Formalization of Weak Emergence in Multiagent Systems

CLAUDIA SZABO, School of Computer Science, The University of Adelaide, Adelaide, Australia
YONG MENG TEO, Department of Computer Science, National University of Singapore, Singapore

Emergence becomes a distinguishing system feature as system complexity grows with the number of compo-
nents, interactions, and connectivities. Examples of emergent behaviors include the flocking of birds, traffic
jams, and hubs in social networks, among others. Despite significant research interest in recent years, there
is a lack of formal methods to understand, identify, and predict emergent behavior in multiagent systems.
Existing approaches either require detailed prior knowledge about emergent behavior or are computation-
ally infeasible. This article introduces a grammar-based approach to formalize and identify the existence
and extent of emergence without the need for prior knowledge of emergent properties. Our approach is
based on weak (basic) emergence that is both generated and autonomous from the underlying agents. We
employ formal grammars to capture agent interactions in the forms of words written on a common tape.
Our formalism captures agents of diverse types and open systems. We propose an automated approach for
the identification of emergent behavior and show its benefits through theoretical and experimental analysis.
We also propose a significant reduction of state-space explosion through the use of our proposed degree of
interaction metrics. Our experiments using the boids model show the feasibility of our approach but also
highlight future avenues of improvement.

Categories and Subject Descriptors: 1.6.5 [Simulation and Modeling]: Model Development—Modeling
methodologies

General Terms: Emergence, Theory, Verification
Additional Key Words and Phrases: Emergent behavior, complex system, multiagent system, simulation

ACM Reference Format:

Claudia Szabo and Yong Meng Teo. 2015. Formalization of weak emergence in multiagent systems. ACM
Trans. Model. Comput. Simul. 26, 1, Article 6 (September 2015), 25 pages.

DOI: http://dx.doi.org/10.1145/2815502

1. INTRODUCTION

Existing systems nowadays have a large number of components that exhibit complex
interconnections [Reynolds 1987; Zhan et al. 2008]. As components interact and make
decisions individually based on their internal logic, such systems can usually be mod-
eled as multiagent systems, where agents play the role of components [Heath et al.
2009]. A system is said to be complex if it exhibits designed, expected properties that
can be derived from the system specification, as well as properties that are irreducible
from knowledge of the interconnected components [Darley 1994; Deguet et al. 2006;
Li et al. 2006]. These irreducible properties are called emergent properties or emer-
gence. Flocking is, for example, an emergent property of a group of birds [Reynolds

This work is supported by the National University of Singapore under grant number R-252-000-522-112 and
R-252-000-470-112.

Authors’ addresses: C. Szabo, School of Computer Science, The University of Adelaide, Adelaide 5005, Aus-
tralia; email: claudia.szabo@adelaide.edu.au; Y. M. Teo, Department of Computer Science, National Univer-
sity of Singapore, Singapore 117417, Singapore; email: teoym@comp.nus.edu.sg.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2015 ACM 1049-3301/2015/09-ART6 $15.00

DOI: http://dx.doi.org/10.1145/2815502

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 6, Publication date: September 2015.

http://dx.doi.org/10.1145/2815502
http://dx.doi.org/10.1145/2815502

6:2 C. Szabo and Y. M. Teo

1987]. Emergent phenomena are abundant in computer systems [Bedau 1997; Chi
2009; Floyd and Jacobson 1994; Holland 1997; Johnson 2006; Mogul 2006; Ramakr-
ishnan and Yang 1994]. For example, the distribution of links in the World Wide Web
scales according to a power law in which a few pages are linked to many times and
most are seldom linked to [Adamic and Huberman 2000]. A related property of the
network of links in the World Wide Web is that almost any pair of pages can be con-
nected to each other through a relatively short chain of links [Albert et al. 1999]. Other
examples include patterns in the Game of Life, traffic jams, unwanted synchronization
in distributed systems, and router failures in networks [Mogul 2006].

The study of emergence provides great potential to understand agent and environ-
ment interactions [Chan 2010; Chen et al. 2009a] and to explain how natural systems
work [Seth 2008]. As emergent properties are identified, it is also important to know if
they are welcomed in the system or harmful so that we can exploit the positive impacts
of the beneficial properties and minimize, or even prevent, the negative consequences
of harmful properties. An example of beneficial property is when users adapt software
products to support tasks that the designer never intended. Harmful emergent prop-
erties such as unwanted synchronization and oscillation in distributed systems may
lead to unforeseeable failures and can make a system harder to design, analyze, and
control [Mogul 2006]. Thus, the appearance of emergent properties in a system should
be predicted and its type (i.e., beneficial or harmful) should be highlighted. Predicting
that emergent behavior will occur or, alternatively, identifying emergent behavior as
it happens remains a challenging task [Rouff et al. 2004; Dyson 1998; Randles et al.
2007]. According to Dyson [1998], emergent phenomena cannot be predicted through
analysis at any level simpler than that of the system as a whole. Although in some
cases emergent properties can be regular, that is, recurring and recognizable, this does
not imply that they are easily recognized [Holland 1997]. The most frequent studied
type of emergence, weak (or basic) emergence [Bar-Yam 2004; Bedau 2003; Chalmers
2006; Fromm 2007; Kubik 2003], considers that the system properties can be eventu-
ally traced back to the properties of the individuals, but that computer-aided analysis
is required. This is the simplest form of emergence, but a practical, automated ap-
proach for its analysis and identification has yet to be proposed. As such, we focus on
identifying this type in this article and propose an approach that can be extended to
study strong emergence in future work.

Very few methods for the identification, classification, and analysis of emergent
properties exist [Chen et al. 2009a; Kubik 2003; Seth 2008; Szabo and Teo 2012a], and
existing methods are usually illustrated using simplified examples. These approaches
can be classified broadly from two orthogonal perspectives. In the first perspective,
approaches propose to identify emergence as it happens [Kubik 2003; Szabo and Teo
2012a] and aim to use formal or meta-models of calculated composed model states.
These approaches rely on the identification of variables or attributes that describe the
system components, or the micro-level, and the system as a whole, or the macro-level,
and the relationships and dependencies between these two levels. Emergence is then
defined as the set difference between the macro-level and the micro-level. However, in
systems with a large number of complex entities with prolonged interactions, identify-
ing the micro- and macro-levels is a key issue. Moreover, the calculation of emergence
is computationally expensive. In contrast, the second perspective uses a postmortem
approach and employs the definition of a known or observed emergent property and
aims to identify its cause, in terms of the states of system components and their inter-
actions [Chen et al. 2009a; Seth 2008]. A key issue with this perspective is that a prior
observation of an emergent property is required, and that emergent properties need
to be defined in such a way that the macro-level can be reduced or traced back to the
micro-level.

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 6, Publication date: September 2015.

Formalization of Weak Emergence in Multiagent Systems 6:3

Current approaches [Chen et al. 2009a; Kubik 2003; Seth 2008] also have limiting
assumptions and constraints when applied to larger systems in terms of the number
and complexity of agents and their interactions. For example, most approaches do
not consider mobile agents [Kubik 2003], assume unfeasible a priori specifications and
definitions of emergent properties [Szabo and Teo 2012a], or do not scale beyond models
with a small number of agents [Teo et al. 2013]. Finally, most studies focus only on
postmortem observation of emergence when a tangible representation of the system is
available for examination [Gore and Reynolds 2008; Moncion et al. 2010], and there
is little work in predicting that emergent behavior will happen or identifying it as it
happens. In the multiagent systems community, approaches focus on the engineering
of systems to exhibit emergent behavior [Bernon et al. 2003; Jacyno et al. 2009; Salazar
et al. 2011], without a subsequent analysis of potential side effects of the engineered
emergent property.

Kubik [2003] proposed a method for formalizing weak emergence without prior
knowledge of emergence using an abstraction of agents as Chomsky grammars
[Chomsky 1956]. The approach adopts a set-based view on the world, where emergence
is defined as the difference between a calculated and an observed behavior. Specifically,
emergent behavior is defined as those system states that cannot be obtained from the
summation, using a superimposition operator, of individual agents’ behaviors. This is
a broad definition that does not consider the actual behavior of the system under study.
Moreover, the calculation of the expected behavior suffers from state explosion and
renders the method infeasible for practical use [Szabo and Teo 2012b]. In this arti-
cle, we expand on this approach by proposing a grammar-based formalism and process
with a new definition of emergence that distinguishes possible system states and emer-
gent properties of interest from the larger set of all combinations of system states. In
contrast to Kubik’s approach, our formalism allows for different agent types, includes
mobile agents, and covers open systems where the number of agents varies over time.
The main contributions of our work include:

—A formal approach for identifying weak emergence as it is happening in a multiagent
system: our approach relies on the abstractions of complex agents as formal gram-
mars that produce outputs as words written on a common tape, and on the definition
of the set of emergent property states as the set difference between a calculated
system state and the current system state.

—The introduction of a degree of interaction measure to separate between the states
in the emergent property set and to reduce state-space explosion as models grow in
size, in terms of the number of agents, and complexity, in terms of the number of
agent attributes and agent interactions.

—An extensive theoretical and experimental analysis of the feasibility of our approach
and its application to large-scale multiagent systems.

