Lsum (1)
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where Lwhole describes all possible system states due to agent-to-agent and agent-environment interactions,
and Lsum is the sum of all individual agent behaviors, without considering agent interactions. By representing
a multi-agent system (MAS) as a cooperating array grammar system as discussed above, an agent behavior
can be formalized as a grammar that produces the words that the agent writes on a tape. Thus, Lwhole is
obtained as the reunion of all words that agents write on the common tape, and Lsum as the superimposition of
individual agent words, using a pre-defined superimposition operator that computes all possible combinations
of agent words. We proposed an agent-based formalism that improves this approach by considering mobile
agents and multiple agents types (Teo et al. 2013). The computation of Lξ requires the calculation of
Lwhole by observing the common tape and recording all words written on it, and of Lsum by calculating
all the possible combinations of individual agent behaviors, resulting in a formal approach in identifying
emergence as it appears, without prior knowledge of emergent behavior. However, as in Kubik’s approach,
the computation of Lsum in unfeasible. This is because all possible combinations of individual agent states
are considered following a defined superimposition operator, without including system-defined rules.

In this paper, we propose a new perspective that significantly reduces the computational cost of
calculating Lξ . Instead of deriving Lsum we propose to directly identify the states Lξ from Lwhole, using
interaction-based methods. We classify these methods in two main categories, namely, absolute and relative.
Absolute methods use interaction metrics of the system under analysis and follow a direct causality relation
between interaction and emergence, without the need for comparison with other systems or measures.
Since our approach in formalizing emergence is based on the interactions among entities and entities and
their environment, our key idea is to differentiate the strength of these interactions. For a given system
state, we propose to quantify the degree of interaction, D, where zero denotes no interaction and one
denotes the strongest interaction. This has two key advantages. Firstly, Lξ can be directly obtained by
not considering system states with D = 0. Secondly, D facilitates the analysis and interpretation of Lξ

through differentiating emergent property states based on the strength of interaction. In the cases where
Lξ is large, the observer can focus on a much smaller number of emergent property states by using a high
degree of interaction D, and with a higher probability of identifying emergent properties. We investigate
two approaches to determine the interaction metric, namely, distance-based and interaction counts. In
contrast, relative methods establish a measure of interaction and compare it with pre-defined thresholds
or with interaction metrics of other systems that have previously exhibited emergent behavior. We have
previously proposed the use of interaction graphs (Birdsey and Szabo 2014) and Hausdorff distances for this
comparison, and we present this method here for comparison. In the following, we present a multi-agent
system notation and discuss each type of method and its associated metrics.

3.1 Problem Formulation

A multi-agent system consists of n agents (A) of m types interacting in an environment. The environment
(E) is a part of the system that lies outside the agents and can be regarded as a platform for agent interactions.
For simplicity, we assume that E has no behavior rules and changes only as a result of agent actions.
Changes of the environment, in turn, impact the agent behavior. For discussion, we model E as a 2D
grid1 that is subdivided into c units called cells (e). Changes in the environment are therefore changes of
the states of cells. For example, a cell turns from “occupied” to “free” when the agent that occupies the
cell moves to another cell. Ve denotes the set of possible states of cell e. Similarly, VE denotes the set of
possible cell states, and Ve ⊆ VE . In addition, the environment state is made up of the states of all cells.
se(t) and SE(t) denote the state of cell e and the environment E at time t respectively.

Agents are autonomous entities characterized by a set of attributes, such as the location of an agent in
a spatial environment or the distance an agent travels in a time step. The attributes’ values at a point in
time represent the state of an agent at that time. The state of an agent changes as dictated by the behavior
of the agent. Agents act and interact with other agents and the environment according to agent-specific

1E can be easily extended to model other topologies.
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rule sets, which contain behavior rules that define the agent’s state in the next time step. A rule is executed
if its condition is met. Conditions may include the state of the agent, but also the states of other agents.

We formalize a multi-agent system consisting of a set of agents and their environment as an extended
cooperating array grammar system where context-free grammars represent agents, and a two-dimensional
array of symbols represents the global environment. The abstraction of an agent as a grammar system
follows from the idea that the agent output to all other agents can be interpreted as a communication
language. This communication language is generated by a grammar, which can thus abstract an agent
(Kubik 2003). An agent’s language is comprised of the set of words that the agent outputs on the tape.
Each agent behavior or grammar has its own rewriting rules defining how the grammar cooperates with the
other grammars and with the array, i.e. rewrite the symbols on the array. A grammar-based agent system
(GBS) of m agent types and a total of n agents A11, . . . , A1n1 , . . . ,Amnm interacting in a 2D grid environment
of c cells is defined as follows:

GBS = (VA,VE ,A11, . . . ,A1n1 , . . . ,Amnm ,S(0)) (2)

where VA denotes the set of possible agent states for all agent types, VE denotes the set of possible cell
states, Ai j denotes an agent of type i (1≤ i≤ m) and instance j (1≤ j ≤ ni), and S(0) denotes the initial
system state. A system state is composed of the state of the environment and the states of all agents.