The remainder of the article is organized as follows. We present our approach in
Section 3. Section 2 reviews different perspectives, classifications, and formal studies of
emergence. Section 4 illustrates our approach using an established model and presents
an experimental analysis of our work, discussing its limitations. Section 5 concludes
this article and discusses future work.

2. RELATED WORK

Emergence can be considered from two main perspectives, namely, philosophical and
scientific. From a philosophical perspective, emergent properties are subjectively a
product of the unexpected behavior of complex systems, the limitations of the ob-
server’s knowledge [Johnson 2006], the tools employed, and the scale and level of ab-
straction under which the system is observed [Bonabeau and Dessalles 1997]. Scientific

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 6, Publication date: September 2015.

6:4 C. Szabo and Y. M. Teo

perspectives [Abbott 2006; Kubik 2003] criticize the idea of temporary lack of knowl-
edge of the observer and define emergent properties as intrinsic to a system and inde-
pendent from the eye of the beholder [Crutchfield 1999]. Natural and social sciences
explain emergence via theories in physics, biology, and human behavior among others,
focusing on self-organization and hierarchy. Emergence is thus defined as the formation
of order from disorder based on self-organization [Fromm 2007]; a property is emer-
gent if it is discontinuous from the properties of the components at the lower levels
in the hierarchy [Baas and Emmeche 1997]. Using modeling and simulation, we aim
to predict, identify, classify, and reason about emergence. Prediction is done before the
observation of emergence, while the identification of emergence highlights its presence.
The classification of emergent behavior allows us to determine whether an emergent
property is harmful or beneficial. Finally, reasoning enables the understanding of the
cause and effect of emergence.

A macro-level property that characterizes the system as a whole is defined to be
weakly emergent if it can be derived from the micro-level dynamics but only by a
finitely long simulation [Bedau 1997]. Other definitions of weak emergence consider
that the whole is constrained or influenced by the parts (upward causation), but that
at the same time the parts are influenced by the whole (downward causation) [Bedau
2003; O’Conner 1994]. For example, when the general price level of goods and services
rises, the cost of living increases. Higher living cost demands higher income, which in
turn results in higher prices of goods and services. The cycle continues until a policy to
decrease the inflation rate is introduced.

The undesired and unpredictable effects of emergent properties demand a formal and
practical approach to understanding and identifying emergence. Simulation is consid-
ered to be a potential solution for the formal study of emergence [Bedau 1997; Darley
1994; Hovda 2008], with the advantage that it permits the development of methods that
can be implemented in practice. For example, a practical method to check the upper
bound of the R pentomino, which is a five-cell pattern in the Game of Life, is through
simulation: after 1,103 time steps, we see that the R pentomino settles down to a stable
state that fits into a 51-by-109 cell region [Bedau 2003]. According to Darley [1994],
simulation is regarded as the most efficient way to predict emergent properties; Hovda
[2008] quantifies emergence in terms of the amount of simulation needed to derive a
fact. Agent-based modeling (ABM) is considered an appealing approach to model and
simulate complex systems exhibiting emergence [Holland 1997]. ABM provides a de-
tailed description of the system, including its components and their interactions, thus
facilitating the detecting and reasoning of the cause and effect of emergence. Moreover,
ABM is relevant to complex systems as both rely on the interaction of autonomous
individual objects. In addition, several formalisms have been proposed to obtain or
engineer emergent behavior, such as the DEVS extension proposed by Mittal [2013],
but they have yet to be employed in practice.

Approaches for the identification and reasoning about emergent behavior can be
classified into three main categories, namely, variable based, event based, and gram-
mar based. Each has advantages and disadvantages, as we discuss in the following.
In variable-based methods, one variable is chosen to model the attribute space that
describes the state of the observed system. This variable is then used to detect and
measure emergent properties [Norros et al. 2006]. Usually, emergence is measured
using probability and information theory [Fisch et al. 2010; Mnif and Muller-Schloer
2006; Seth 2008]. For example, the change of the center of mass of a group of birds may
indicate the formation of flocking behavior.

Many variable-based efforts [Gabbai et al. 2005; Holzer et al. 2008; Mnif and Muller-
Schloer 2006; Wolf et al. 2005] employ Shannon entropy [Shannon 2000], which mea-
sures the uncertainty and unpredictability of a system with respect to one attribute.

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 6, Publication date: September 2015.

Formalization of Weak Emergence in Multiagent Systems 6:5

The key idea is that emergence most likely occurs as the system self-organizes and
exhibits some kind of pattern or structure, thus resulting in lower entropy. Mnif and
Muller-Schloer [2006] introduce emergence as the difference between the entropy at
the beginning and at the end of the system run. A system is said to exhibit emer-
gence if the entropy difference is positive; that is, the entropy value decreases in the
end. Despite its simplicity, Shannon entropy only considers a single system attribute
with discrete values. To address systems containing many attributes with continuous
values, Fisch et al. [2010] define multivariate divergence as “an unexpected or unpre-
dictable change of the distribution underlying the observed samples” using Hellinger
distance as a measure of emergence. This measurement suffers from expensive compu-
tation of density functions and requires significant intervention from the user. Inspired
by the idea that weak emergence is both dependent upon and autonomous from the
micro-level causal factors, Seth [2008] proposes G-emergence as a measure of emer-
gence based on two other nonlinear time series quantities, G-causality and G-autonomy,
which compute the dependence and autonomy of a variable with respect to a set of other
variables, respectively. A macro-variable M is G-emergent from a set of micro-variables
m if and only if M is G-caused and G-autonomous with respect to m. However, a set of
micro-variables must be defined, and the computations of G-causality, G-autonomy, and
G-emergence are expensive. One of the most significant drawbacks of variable-based
emergence formalization is that it requires prior knowledge of emergence to define one
or more variables that capture the system behavior.

In event-based approaches [Chen et al. 2009b], emergence is defined as complex
events that can be reduced to a sequence of simple events. An event is a state transition
occurring at a particular level of abstraction. A simple event results from the execution
of a single state transition rule. A complex event is either a simple event or two complex
events satisfying a set of constraints with respect to each other. Similar to variable-
based approaches, event-based approaches need both knowledge about the emergent
behavior and a specification of the formalism of event types to be defined in advance,
and thus can be applied only for the postmortem analysis of emergence.

To overcome the challenging problem of the need for a prior identification of emer-
gence, Kubik [2003] proposes a grammar-based approach. An extended cooperating
array grammar system is used to formalize the environment, agents, and their coop-
eration. The system behavior is the language, that is, the set of words, resulting from
derivations of grammars (agents) on the tape (two-dimensional array of symbols). The
approach is based on the idea of emergence as defined by “the whole is more than the
sum of its parts.” An emergent property is defined as a system state that results from
the interactions of agents and that cannot be produced by summing the individual
agent states. Given an initial system state, two languages Lwyore and Lpagys are cal-
culated. The grammar systems generate the languages that can in turn be represented
as sets of “words” to encode agent and system attributes. Lwgorg defines a set of sys-
tem states produced by the system agents acting together and interacting as a whole.
Lparrs presents the sum of the agents’ behaviors without considering the interactions
among them. As a result, emergence is defined as Lwgorr — Leagrs. The approach is ex-
emplified using a small Game of Life example. The grammar-based approach does not
require a priori definition of emergence and presents an elegant formalism that could
be easily automated, although this is not considered by the initial article. However, four
main limitations exist: (1) there is no explicit provision for agent type; (2) it is unclear
how to deal with mobile agents; (3) in the Game of Life example, agents are stationary,
and the number of agents is always equal to the number of cells, which is an unrealistic
assumption; and (4) the state spaces generated by calculating Lwgorr and Lpagrs are
unnecessarily large. In our work, we address these limitations as discussed later.

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 6, Publication date: September 2015.

6:6 C. Szabo and Y. M. Teo

Lf /,/’
A
N
N
]
\\\
N
~
! NI P NP
Lwhole E Lwhale E Lsum Lsum

Fig. 1. Set of emergent property states.

3. PROPOSED APPROACH

This section presents our proposed approach for the identification of emergence. We
advance a formalism for the definition of multiagent systems that allows for the
identification of emergence as a set difference between the set of system states obtained
from the interaction of all agents in the system and a set of states calculated from the
aggregated individual agent behaviors. We present relevant background and give an
overview of our approach, and then we define our formalism in detail. We present a
theoretical analysis of our approach, showing how it also suffers from state-space ex-
plosion, similar to existing methods. We then introduce a construct that significantly
reduces the state space and allows us to analyze much larger systems.

3.1. Background and Overview

Our approach for the identification of emergent properties follows Kubik’s grammar-
based approach [Kubik 2003] to calculate L, the set of emergent property states, as
the difference:

LE = Lwhole - Lsumv (1)

where L. describes all possible system states due to agent-to-agent and agent—
environment interaction, and L, is the sum of all individual agent behaviors, without
considering agent interactions. This broad perspective of emergence, as in Kubik’s
approach, leads to state explosion when determining L, and L,... This is because
all possible combinations of individual agent states are considered following a defined
superimposition operator, without including system-defined rules.