For the environment (E),

VE =
c⋃

e=1

Ve (3)

where Ve denotes the set of possible states of cell e and c is the total number of cells. The state of the
entire environment is made up of the states of all its cells. The states of cell e and the environment E at
time t are se(t) ∈Ve and sE(t) ∈VE respectively.

For the agents (A),

VA =
m⋃

i=1

VAi (4)

where VAi denotes the set of possible states for agents of type i.
Agent of type i (1≤ i≤ m) and instance j (1≤ j ≤ ni), Ai j, is defined as follows:

Ai j = (Pi,Ri,si j(0)) (5)

where Pi denotes attribute set for agents of type i, Ri denotes the set of behavior rules for agents of type
i, and si j(0) denotes the initial state of the agent. Ai j has an initial state si j(0) ∈VAi . The system state at
time t (S(t)), is composed of state of the environment (sE(t)) and states of agents (si j(t)) at time t. Hence,

S(t) = sE(t)
⋃
∀i∀ j

si j(t) (6)

3.2 Absolute Methods: Degree of Interaction

We aim to determine Lξ without deriving Lwhole and Lsum, by computing absolute metrics about the agent-
based system and using interaction as a handle to define these metrics. In this section, we propose D,
a degree of interaction metric that quantifies the interaction in an agent-based systems. This has two
key advantages. Firstly, Lξ can be directly obtained by removing system states with D = 0 from Lwhole.
Secondly, D facilitates the analysis and interpretation of Lξ through differentiating emergent property states
based on the strength of interaction. We analyze two methods to calculate D, namely, a distance-based
calculation and an interaction count-based calculation.
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3.2.1 Distance-based Calculation

In systems where the interaction between agents is facilitated by their proximity, for a given state S(t), we
define the degree of interaction D as:

D(S(t)) =
n,m

∑
i, j=0

min disti j (7)

where min disti j is the distance from agent Ai j to the nearest agent. The meaning of “distance” varies
depending on the system under study, and can include Euclidian distance for systems where agents are
geographically close, but also similarity metrics in systems in which only agents with similar attributes
and behaviors interact: a Euclidian distance metric could be used for analyzing a flock of birds model,
while a similarity-based metric could be used to analyze a computer network. Considering Dmin and Dmax
as the minimum and maximum distances for the system respectively, we can normalize D(S(t)) as:

D′(S(t)) = 1− D(S(t))−Dmin

Dmax−Dmin
(8)

Calculating states in Lξ For each system state S(t), we calculate D′(S(t)) according to Equation 8. States
can then be grouped to different interaction subsets based on the values of D′(S(t)), allowing the separation
of Lξ according to different interaction strengths.

Other distance-based metrics Besides Euclidian and similarity-based metrics, other distance-based metrics
could be employed. For example, an approach would be to consider the initial state of the system as not
exhibiting interaction or emergent behavior. Using this as a reference, a distance could be calculated from
S(t) to S(0), d(S(t),S(0)), using similarity metrics that compare between all agent attributes. States in
Lξ are those for which d(S(t),S(0)) has a value greater than a system-specific threshold. This method is
not system-specific, permitting it to be applied to a variety of systems. However, it is computationally
expensive as at each time step, distances have to be computed between all agent attributes. Moreover, for
the method to be relevant, only specific agent attributes should be considered, as only some attributes (at
the micro level) are relevant for emergent behavior. For example, the number of kilometres flown by a
bird will not be relevant when considering the emergence of flocking. The specification of such relevant
attributes would thus require in-depth knowledge obtained from the system expert.

Euclidian distance metrics could also be used in clustering algorithms that identify all agents that are
close to each other, and thus interacting. However, clustering algorithms are computationally expensive
to execute and do not improve the accuracy of the degree of interaction calculation as presented above.
Their focus is also different, in that they aim to discover which agents are interacting, rather than if the
interaction is significant enough to signal the possibility of emergent behavior.