We propose a new perspective that significantly reduces the state space for L. First,
it is important to highlight here that while Kubik refers to the difference L, j0e — Lsum
as emergence, we refer to this set as the emergent states set, because it is from this
set that emergent properties can be extracted. This captures the insight found in the
literature that emergent behavior has a temporal aspect [Gore and Reynolds 2008].
Thus, an emergent property can be inferred or deduced from the set of emergent
property states. For example, a flocking emergent property in a flock-of-birds model
can be characterized by a number of states that show birds close to each other, with
various degrees of clustering.

Second, we observe that the size of L, is dependent on the number of interactions
and state transition rules defined by a modeler and represents a subset of interest (to
the modeler) from all the rules in a given system. This would be the case, for example,
when we consider different kinds of rules in modeling a flock of birds: the entire rule
set, or some rules of interest while ignoring others. As shown in Figure 1, L, .. can be

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 6, Publication date: September 2015.

Formalization of Weak Emergence in Multiagent Systems 6:7

redefined as
Luhote = L poje U Lijiose (2)

where L, is bounded by the number of interaction and behavior rules that are of
interest to the user for the particular study, and LY}, represents the set of all possible
system states that are not of interest. This definition captures the idea that a simulation
model is an abstraction of the real system that is constructed by the modeler according
to the purpose of the simulation study and implies either that the abstraction might
ignore particular system aspects or that some behavior and interaction rules might be
irrelevant for the study. These are design and modeling decisions that the modeler has
to take.

The size of Lg,, increases exponentially with the increase in the number of agents
as all possible combinations of agent states are considered. Similarly, L, can be also
redefined as follows:

Loy =L, U LYNP 3

sum sum’*

Although it is mathematically possible to compute the entire Lg,, as the possible com-
binations of agent states, in practice, there is a subset of feasible agent behaviors, LY

sum’
and the remaining can be defined as LY? Determining Lf,, is not always straight-

forward because it requires analyzing whether a system state is possible according to

some criteria. A potential approach to derive L is to add constraints among agents

and use these constraints to determine whether a system state is in LE,, or in LY¥P.
For example, on a one-way street, if one agent abstracting a car is behind another car
agent, in the next simulation iteration the order cannot be reversed. We showed in
Section 3.4 that L? is not needed.

Given this, we redefine the set of emergent property states L as

L§ = Li)hole - Lgtm (4)

Emergent property states, with respect to a model of interest, are the result of nontrivial
interactions among agents. These interactions lead to states that cannot be derived
from summing individual agents’ states. There are states in L, = that can be found in

L? and thus

sum

L. nLE +0. (5)

sum

Intuitively, these states are resultant from agent computation that does not require
interactions or from the interactions of agents that have no effect on agent behavior
or their overall effect cancels out. For example, in the flock-of-birds model detailed in
Section 4, two individuals can be very far apart and as such interaction rules between
them have no effect.

Contrary to Kubik’s approach, which regards emergent properties as all system
states in L¢, we do not consider that Ls contains the emergent behavior but only states
that together, following particular criteria, can form an emergent property. As dis-
cussed earlier, this follows the intuition that the emergent property may take a while
to manifest and thus may be composed of more than one emergent state, following a
particular criterion, for example, flocking. In the next step, we propose to determine
whether L; contains emergent properties that have been seen before or that are bene-
ficial or harmful to the system. We discuss in Section 4.4 an example of how this can be
achieved. In this article, we show the process of deriving the set of emergent property
states L;.

In addition to a more specialized definition of emergence, we enhance the grammar-
based approach with three main extensions: (1) introduce agent type (4;; denotes an

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 6, Publication date: September 2015.

6:8 C. Szabo and Y. M. Teo

Table |. Glossary of Notations

Notation Description
System S(t) State of system at time ¢
Vg Set of possible cell states
. Ve Set of possible states of cell e
Environment R X
Sg(t) State of environment at time ¢
Se(t) State of cell e at time ¢
m Number of agent types
Agent Type n; Number of agents of type i (1 <i <m)
Va, Set of possible states for agents of type i
n Number of agents
A;jj Agent of type i (1 <i < m) and instance j (1 < j <n;)
Va Set of possible agent states for all agent types
Agent P; Set of attributes for agents of type i
R; Set of behavior rules for agents of type i
s;(t) State of agent A;; at time ¢
L(A;j) Set of system states representing the behavior of agent A;;
&3] Superimpose operator
Emergence Lyhote Set of system states representing the behavior of the system as a whole
Lgum Set of system states representing the sum of the agents’ behaviors
L Set of emergent property states

agent instance j of type i); (2) introduce mobile agents by defining mobility as agent
attributes P; = P uopite U P others, Where P; denotes the set of attributes of the agent
instancei; and (3) agents enter and leave the system to model open systems. As a result,
the proposed approach has a wide variety of applications in which system components
belong to different types, can move in space, and have multiple attributes. These kinds
of systems are ubiquitous in practice and include traffic networks [Manley and Cheng
2010] and social networks [Haglich et al. 2010]. Our proposed approach consists of two
major steps, namely, modeling the system using our proposed formalism, followed by
the application of our method for emergence identification as the system is running. To
increase the usability of our formalism, we would like to further this work by having
other agent formalisms translated into our proposed formalism. This effort is part of
our future work. We present our formalism in the following.

3.2. Emergence Formalism

A multiagent system consists of m different types of n agents (A) interacting in an
environment (E). A list of notations is shown in Table I.

The environment (E) is a part of the system that lies outside the agents and can be
regarded as a platform for agent interactions. For simplicity, we assume that E has no
behavior rules and that it changes only as a result of agent actions. Changes of the
environment, in turn, impact the agent behavior. E is modeled as a two-dimensional
(2D) grid! that is subdivided into ¢ units called cells, denoted by e. Changes in the
environment are therefore changes of the states of cells. For example, a cell turns from
“occupied” to “free” when the agent that occupies the cell moves to another cell. V,
denotes the set of possible states of cell e. Similarly, Vi denotes the set of possible
cell states, and V, C Vg. In addition, the environment state is made up of the states
of all cells. s.(¢) and Sg(¢) denote the state of cell e and the environment E at time ¢,
respectively.

1E can be easily extended to model other topologies.

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 6, Publication date: September 2015.

Formalization of Weak Emergence in Multiagent Systems 6:9

Agents are autonomous entities characterized by a set of attributes. The values of
these attributes at a point in time represent the state of an agent at that time. The
state of an agent changes as dictated by the behavior of the agent. Agents act and
interact with other agents and the environment according to agent-specific rule sets,
which contain behavior rules defined as follows:

rule(condition) : s;j(t) — s;j(t + 1) (6)

for agent A;j, s;;(t) € S(¢),Vt > 0. If the condition is fulfilled at time ¢, the agent will
apply the rule to transform its current state at time ¢, s(¢), to a state at the next time
step s(¢ + 1). Rule conditions may include the state of the agent in terms of attribute
values, but also the states of other agents, as well as logical expressions containing
both agent- and system-specific functions. The neighbors of an agent are close to the
agent in terms of some proximity. The definition of this proximity is problem specific;
different models of the same problem may also specify the neighborhood in different
ways. For example, cellular automata have two main types of neighborhoods: the von
Neumann neighborhood and the Moore neighborhood. The former consists of the four
orthogonally adjacent cells. The latter includes eight neighbors inhabiting the cells
that are horizontally, vertically, and diagonally adjacent to the cell whose state is to
be calculated. We define a neighboring function neighbor(a, b), which returns true if
agents a and b are neighbors. In addition, if condition contains a neighbor function,
then the behavior rule is called a neighboring behavior rule, and an individual behavior
rule otherwise.

We distinguish between different types of agents, and, for an agent of type i, we
note P; as the set of attributes for agent i, with P,_ ;. as the attributes that model
mobility. In summary, the agent behavior is characterized by behavior rules that define
how agents interact with other agents and the environment. We assume that no evolu-
tionary processes are involved in the system; that is, behavior rules do not change over
time. R; denotes the set of behavior rules of agents of type i. R; consists of R; 5. that
impacts agent mobility, that is, changes values of attributes of P;_,,ppie, and R;_yhers for
the rest. An agent changes its state as a condition is met. The state of A;; at time ¢,
denoted by s;;(2), is defined by values of its attributes at time ¢. V4, denotes the set of
possible agent states for agents of type i.

3.3. System Formalism

A multiagent system consisting of a set of agents and their environment is formalized as
an extended cooperating array grammar system where Chomsky grammars [Chomsky
1956] represent agents, and a two-dimensional array of symbols represents the global
environment. A Chomsky grammar is formally defined as

G=WN,T,P,S),

where N is a nonterminal alphabet, T' is a terminal alphabet, P is a set of rewriting
rules (productions) in the form x — y, and S € N is a starting symbol. The language
generated by G is a construct

LG) = {w|S = Gw,w e T"}.

The elements of the formal language are called strings or words. A cooperating array
grammar system is a construct of grammars (agents) mutually rewriting strings of
symbols on a common tape [Hopcroft et al. 2001]. Each agent rewrites a portion of
the tape as is usual in the case of individual agents. Grammars work with different
cooperation strategies that describe how they are allowed to rewrite the symbols on the
tape and whether the agents can communicate directly. The abstraction of an agent as
a grammar system follows from the idea that the agent output to all other agents can be

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 6, Publication date: September 2015.