3.2.2 Interaction Count

Chan proposes to verify that it is indeed the interaction between agents in an agent-based model that
causes emergence (Chan 2011). In this approach, interaction is defined as an agent-specific counter that
increases as the agent interacts directly with other agents in the environment. Emergence is said to occur
if the interaction measure deviates from what is deemed as normal interaction. We extend this approach
for the agent-based system defined above. We separate agent behavior rules into neighboring rules, which
define how an agent interacts with other agents, and individual rules, which govern the agent behavior
when the agent acts individually without any interaction. For example, a bird in a flock of birds changes
its position because of the neighboring rule of coordination (collision avoidance, alignment, and cohesion)
with other neighboring birds. Following an individual rule, a bird may not change its speed if is alone
in the environment. For a system state S(t) and an agent Ai j, we define an interaction count I(Ai j(t)) as
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I(Ai j(t)) = 1 if any of the neighboring rules for Ai j is fired, and I(Ai j(t)) = 0 otherwise. For the system
state S(t), the total interaction count T I(S(t)) is defined as the sum of all I(Ai j(t)).

After the simulation run completes, we can normalize the interaction count of a state S(t) as:

D′(S(t)) = T I′(S(t)) =
T I(S(t))−T Imin

T Imax−T Imin
(9)

where T Imin and T Imax are the minimum and maximum interaction counts for the entire simulation.

Calculating states in Lξ Similar to the above, considering the normalized degree of interaction D′ as the
normalized interaction count, we calculate D′(S(t)) according to Equation 9. From all calculated D′(S(t)),
we add the maximum value to Lξ .

3.3 Relative Methods: Interaction Graphs

Relative methods calculate a measure of interaction and establish that emergence exists if it is comparable
with that of systems that have been previously shown to exhibit emergence. We detail a relative method
that computes interaction graphs from system snapshots and compares them with interaction graphs from
systems known to have shown emergent behavior. Snapshots of the simulation run are taken periodically,
and an interaction graph is computed for each snapshot. This interaction graph is then compared with
interaction graphs of systems that have been shown to exhibit emergence, using two distance metrics
(Birdsey and Szabo 2014). The interaction graph (IG) captures the interactions between agents over a
given interval of time T s, where s is the size of the interval in time units and remains the same for a
simulation run. An IG is a directed acyclic graph where each vertex represents an agent and each weighted
edge represents a interaction between two agents. In the following, for simplicity, we present the formal
definition of an IG only for a single agent type. For systems with more than one agent the interaction
graph is computed in a similar manner. Formally, IGT s(GBS) =< NodesT s ,EdgesT s >,Nodes = {Ai|Ai ∈
GBS, i = 1, . . . ,n},Edges = {(Ai j,wi j)|Ai j ∈GBS,wi j ∈ Z+}, where the weight wi j of the edge between Ai
and A j is incremented with each interaction between Ai and A j.

Snapshots consist of information about agents, the environment, and instances of the specified metric
formalism over the time interval T s. Formally:

STk(M) = {Ai, IGTk , . . . |Ai ∈ GBS},STk(GBS) = {STk |Tk ∈ T}

where STk(GBS) defines the snapshot for the time interval Tk and STk(M) is the set of all collected snapshots.
Two distance metrics relying on Hausdorff distances have been proposed. The Hausdorff distance (HD)

is a metric that is used to determine how much two graphs resemble each other (Huttenlocher et al. 1993).
For two interaction graphs IG(A) and IG(B), the Hausdorff distance can be defined as:

HD(A,B) = max{h(A,B),h(B,A)}

h(A,B) = max
a∈A
{min

b∈B
{d(a,b)}}

and d is the distance between vertices a and b, a∈ A and b∈ B respectively. For points in a two-dimensional
Euclidian space, the distance d could be calculated as the Euclidian distance between points a(xa,ya) and
b(xb,yb) as d(a,b) =

√
(xa− xb)2 +(ya− yb)2, where (xa,ya) and (xb,yb) are the cartesian coordinates of

points a and b respectively. Intuitively, the Hausdorff distance between A and B measures how close A and
B are to each other, where ”close” means that every vertex in A is close to some vertex in B.

Using the Euclidian distance d, the calculation of HD helps to determine how close two IGs are with
respect to the layout of their vertices. For the flocks of birds model, determining whether a set of birds
has achieved a flocking state can be transformed into a shape matching problem using HD as a measure
of similarity. However, the Hausdorff distance using the Euclidian distance focuses on the position of the
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agents and considers interacting agents only from the perspective of their inclusion in the IG, focusing on
nodes and not edges and thus not considering the strength of the interaction. Moreover, as the coordinate
information is recorded at the end of the interaction interval, the distance function ignores cases in which
the emergent behavior happens in the middle of the snapshot interval, and makes the metric dependent
on the size of the snapshot interval. An Active Hausdorff Distance, HDA, can be calculated in a similar
manner as the HD, but following a pre-processing step: HDA(A,B) = HD(A′,B), where A′ is obtained
from A using a pre-processing algorithm to address these issues.

The pre-processing algorithm aims to move agents closer in the two-dimensional space to the agents
with which they had been interacting the most. This ensures that an Euclidian distance considers the
interaction strength, but also allows the inclusion of non-distance based measures, as nodes can be moved
closer by using any definition of interaction. The algorithm sorts edges in the IG A in descending order
of their weights. Agents are then moved towards other agents by considering the inverse strength of their
interaction. This is done by looking at the agents’ positions and determining the correct direction in which
the move should take place. HDA can be modified further to penalise interactions that actively discourage
emergent behavior, for example in the flock of birds model, if a large proportion of the birds were to use
the separation interaction over a given interval, it would discourage emergent behavior from happening.
Calculating states in Lξ For the interaction graph IG(t) for the current time step t, if the distance from a
similarity graph IGe(t) is smaller than a pre-defined threshold, HDA(IG(t), IGe(t))< ε , then the system
state is added to Lξ .

4 Experimental Analysis

We compare the three methods described above using a multi-agent model of a flock of birds (boids) model,
which captures the motion of bird flocking and is a seminal example for studying emergence (Reynolds
1987). At the macro level, a group of birds tends to form a flock, which has aerodynamic advantages,
obstacle avoidance and predator protection, regardless of the initial positions of the birds. At the micro
level, each bird obeys three simple rules, namely, (i) separation - steer to avoid crowding neighbors; (ii)
alignment - steer towards average heading of neighbors; and (iii) cohesion - steer towards average position
of neighbors.

4.1 Absolute Methods

Previous experiments using our extension of the grammar-based approach only permitted us to identify
emergent property states for models with up to ten birds. Even for such a small model, the number of
states in Lsum, computed using the superimposition operator, exceeded ten million. This is no longer the
case when using interaction as a handle to identify states in Lwhole that are part of Lξ , the set of emergent
property states. All of the methods discussed above permit the modeling and analysis of models with
a large number of birds that are flocking in environments modeled by a grid of various sizes. We have
analyzed models with up to 4,096 birds in a 128 x 128 grid environment. We execute our simulator on a
2.4GHz machine with 3GB RAM and present the worst result for each method.

We analyze the two absolute interaction metrics methods for calculating the degree of interaction for
a system with up to 64 birds in a 16 x 16 grid and present the results in Table 1. The results show that,
when considering a degree of interaction D> 0.4, the calculation methods achieve a significant reduction
in the size of Lwhole in terms of the number of states when compared to our previous efforts discussed
above. The analysis of individual flocking states (not presented here due to space constraints) shows that
all states in Lξ show a high degree of flocking that is proportional with the values of D.

We further analyze the scalability and feasibility of the two absolute methods when analyzing very large
models. Towards this, we increase the grid size while keeping the density of birds constant at ρ = 0.25
birds/cells. We present the results of these experiments in Table 2.
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# birds size of Approach size of Lξ for values of D in
Lξ [0.0-0.2) [0.2-0.4) [0.4-0.6) [0.6-0.8) [0.8-0.1]

16 47
Distance 3 14 14 9 7
Counting 7 10 13 7 10

32 73
Distance 4 14 25 21 9
Counting 3 12 32 16 10

64 249
Distance 9 37 91 76 36
Counting 9 36 78 77 49

Table 1: Number of States in Lξ on a 16 x 16 Grid for D in Different Intervals ∈ [0,1]

# birds Grid size of Approach size of Lξ for values of D in
size Lξ [0.0-0.2) [0.2-0.4) [0.4-0.6) [0.6-0.8) [0.8-0.1]

64 16x16 249
Distance 9 37 91 76 36
Counting 9 36 78 77 49

256 32x32 587
Distance 11 94 229 200 53
Counting 2 23 144 309 109

1024 64x64 1885
Distance 45 168 682 789 201
Counting 2 78 95 1230 475

4096 128x128 4868
Distance 147 885 1957 1437 442
Counting 1 97 497 1690 2583

Table 2: Number of States in Lξ for D in Different Intervals ∈ [0,1]

As shown in Tables 1 and 2, the degree of interaction methods are capable of significantly reducing
the number of states in Lwhole. Both methods tend to reduce the number of states in Lξ as D increases,
supporting the insight that the number of states with very high interaction is low. However, an important
point of future work is the analysis of the precision and recall of these methods, for various values of D,
and of understanding the relationship between specific values of D and the emergent states in Lξ .