6:10 C. Szabo and Y. M. Teo

interpreted as a communication language. This communication language is generated
by a grammar, which can thus abstract an agent [Kubik 2003]. An agent’s language is
composed of the set of words that the agent outputs on the tape. Each agent behavior
or grammar has its own rewriting rules defining how the grammar cooperates with the
other grammars and with the 2D environment representing the array.

A system of m agent types and a total of n agents Aj1, ..., A1, ..., Am, interacting
in a 2D grid environment of ¢ cells is defined as follows:

GBS: (VAa VEa A119~-~aA1n17 --~»Anmm, S(O))y (7)

where V4 denotes the set of possible agent states for all agent types, Vg denotes the
set of possible cell states, A;; denotes an agent of type i (1 < i < m) and instance j
(1 <j <mn),and S(0) denotes the initial system state.

For the environment (E),

Ve=JVe ®)
e=1

where V, denotes the set of possible states of cell e. The state of the entire environment
is made up of the states of all its cells. The states of cell e and the environment E at
time ¢ are s,(t) € V, and sg(¢) € Vg, respectively.

For the agents (A),

Va= U Va,, 9
i=1
where V,, denotes the set of possible states for agents of type i, V4, € V4.
Agent of type i (1 <i <m) and instance j (1 < j <n;), A;;, is defined as follows:

Aij = (P, R;, 5;(0)), (10
where P; denotes the set of attributes for agents of type i, R; denotes the set of behavior
rules for agents of type i, and s;;(0) denotes the initial state of the agent. P; is defined
as
})i = I)ijnobile U })iﬂthers‘v where
P, opite = {X | x is an attribute that models mobility}

P.iﬂthers = Pl \ PiJnobile
Agents change states according to behavior rules R; that are defined as a set of

functions. The rules that affect the mobility of agents, for example, a change in location
or speed, are defined as mobile rules, R; ,pite-

R; = {rulelrule : {True, False} x V4, — Vg }
condition : Vo — {True, False}
Ri = Rimwbile U Ri,others

The behavior rules set is defined as a set of rules formed by a condition function and
an agent state, capturing that the rule is applied if the agent is in a particular state
in V4, and the condition function is True. The condition function is defined over the
system states, thus capturing other agent states (including the agent neighborhood).

A;; has an initial state s;;(0) € V4,. The system state at time ¢ (S(¢)) is composed of
the state of the environment (sx(¢)) and states of agents (s;;(¢)) at time ¢. Hence,

S@) = sp®) | 5. (11

Vivj

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 6, Publication date: September 2015.

Formalization of Weak Emergence in Multiagent Systems 6:11

3.4. Proposed Process for Emergence Identification

Since emergent properties are becoming de facto as systems increase in complexity, we
believe that the study of emergence should be factored in as part of any modeling and
simulation study as a coherent approach to understand the system. In this process, we
assume that our proposed formalism is used from scratch to model a system. We discuss
in Section 4.4 potential solutions for the case whereby other formalisms are employed.
Our approach for the identification of emergence computes two sets of system states
corresponding to the two levels of abstraction defined earlier, namely, the macro-level
when regarding the system as a whole (L, .) and the micro-level when regarding the
system as an aggregation of its individual agents (Lg,,). Emergent system states are
defined as the difference between L!, ,, and L

LE = Lihole - L.f;m
In the following, we focus on the calculation of Li, note a0d Ly, and leave the approach
to obtain LE as future work.

Taking the interactions of agents (denoted as GROUP) into account, the system
behavior of interest (L, ,.) returns a set of words (w) that represents the set of system
states reachable from the initial system state. Given an initial state, the system is
simulated until it arrives in a state that has already appeared before. L, = with
respect to the initial state is therefore a set of all distinct states obtained as follows:

Li)hole = {w € Vc+n | S(O) :>*GROUP w}- (12)

While LI, . captures the behavior of the system as the agents are interacting, Lgn,
represents an aggregation of the individual agent behaviors when no interaction be-
tween agents is considered, as if the agents were executing alone in the environment.
Informally, a superimposition operation @& to capture the aggregated words on the
common tape is introduced for the calculation of Lg,,:

Loym = ®(L(A11), . .., L(A1p,), - . ., L{Am,)), (13)

where L(A;;) denotes the behavior of agent A;;. To obtain these aggregated words that
are part of Lg,,, we employ the superimposition operator [Kubik 2003] as outlined
later.

As an example, let wi = aiaz...a,, wg = biby...b, be words of symbols over an
alphabet V = V4, U Vg, and ¢ denotes the empty symbol. Hence, the superimposition of
the word w1 on the word ws is a function @ : V* x V* x V* ... x V* — V* that results
IN Weypimp = €1€2 . . . ¢, defined as follows:

1.z = max(x, y), 1 <k <z, x is the Kleene star operator;
2.1f a; € Vu, then ¢, = a;;

3.ifq; = ¢, then ¢, = bj;

4.if b; = €, then ¢, = a;;

6.ifa; € Vg and b; € Vg, then ¢, = q;;

7.ifa; € Vg and b; € V4, then ¢, = b;.

The superimposition occurs when two agents, when considered individually, write two
words (w; and we from earlier) on the same position of the tape. The superimposition
is done over all permutations of n behaviors of agents. It is important to note here that

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 6, Publication date: September 2015.

6:12 C. Szabo and Y. M. Teo

ordering is important in the process of calculating the superimposition. For instance,

(L1, Lo, Lg) = L1 & (Lo @& (L3)) U Ly & (L3 & (Lo))
ULy @ (L1 & (L3) U Ly @ (Ls @ (L))
ULs® (L1 @ (La)) U L3 @ (Lo ® (Lq)).

Defining the sum of the individual agents’ behaviors is difficult. Ideally, the result
should contain exactly all designed system states that can be derived from the system
specification. Unfortunately, this is only true if agents are independent from the others
in the system. Given the initial system state, we obtain n states where each consists of
one agent. Considering only one agent in the system, the agent’s behavior returns a set
of words (w) that represents the set of system states reachable from the corresponding
system state. L(A;;) is defined as follows:

L(A;) = {w e V¥ | (sp(0) Us;(0) =* w). (14)

Agent symbols have priority over environmental symbols. Any nonempty symbol has
priority over the empty symbol €. For example, consider V4 = {a1, as, as}, Vg = {o, [},
and L1 = {faiof}, Ls = {oasff}, Ls = {foffas} languages for three agents. Then,
assuming that all symbols are generated when the agents are executing in iso-
lation, the superimposition of the agents’ behaviors will be the language L., =
{farofas,o0as ffas, fai ffas, fas ffas}. The sum of agents’ behaviors (L) is defined
as the set of words resulting from superimposing behaviors of individual agents:

Lym = &(L(A11), ..., L(A1y), L(Ams,,)), (15)
where L(A;;) denotes the behavior of agent A;; and @ is the superimpose operator.

3.4.1. Implementation. Taking the interactions of agents (denoted as GROUP) into ac-
count, the system behavior of interest (L, ,,) returns a set of words (w) that represents
the set of system states reachable from the initial system state. Algorithm 1 presents
the pseudo-code for the calculation of L, ;.. Given an initial state S(0) (line 2), the sys-
tem is simulated until it reaches a state that has already appeared before (line 6). We
stop the simulation when the system state repeats itself. L;,wle comprises all distinct
states S(¢) obtained (line 17). Lg,, is calculated following the superimposition operation
definition from Equation (15). We show an example of Ls,,, calculation in Section 4.

3.4.2. Theoretical Analysis. The complexity of deriving Lg (O(L¢)) consists of two parts:
complexity of L, ,, and complexity of Ly

O(L¢) = O(LL ;1) + O(Lgum). (16)

Because detecting emergence is to differentiate system states that appear when taking
into account interactions of agents but not when regarding them separately, it is rea-
sonable to use the number of system states as a complexity measure. Key complexity
factors include environment size (2D grid of size x by y), number of agent types (m),
number of agents (n), and the number of possible states an agent can take (s). We
derive O(LL, ;) and O(Ls,,) in the worst case. Let n = n’ +n’, where n’ is the number
of mobile agents, and n” is the number of stationary agents.

O(LL, ,.): Given a position, an agent can take one of s states. Moreover, stationary
agents are fixed in n” positions. There are (xy,;””) possibilities for allocating n’ mobile
agents into the remaining xy — n” positions. Hence,

O(LLy) = O ((xy N ")s) - amn

n/

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 6, Publication date: September 2015.

Formalization of Weak Emergence in Multiagent Systems 6:13

ALGORITHM 1: Pseudo-Code for LI, , Calculation

: t:=0; /finitialized clock
set S(0); //set initial system state
L£ hole "= Vj’
add S(0) to LI, .
repeat:= false;
while repeat false do
t=t+1;

/lsimulate next step
//use a for loop to compare states
10: fori =0tot—1do
11: if S(¢) equal S(i) then
12: repeat = true;
13: exit for loop;
14: end if
15: end for
16: if repeat false then
17: add S@#) to LL,,,, ;
18: end if
19: end while
20: return LI, , :

O(Lg,n): Without considering the interactions of agents, a mobile agent, in the worst
case, can arbitrarily move to any position (cell) in the environment. Hence, the upper-
bound complexity of superimposing individual behaviors for all agents is

O(Lgym) = O((xy)"s™). (18)

For example, in the Game of Life, agents are stationary, that is, n” = n and n’ = 0,
and O(LL,) = O(Lg,,) = O(s™). If all agents are mobile, that is, n” = 0 and n’ = n,
then O(Lgn) = O((xy)'s™) is much larger than O(LL,) = O((*¥)s™). This is because
the summing operation superimposes all combinations of individual agents’ behaviors,
including those that could never happen in practice, as discussed earlier.

3.5. State-Space Reduction

As shown previously, the state space grows exponentially when calculated as the set
difference L, o — Lsum. The main cause of this growth is the calculation of Lg,,, which
requires all possible combinations of system states to be computed. A key observation
is that the definition of Ls = Lypoe — Lsum (and our proposed extension) implies that
emergent property states in Lg are those states that are in Lyp.e but not in Lgy.
Thus, if states can be identified with confidence as being in L, .. but not in Ly,
without computing Lg,,, the complexity of the approach will be greatly reduced, and
the computation cost will become acceptable.

We propose to use the degree of interaction between agents, §, as a useful criterion,
thus eliminating the unnecessary calculation of Lg,,,. We define a property as emergent
if the agent interaction producing that property is strong. In other words, compared
to the situation where agents behave independently, agents with interactions impose
a remarkable effect on the system state. Intuitively, more interactions lead to more
changes of the state of the system, and it is largely accepted that interaction is a key
prerequisite of emergence [Chan 2010; Holland 1997; Kubik 2003]. Moreover, emer-
gence happens.

Thus, the system states of interest can be divided into L,, due to interactions that
are not strong, and L, due to strong interactions. There are three possible categories of

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 6, Publication date: September 2015.

6:14 C. Szabo and Y. M. Teo

nonstrong interactions, namely, no interaction (individual agent behavior), interaction
that has no overall effect on the system, and weak interaction. Interaction can also be
classified as direct and indirect [Birdsey and Szabo 2014], but regardless of the classi-
fication, the interactions between agents trigger state changes [Melo and Veloso 2009;
Jacyno et al. 2009]. For simplicity, we propose to use system state change as a measure
of the degree of agent interaction, following the intuition that strong interactions tend
to effect significant changes on the state of the system.

3.5.1. Degree of Interaction Formalism. As defined earlier, we distinguish the behavior
rules R; into neighboring and individual, based on whether they consider the neigh-
bors of an agent or are focused on individual agents, respectively. Interaction arises
from neighboring behavior rules that define how an agent interacts with other agents.
For example, a bird changes its position because of coordination (collision avoidance,
alignment, and cohesion) with other neighboring birds. Besides neighboring rules, an
agent also has individual rules that govern the agent behavior when the agent acts indi-
vidually without interacting with its neighbors. For example, a bird may not change its
speed for a period during which it is alone in the environment. As a result, the difference
between two system states S(¢) and S(0) at time ¢ and zero, respectively, D(S(¢), S(0)),
is due to individual rules, D;(S(¢), S(0)), and neighboring rules, Dy(S(¢), S(0)):

D(S(®), S(0)) = Di(S(®), S(0)) + Dn(S(2), S(0)). (19)

Dy(S(t), S(0)) represents the degree of interactions between agents. Because emergent
properties arise from interaction, and agent interaction, in turn, arises from neighbor-
ing rules, Dy(S(#), S(0)) can be regarded as a measure or a criterion for determining
emergence. Consider system state S(t) in LI, , :

L, if Dy(S(¢), S(0)) = 0, no interaction or no effect
S(t) e if 0 < Dn(S(2), S(0)) < 8, weak interaction
L: otherwise,

where § (0 < § < 1) is a predefined threshold. Algorithm 2 presents the pseudo-code for
deriving L; based on the degree of agent interaction. L, and L are initialized to empty
sets (line 2 and line 3, respectively). The difference between every state in Li)}wle and
the initial state is measured (line 5) and compared with the predetermined threshold
8. If the difference is less than or equal to §, the corresponding state is added to L,.
Otherwise, it is added to L¢, that is, an emergent property state. The difference between
S(t) and S(0) is accumulated from the difference between s;;(¢) and s;;(0) for individual
agents (line 9). The for loop terminates as soon as the accumulated difference is larger
than § (line 12).

3.5.2. Dn(S(t), S(0)) Calculation. The system state is composed of the states of all con-
stituent agents and the states of the environment. Therefore, we define

1
D;(S(t), S(0)) = — ZdI(Sij(t), 5;;(0)) (20)
v
1
Dn(S(@), S(0)) = o Z dn(s;j(t), 5;7(0)) + Dn(Sg(2), Sg(0)), (21)
ViV

where n denotes the number of agents; dj(s;;(¢), s;;(0)) and dn(s;;(¢), s;;(0)) denote the
difference between A;;’s states in S(¢) and S(0) due to individual rules and neighboring
rules, respectively; and Dy(Sg(¢), Sg(0)) denotes the difference between states of the

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 6, Publication date: September 2015.

Formalization of Weak Emergence in Multiagent Systems 6:15

ALGORITHM 2: Pseudo-Code for L Calculation
1: procedure calculate_L;

2: L, =0
3: Lg = @,
4 set §; //set weak emergence threshold
5 for each state S@#) e LI, , do
6 D(,0):=0;
7 for each entity A in system do
8: call da(¢, 0); /lentity state different time ¢ and zero
9: add da(¢, 0) to D(¢, 0);
10: if D(¢,0) > § then //L¢ state
11: add S(¢) to Lg;
12: exit for loop;
13: end if
14: end for
15: if D(¢,0) = 0 then
16: add S(#) to L,; //mo interaction
17: else if D(¢,0) < § then
18: add S(#) to L,; /lweak interaction
19: end if
20: end for
21: return L;;

22: end procedure

environment at time ¢ and zero. Let
d(s;j(t), 5;;(0)) = di(s;(t), 5;;(0)) + dn(s;;(2), 5;;(0)) (22)

be the difference between A;;’s states in S(¢) and S(0) in total, that is, due to both
individual and neighboring rules.

From Equation (21), to calculate Dy(S(¢), S(0)), we need dn(s;;(¢), s;;(0)), which re-
quires d(s;;(¢), s;;(0)) and di(s;;(¢), s;7(0)) as from Equation (22). We propose a method
to measure d(s;;(¢), s;;(0)) and di(s;;(¢), s;;(0)). The calculation of Dy(Sg(¢), Sg(0)) will be
discussed after that. Because the state of an agent is characterized by the values of its
attributes, which may have different units of measurement and different ranges, we
need to normalize agent attributes to the same range [0,1] with no units. For example,
the speed of a car may vary from Okm/h to 100km/h, while its travel time is measured
in seconds. Interval [0,1] of normalized attributes ensures that agent state difference
dn(s;j(t), s;7(0)) and system state difference Dy(S(¢), S(0)) due to neighboring rules are
also in interval [0,1]. An attribute p is normalized using the following scaling formula:

I P — Pmin
DPmax — Pmin '
where p,,;, and pp.. are the minimum and maximum values, respectively, of the at-
tribute p. In addition, we assume that all agent attributes can be measured in a
numerical form. Nonnumerical attributes could be translated into a numerical form.
For example, a color attribute could have its Red Green Blue (RGB) values translated

into numbers. This translation is problem specific, and we leave this issue for future
work. Thus, d(s;;(¢), s;;(0) is defined as

p (23)

> pep |D'@) — p'(0)]

d(s;j(t), s;;(0)) = P ,

(24)

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 6, Publication date: September 2015.

6:16 C. Szabo and Y. M. Teo

where P, denotes the set of attributes for agents of type i, and p'(¢) denotes value
of normalized attribute p at time ¢. Algorithm 3 presents the pseudo-code for the
calculation of d(s;;(¢), s;;(0)). This difference counts the differences of the values of
attributes at time ¢ and zero. Agent attributes are normalized in line 4.

ALGORITHM 3: Pseudo-Code for d(s;;(¢), s;7(0)) Calculation

1: procedure calculate_d(s;;(¢), s;;(0))
: d(s;j(2), 5;;(0)) := 0;

0 N

3 for each attribute p € P, do

4 add [(p(t) — p(0)|/(Pmax — Pmin) to d(s;;(2), s;;(0));
5: end for

6: d(s;j(t), 5;;(0)) := d(s;; (%), 5;;(0))/| P, ;

7: return d(s;;(t), s;;(0));

8: end procedure

di(s;j(2), s;;(0)) is due to individual rules and defined as:
di(s;;(t), 5;;(0)) = d(s, 5;;(0)), (25)

where s is an agent state reached from s;;(0) after ¢ steps considering only individual
rules for A;;; that is, A;; is alone in the system:

individual rules

5;j(0) —— s;;(?) (26)
. t
If 5;;(0) PN (1), then dlsi;(8), 5;;(0)) = dy(s;;(2), 5;(0)) and dy(s;;(2), 5;,(0)) = 0.
For example, consider the flock-of-birds model discussed in more detail in Section 4.
A bird has two key attributes: position, which is the location of the cell occupied by the
bird, denoted by a 2D vector (x(¢), y(£)), and velocity, denoted by a 2D vector («(¢), B(¢)).
We assume that a bird does not change its velocity when flying alone and visits certain
cells along its path corresponding to its velocity. Let /c be the width/height of the
environment, where c is the size, that is, number of cells, of the square environment
. - t
2D grid. s;;(0) Individual rules. s;j(¢) if and only if:
1. x(#) — x(0) = 0 mod(/c) and y(¢) — y(0) = 0 mod(\/c);
2. (a(t), (@) = («(0), p(0)),

where mod is the modulo operation.