4.2 Relative Methods

To showcase the relative method focused on interaction graphs, we present in Figure 1 a flocking in a boids
model with 16 birds (B16), for which the HDA distance is the smallest when compared with the interaction
graph of a reference model with 20 birds in which flocking has been observed (IGe(B20)).

Reference: IGe(B20) Comparison: IG(B16)
Figure 1: Comparison using Interaction Graphs
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Similar to the absolute methods, the relative method using interaction graphs can aid in the computation
of Lξ and can successfully identify flocking in a boids model. It is also successful in identifying flocking
as an emergent behavior when comparing between models with different numbers of birds, and also across
models with different types of agents. Specifically, it is able to identify emergence when an agent-based
model with one type of birds is compared with a model with two types of birds. This shows that the
approach is promising and can be applied across domains. We have also been able to identify the emergence
of flocking in boids models of 50 to 100 birds by comparing their interaction patterns to those recorded in
the boids model with 20 birds, IGe(B20). While semantically very similar, from an automated emergence
identification perspective these are very distinct systems, which makes this approach very promising and
warrants future investigation. However, work still needs to be done in the comparison and analysis of
interaction graphs from different domains, e.g., for comparing flocks of birds and traffic jams.

4.3 Discussion

We also analyze the above methods based on two main quantitative and qualitative criteria, namely, scalability
and applicability to different domains. With respect to scalability, we have analyzed the execution time
of each of the approaches for large to very large models of up to 1,024 birds and for various grid sizes.
Our results show that all approaches are scalable, with runtimes in the hundreds of milliseconds for large
models in terms of the number of birds and the size of the grid. Specifically, for a 64 bird model running
on a 16 x 16 grid, the computational cost of finding Lξ is 5, <0s, and 3s respectively for the distance,
counting, and interaction graph methods respectively. This is because the counting method has practically
no overhead in the calculation of D, as a counter is modified every time the separation rule is called, and
this rule is fired as the simulation executes. However, both distance-based and counting methods require
the simulation to finish execution before calculating Lξ , as they rely on normalization. In contrast, the
interaction graph method computes similarities between interaction graphs at each snapshot.

With respect to the applicability criteria, we analyze whether the method is applicable to any application
domain with little or no modification, and understand the method’s limiting assumptions and constraints.
In the case of the distance method for the calculation of the degree of interaction, we find that, since the
distance calculations assume that some degree of closeness (with respect to geometric distances) will cause
interaction and emergence, the method is applicable directly only to systems in which the closeness between
individuals will cause emergence. In other systems with indirect interaction, the distance criteria may not
be straightforward to define. This is the case also for the counting calculation method for the degree of
interaction. Here, indirect interaction is not considered and as such the method may not be applicable
to systems where indirect interaction between components is the cause of emergence (as is the case for
example in social networks). The interaction graph method currently only focuses on an Euclidian distance
for points in the interaction graph and thus might suffer from the same problems as the distance method.
Nevertheless, the approach is more generic as it allows for the inclusion of a variety of emergence metrics
and is not limited to two-dimensional environments. These metrics could include Shannon entropy and
statistical complexity among others, but the definition of a process for including and applying them is still
an open problem. Lastly, methods for analyzing the accuracy of various approaches need to be devised.

5 Conclusion

Understanding emergent behavior as it happens is a fundamental and challenging problem in the study
of complex systems. A promising approach to formalizing emergent behavior identification proposes a
definition of emergence as the set difference between the observed behavior of the system as a whole, and
the superimposition of individual agent behaviors. Our previous work has shown that a key issue with
using this approach is its unfeasible computational cost, which prevents it and other similar approaches
to be applied to medium to large scale models. In this paper, we propose to reduce this computational
cost by only considering system states that show high interaction between agents as possible candidates
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for emergent behavior. We present and analyze three methods of quantifying interaction, which can be
broadly classified into two classes, namely, absolute and relative. Absolute methods compute a degree of
interaction that characterizes the system state, whereas relative methods compare between an interaction
graph characterizing a system state and interaction graphs from other systems that have been previously
shown to exhibit emergent behavior. We implement these methods on a flock of birds model of up to
4,096 birds and discuss their advantages and disadvantages. Our discussion focuses on quantitative metrics
such as the number of emergent property states that the methods are able to identify, but also qualitative
metrics such as their applicability to other domains and problems. Our findings show that interaction is
a promising metric in identifying emergent behavior, but that challenging work remains ahead in further
refining the methods and applying them to various domains.
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