3.5.3. Dn(SE(t), Se(0)) Calculation. The difference between states of the environment at
time ¢ and time zero is defined as follows:

Dn(Sg(®), Sg(0)) = min(Dy 4,,(Sg(?), Sg(0))), (27

where Dy a,;,(Sg(?), Sg(0)) denotes the difference of states of the environment at time
¢t and time zero due to the behavior of agent A;; only. Considering A;; alone in the
system, Dy a,;,(Sg(t), Sg(0)) can be computed in a manner similar to Equation (24) with
respect to all attributes of the environment.

4. FLOCK-OF-BIRDS MODEL

The boids model [Reynolds 1987] captures the motion of bird flocking and is a seminal
example for studying emergence [Chan 2010]. We have applied our approach to models
of traffic jams and the Game of Life, but because of its simplicity, we employ the
flocks of birds model in this article. At the macro-level, a group of birds tends to move

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 6, Publication date: September 2015.

Formalization of Weak Emergence in Multiagent Systems 6:17

Table II. Vector Representation for Velocity of Ducks

Speed
Direction 0 1 2
North (0,0) 0,1) (0,2)
Northeast | (0,0) | (1,1) 1,2),(2,1),(2,2)
East 0,00 | (1,0) (2,0)
Southeast | (0,0) | (1,-1) (1,-2) (2,-1), (2,-2)
South (0,0) | (0,-1) (0,-2)
Southwest | (0,0) | (-1,-1) | (-1,-2), (-2,-1), (-2,-2)
West 0,0) | (-1,0) (-2,0)
Northwest | (0,0) | (-1,1) (-1,2), (-2,1), (-2,2)

in a V-like formation, which has aerodynamic advantages, obstacle avoidance, and
predator protection, regardless of the initial positions of the birds. At the micro-level,
each bird obeys three simple rules: (1) separation: steer to avoid crowding neighbors,
(2) alignment: steer toward average heading of neighbors, and (3) cohesion: steer toward
average position of neighbors.

To demonstrate our approach, we extended the boids model to include two types of
birds, ducks and geese. For ease of discussion, we model a multiagent system with
10 birds with equal number of ducks and geese interacting in an environment repre-
sented as a 2D grid of 8 x8 cells. Each cell can be occupied by a bird or free, and two birds
cannot be located at the same cell at the same time. Birds have two attributes: position
and velocity. Position and velocity model birds’ mobility. The position of a bird is the
location of the cell occupied. The velocity is a vector that contains speed and moving
direction. Ducks can fly zero, one, or two cells per time step in one of eight directions:
north, northeast, east, southeast, south, southwest, west, and northwest. Similarly,
geese can fly at the maximum speed of three cells per time step. The vector represen-
tation for velocity of ducks is shown in Table II. Birds behave according to three rules:
(1) separation: avoid collision with nearby birds, (2) alignment: fly as fast as nearby
birds of the same type, and (3) cohesion: stay close to nearby birds of the same type.

4.1. System Formalism
The boids model is formalized as

GBSpoia = (Va, Vg, A1, ..., Ais, Ao, ..., Ags, S(0)),

where A;; denotes a duck instance j (1 < j < 5), Ay; denotes a goose instance j
(1 < j <5), Vg = Vyu, UV, denotes the set of possible states for the ducks (Vy4,) and
the geese (V,), and Vg denotes the set of possible cell states. S(¢) € (V54U Vg)* denotes
system state at time ¢, and S(0) denotes the initial system state at time zero.

For cell e, V, = {o, f}, where o means occupied and f means free, and s,(t) € V,.

For the entire environment E, Vi = Ugil V. = {o, f}, where 64 = 8x8 represents the

number of cells, and Vg is the £ modulo 8 cell on row %/8 + 1 of the grid.
A duck instance A;;(1 < j < 5) is defined as follows:

Arj = (P1, Ry, 515(0)),

where
Pl = PlJnobile U Pll)thers
Py ovite = {815, v1;}

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 6, Publication date: September 2015.

6:18 C. Szabo and Y. M. Teo

P others =9

Va, ={x,)1 <x<81<y=<8x{a,p)-2<a=<2-2<p=<2}
Ry = Ri_nobite Y R others, Biothers = ¥

s1j(t) € Va,

R1 _ovize defines the update of the velocity vq; and the position g1; of duck A;; over time,
based on a condition function, as defined by the formalism in Section 3.3:

Ri movite = {rude : {True, False} x V4, — Vy, }.

rule(condition(g1;(t), g1x(8)), v1;(®), g1;(8) = (v1,(¢ + 1), g1,(¢ + 1)), where vy;(t + 1),
g1;(t + 1) are calculated as shown here:

condition(g1;(t), g1x(t)) = neighbor(g1;(t), g1:(t),¥Vj # k

Py ovite = {815, v15}

Py others =0

Va ={x, Il <x <8 1<y=<8 x{l,pl-2<a=<2-2<p<2}
Ry = Ry nobite Y R1others, B others = ¥

s1;(t) € Vg,

We limit the speed of ducks to two cells per time step so that they cannot fly arbitrarily
fast. Consequently, absolute values of the horizontal component («) and the vertical
component (B) of the velocity vector are bounded to two cells. Note that sign(a) and
sign(B) return signs of « and B, that is, 1 for positive and -1 for negative, respectively.
Both velocity and position of birds are represented as 2D vectors; the update is therefore
simply vector additions:

(o, B) = v1;(¢) + separation(A ;) + align(A ;) + cohesion(A; ;)
v1(t + 1) = (sign(e)min(|a|, 2), sign(B)min(|B], 2))
g1jt +1) =g1;(t) + vyt + 1)

Separation: If an agent of type duck a is a neighbor of another duck or goose b, then
a flies away from b:

separation(a) = Z a.position — b.position.
VbeA;; b#a,neighbor(a,b)

Alignment: Duck a changes velocity by A% toward the average velocity of its neighboring
ducks:

k .
vaeAij,b;éa,neighbor(a,b) b.velocity
k

align(a, b) = < — a.velocity) X %

Cohesion: Duck a moves by y % toward the center of its neighboring ducks:

k ..
vaeAij,baéa,neighbor(a,b) b.posztzon
k

1
cohesion(a) = (— a.position) X —.
14

neighbor(a, b) determines if two agents are neighbors, in this case if distance(a, b) < ¢,
that is, the birds are within € cells of each other. a.position and a.velocity capture, for
ease of reading, the position (g) and velocity (v) agent variables of agent a as defined
earlier. The model for geese agents follows in a similar manner except that geese are
blue, and their maximum speed is three cells per time step.

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 6, Publication date: September 2015.

Formalization of Weak Emergence in Multiagent Systems 6:19
|2,
(1,-D| (1,0)
3, 1, | 2, 3, |2, |3,
(1,0) (L-Di(1,-1) (1,0) (1,0)](1,0)[(0,0)
4, 4,
(LY (1,0)
IS -
(1,0)[(1.-1) (1,0)
5, 5 L
(1,0) (1,1)[(1,0)
2, L,
(1,0) (1,-1)
3, 4, 3] 2 4 NN
(1.0) (1,0) (LO)[(1,0) (1.0) (L0)[(1,0)](1,0)
5, 5, 5,
[(N))] (1,0) (1,0)
t=0 t=1 t=2
r, |2, |3, 2,3, |2, |3,
(1,0)[(1,0)|(0,0) (1,0)| (1,0) | (0,0) 1,0)[(1,0)/(0,0)
5, | 4, NS |4
(LD](2,0) (1.1} (1.0) (LD](1,0)
1, 1, 1,
(1.0) (10) (1,0)
2|4 24 3.2 4
(1.0)|(1.0)] (1.0) (1.0)[(1.0)](1.0) (L.0)|(1.0)] (1.0)
5, 5, 5,
2.0) (1.0) (1.0)
t=3 t=4 t=5
Fig. 2. Snapshot of emergent property states.
"
a.n
< >
<
] 3, 3,
aol o o™
s
<1f§‘

Fig. 3. Example of L(Ag3) ® (L(Asgs)).

4.2. Emergence Identification

We show a snapshot of how the flocking of birds, a well-known emergent property,
is detected. The initial system state is given as the state at time t = 0 in Figure 2.
For ease of visualization, we distinguish ducks from geese using a star (x) symbol and
bolded cell. < j, («, 8) > denotes a bird instance j, with velocity («,8). Figure 2 shows a
simulation of the system when € = 2, A = 10, and 8 = 8. We observe that the birds keep
flying in the same pattern since t = 4. Moreover, the system gets back to the system
state S(4) at time t = 12: S(12) = S(4). Hence, L, , = {S(0), S(1), ..., S(11)}.

Ly, is calculated using the superimposition operator as Lg,,, = ®(L(A11), ..., L(Ags)).
By definition and following our previous discussion, L, tends to be very large, even
for small problem sizes. As such, we consider for illustration two geese Ag3 and Ass.
The visualized result of the superimposition of L(Ag3) and L(Ags) is shown in Figure 3.

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 6, Publication date: September 2015.

6:20 C. Szabo and Y. M. Teo

Table Ill. Sizes of L! , .. Leum, and L

Number of States Le
Number of Birds | L, . Leum L; Lyote
4 13 767 6 0.46
6 18 70,118 12 | 0.67
8 13 509,103 9 | 0.69
10 26 13,314,066 | 23 | 0.88

Formally,

@ (L(Ags3), L(Ags))
= L(Ag3) ® (L(Ag5)) U L(Ags) ® (L(Ag3))
={(fff...(2,(1,7),(1,0))...(2,(1,8),(1,1)...),
(fff...(2,(2,7),(1,0)...),
(fff...(2,(8,1),(1,1))...(2,(8,7),(1,0)...),...}

L(As3) and L(Ags) are behaviors of agent Ass and Ags. f represents an empty cell and
a tuple < i, (x,y), (o, B) > represents the state of a bird of type i at cell (x,y) with
velocity («, 8). For example, < 2, (1, 7), (1, 0) > represents a goose locating at cell (1, 7)
with velocity (1, 0). Note that the x-axis is horizontal and oriented from left to right,
and the y-axis is vertical and oriented from top to bottom. For the 10-bird example,
we can run the simulation to determine L, and see that L; = {S(1), S(2), ..., S(1D)}.
Furthermore, we assume that a group of birds flock if at least five birds of the same
type fly together, with each bird having at least one immediate neighbor of the same
type. As a result, flocking is a known emergent property. Ten emergent property states
from S(2) to S(11) therefore have flocking emergent property.

4.3. Experimental Analysis

In this section, we present the experimental analysis of our approach. Since we derived
the sets of states for Llw,wle, Ly, and L;, we present the complexity in terms of the
number of states. We implemented our approach in Java, and our experimental analysis
quantifies the state-space size by varying the number of birds.

4.3.1. Experimental Results: State-Space Explosion. We computed and analyzed the states
that make up L!, ., Lsum, and L;. We also analyzed how agent interactions affect the

size of Lz with respect to the size of Li,,wle. As Lg,, suffers from state-space explosion,
we varied the number of birds from four to 10, with equal number of ducks and geese.
A difference between ducks and geese is their maximum speed, which is two cells per
time step for ducks and three cells per time step for geese. The location and velocity
of all birds are initialized randomly. Both ducks and geese follow the three behavior
rules defined in Section 4. Given an initial system state, at some point of time #, the
system will arrive at a state that has already happened at time ¢’ < ¢ because the
number of possible system states is finite, even if it can be very large. The size of L, ,
is the number of distinct system states obtained from the beginning until time ¢. Ly,
is computed over all possible combinations of individual agents’ behaviors with respect
to the initial system state. The initial system state belongs to both L, = and Lgyy.
For every experiment, we ran the simulation 10 times and took the averages where
applicable as shown in Table III. The experiments are run using a 2.4GHz machine
with 3GB RAM. As expected, the size of Lg,, is large and increases exponentially
with the number of birds. For instance, L, grows by 90 times when the number
of birds changes from four to six. Another interesting observation is that L:/LL, ,.

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 6, Publication date: September 2015.

Formalization of Weak Emergence in Multiagent Systems 6:21

Table IV. Emergent Property Set Size for a 128 x 128 Grid with § = 0.1

L,
Number of Birds | L, ,, | None | Weak L Execution Time (s)
4 133 17 21 95 small
8 157 3 19 135 small
16 643 5 16 622 0.2
32 1,158 2 19 1,137 13
64 3,037 1 15 3,021 12.8
128 7,497 1 12 7,484 151.7
256 6,871 1 13 6,857 941.8
512 5,038 1 11 5,026 5,394.3
1,024 4,072 1 11 4,060 32,266.8

tends to increase with the number of birds. In other words, more interactions between
birds lead to more emergent property states that cannot be derived by summing the
independent agents’ behaviors. Furthermore, the number of common elements between
L, .. and Ly, is small. Consequently, computation is wasted on calculating LY? states
that are not feasible in practice. However, when the impact of neighboring agents on an
agent is not strong, then LYP tends to be small. For example, agents may not interact
frequently because they are far from each other, such as when the number of agents is

much smaller than the number of cells in the environment.

4.3.2. Experimental Results: State-Space Reduction. By eliminating Lg,, in this method as
discussed in Section 3.4, our experiments scale up to a larger number of birds (1,024
birds) and a larger environment (128 x 128 grid). We set § to 0.1 to consider that
emergence occurs when the degree of interaction between birds is larger than 0.1.
Other values of § are examined later. The bird position is the only attribute considered
in the calculation of the degree of interaction, as position is the result of applying all
behavior rules, and thus changes in position demonstrate how strong birds’ interactions
are. Table IV shows experimental results for different numbers of birds on a 128 x 128
grid. We keep the population of ducks and geese equal. The purpose of the experiments
is to analyze the relationships among LI, = L,, and L;. We are also interested in
evaluating the scalability of the new method of determining emergence.

The first observation is that when the number of birds doubles, L., , grows as
expected, but soon drops. For example, for a 128 x 128 grid, L, , decreases sharply
from 7,497 to 4,072 when the number of birds increases from 128 to 1,024 (see Table IV).
Similarly, L, ,, changes noticeably from 3,803 to 1,536 when the bird population varies
from 128 to 1,024 in a 64 x 64 grid. This is probably because a larger number of birds
encourages more interactions, thus making the birds’ movement more structured.

Second, for all explored environment sizes, the system states due to weak interaction
are small and tend to decrease with the number of birds. This further clarifies the close
relationship between the size of the bird population and the degree of interaction, in
that more birds lead to more interactions, hence smaller L,. Furthermore, the number
of system states due to no interactions tends to reach one, the initial state.

Third, L, is small compared to L, especially when the number of birds is large. For

example, f—s is less than 1%. There are two possible reasons for this. The first reason is

that § = 0.1 is a small value. If § is set to a larger value, we are likely to retrieve fewer
emergent property states but with a higher degree of interactions. However, there is
a risk that some appealing emergent properties may be ignored. The second reason
is that interactions between birds when the group becomes more crowded amplify the

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 6, Publication date: September 2015.

6:22 C. Szabo and Y. M. Teo

Table V. Size of L], ,.and L¢ ina 16 x 16 Grid for Different Values of &

Le
Number of Birds Li,,wle 00| 01|02]| 03|04 05
4 18 3 3 6 5 1 0
8 44 3 4 21 13 3 0
16 65 2 2 22 33 6 0
32 127 2 2 20 93 10 | O
64 220 2 1 31 | 183 3 0

degree of interaction, thus making the degree larger than § for most system states.
This needs to be further investigated.

Our analysis of the execution times shows that the new proposed method of identify-
ing emergent property states is much more efficient: eliminating L, enables experi-
ments of much larger bird populations and environment sizes (1,024 birds and a 128 x
128 grid in the new method compared to 10 birds and an 8 x 8 grid in the original
method). In particular, for 1,024 birds and a 128 x 128 grid, the experiment took about
9 hours to run through 4,072 system states and classify them into nonemergent and
emergent property states based on the degree of interaction. Compared to the original
approach of calculation of L;, which took about 1 hour for only 10 birds and an 8 x 8
grid, we can see the high efficiency of the proposed technique for state-space reduction.

To understand the relationship between L; and §, we perform experiments for differ-
ent numbers of birds and different values of § in a 16 x 16 grid as shown in Table V.

We observe that L: has the largest number of states when the degree of interaction
is between [0.2, 0.3] and [0.3, 0.4]. Considering 64 birds, these two ranges account for
about 97% of emergent property states. In addition, [0.3, 0.4] seems to have more emer-
gent property states than [0.2, 0.3], when the bird population increases. For instance,
the ratio of Lg in [0.3, 0.4] and [0.2, 0.3] grows from 0.8 to 5.9 when the number of
birds grows from four to 64, respectively. Our hypothesis is that behavior rules fol-
low a particular distribution of degree of birds’ interaction, but this has to be further
investigated.

4.4. Discussion

The idea of using the degree of interaction has a limitation in that the degree of
interaction depends on the attributes that are selected to calculate it. Our experiments
show that it is not always straightforward to select attributes such that the degree of
interaction covers the whole range of [0,1], in which zero means no or cancelled out
interaction and one refers to possibly maximum interaction. Through the use of the
degree of interaction, the computationally expensive calculation of L, is avoided and
thus the runtime of our approach is significantly reduced. The use of the degree of
interaction makes our approach less generic than that using Ly, by relying on the
insight that interaction accompanies emergent behavior. However, it also makes our
approach more practical by making it computationally feasible: to ensure that this
approach is universally applicable, further experimentation is required.

Our formalism and approach allow us to identify the states that form L, the set of
emergent property states. These states are manifestations or instances of emergent
properties. For example, the emergent property of “flocking” can have more than one
manifestation or instance, in which birds are clustered around different virtual centers
on a grid. The identification of a specific emergent property from an emergent property
state set requires the intervention of the system expert. Toward this, the system expert
that analyzes L; could define some system-specific emergence criterion. For example,

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 6, Publication date: September 2015.

Formalization of Weak Emergence in Multiagent Systems 6:23

a flocking criterion requiring a minimum number of birds to cluster around a point can
be used to highlight a number of states from L; as belonging to the emergent property
state of “flocking.” Alternatively, the set could be compared with sets extracted from
systems that have been previously shown to exhibit emergence, similar to the approach
proposed in Birdsey and Szabo [2014].

Next, to increase the adoption of our approach, the multiagent system under study
could be specified in any formalism, including the DEVS-based formalism proposed
by Mittal [2013]. Toward this, transformation functions that preserve semantics and
logical properties need to be defined and validated. For some constructs, these can be
straightforward mappings, for example, agent to agent capturing attributes, whereas
for others, the transformations are not straightforward, for example, the DEVS be-
havior functions to the rule-based definition and grammar proposed by our approach.
Lastly, our approach needs to be further validated by applying it to other systems.
Our experiments also include the Game of Life and traffic jams in small intersections;
predator—prey and social networks will be considered as part of our future work.

5. CONCLUSION

This article proposes a formalization of emergent behavior using an extended cooperat-
ing array grammar system to identify the existence and the size of emergent property
state sets in multiagent systems. In weak emergence, the set of emergent property
states for a given system (L) is derived by taking the difference between the set of
observed system states due to agent interactions (L) and the set of system states
obtained by combining the behaviors of individual agents (Ls,,,). Our formalism models
multiagent systems with agents of various types and characteristics and permits the
modeling of open systems. Our formalization allows for the automated calculation of
L;. However, our theoretical analysis shows that the formalism suffers from severe
state-space explosion. This is also shown by our experimental analysis, which studies
a flock-of-birds model with two types of birds but only allows us to analyze models
with up to 10 birds. We address this drawback by introducing a degree-of-interaction
metric that significantly reduces the state space. The formalization and subsequent
implementation of the degree-of-interaction metric permit us to analyze models with
up to 1,024 birds on significantly larger two-dimensional grids (128 x 128).

Our approach is a significant improvement over existing work, both through con-
sidering agents with more than one attribute, mobile agents, and open systems and
through its automation potential, which has a reduced runtime through the use of the
degree-of-interaction metric. However, the degree of interaction is applicable only to
systems where emergent behavior is a result of direct interaction and does not consider
indirect interactions between agents. This is a tradeoff between computational cost and
applicability that needs to be further analyzed. This article provides a first step toward
advancing our understanding of emergence and introduces a scalable, automated way
for identifying emergent property states, but much work remains to be done. More
efficient state representations, such as bit state hashing and state vector compression
used in model checking, are required. We have applied this approach to the Game of
Life and to traffic jam models and are also exploring the application of this approach
to study emergence in social networks and concurrent program specification. Given a
program and its specification, the cause and effect of properties such as deadlock can
be analyzed by examining the corresponding system states.

ACKNOWLEDGMENTS

The authors wish to thank Luong Ba Linh for discussions about this work.

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 6, Publication date: September 2015.

6:24 C. Szabo and Y. M. Teo

REFERENCES

R. Abbott. 2006. Emergence explained: Abstractions getting epiphenomena to do real work. Complexity 12,
1, 13-26.

L. A. Adamic and B. A. Huberman. 2000. Power-law distribution of the World Wide Web. Science 287, 2115.

R. Albert, H. Jeong, and A. L. Barabasi. 1999. Diameter of the World Wide Web. Nature 401, 130-131.

N. A. Baas and C. Emmeche. 1997. On emergence and explanation. Intellectica 2, 67-83.

Y. Bar-Yam. 2004. A mathematical theory of strong emergence using multiscale variety. Complexity 9, 6,
15-24.

M. A. Bedau. 1997. Philosophical perspectives: Mind, causation and world. Philosophical Perspectives Annual
Volume 11.

M. A. Bedau. 2003. Downward causation and the autonomy of weak emergence. Principia 3 3, 5-50.

C. Bernon, M.-P. Gleizes, S. Peyruqueou, and G. Picard. 2003. Adelfe: A methodology for adaptive multi-agent
systems engineering. In Engineering Societies in the Agents World III. Springer, 156—169.

L. Birdsey and C. Szabo. 2014. An architecture for identifying emergent behavior in multi-agent systems.
In Proceedings of the 13th International Conference on Autonomous Agents and Multiagent Systems.
1455-1456.

E. Bonabeau and J. Dessalles. 1997. Detection and emergence. Intellectica 25, 2.

D. J. Chalmers. 2006. Strong and weak emergence. In The Re-emergence of Emergence. Oxford University
Press.

W. K. V. Chan. 2010. Interaction metric of emergent behaviors in agent-based simulation. In Proceedings of
Winter Simulation Conference, S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu (Eds.).
Institute of Electrical and Electronics Engineers, 357-336.

C. C. Chen, S. B. Nagl, and C. D. Clack. 2009a. Complexity and emergence in engineering systems. Complex
Systems in Knowledge-based Environments: Theory, Models and Applications 168, 99—-128.

C. C. Chen, S. B. Nagl, and C. D. Clack. 2009b. A formalism for multi-level emergent behaviours in de-
signed component-based systems and agent-based simulations. In From System Complexity to Emergent
Properties. Springer-Verlag, 101-114.

L. Chi. 2009. Translating social capital to the online world: Insights from two experimental studies. Journal
of Organizational Computing and Electronic Commerce 19, 214-236.

N. Chomsky. 1956. Three models for the description of language. IRE Transactions on Information Theory 2,
113-124.

dJ. P. Crutchfield. 1999. Is anything ever new? Considering emergence. In Complexity, Vol. 19, 515-537.
Addison-Wesley.

V. Darley. 1994. Emergent phenomena and complexity. Artificial Life IV, 4, 411-416.

dJ. Deguet, L. Magnin, and Y. Demazeau. 2006. Elements about the emergence issue: A survey of emergence
definitions. ComPlexUs 3, 24-31.

G. B. Dyson. 1998. Darwin Among the Machines: The Evolution of Global Intelligence. Perseus Books Group.

D. Fisch, M. Janicke, B. Sick, and C. Muller-Schloer. 2010. Quantitative emergence - A refined approach
based on divergence measures. In Proceedings of 4th IEEE International Conference on Self-Adaptive
and Self-Organizing Systems. 94—-103.

S. Floyd and V. Jacobson. 1994. The synchronization of periodic routing messages. IEEE/ACM Transactions
on Networking 2, 2, 122—-136.

J. Fromm. 2007. Types and Forms of Emergence. http://arxiv.org/abs/nlin.AO/0506028.

J. M. E. Gabbai, H. Yin, W. A. Wright, and N. M. Allinson. 2005. Self-organization, emergence and multi-agent
systems. In Proceedings of International Conference on Neural Networks and Brain. 1858-1863.

R. Gore and P. F. Reynolds. 2008. Applying causal inference to understand emergent behavior. In Proceedings
of the Winter Simulation Conference. 712-721.

P. Haglich, C. Rouff, and L. Pullum. 2010. Detecting emergence in social networks. In Proceedings of IEEE
2nd International Conference on Social Computing. 693—696.

B. Heath, R. Hill, and F. Ciarallo. 2009. A survey of agent-based modeling practices (January 1998 to July
2008). Journal of Artificial Societies and Social Simulation 12, 4, 9+.

dJ. H. Holland. 1997. Emergence: From Chaos To Order. Addison Wesley.

R. Holzer, H. De Meer, and C. Bettstetter. 2008. On autonomy and emergence in self-organizing systems. In
Proceedings of 3rd International Workshop on Self-Organizing Systems. 157-169.

J. Hopcroft, R. Motwani, and J. Ullman. 2001. Introduction to Automata Theory, Languages and Computation.
Addison-Wesley.

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 6, Publication date: September 2015.

Formalization of Weak Emergence in Multiagent Systems 6:25

P. Hovda. 2008. Quantifying weak emergence. Journal of Minds and Machine 18, 4, 461-473.

M. Jacyno, S. Bullock, M. Luck, and T. R. Payne. 2009. Emergent service provisioning and demand esti-
mation through self-organizing agent communities. In Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems-Volume 1. 481-488.

C. W. Johnson. 2006. What are emergent properties and how do they affect the engineering of complex
systems? Reliability Engineering and System Safety 12, 1475-1481.

A. Kubik. 2003. Towards a formalization of emergence. Journal of Artificial Life 9, 1, 41-65.

Z.Li, C. H. Sim, and M. Y. H. Low. 2006. A survey of emergent behaviour and impacts in agent-based systems.
In Proceedings of IEEE International Conference on Industrial Economics. 1295-1300.

E. J. Manley and T. Cheng. 2010. Understanding road congestion as an emergent property of traffic networks.
In Proceedings of 14th World Multi-Conference on Systemics, Cybernetics and Informatics. 25-34.

F. S. Melo and M. Veloso. 2009. Learning of coordination: Exploiting sparse interactions in multiagent
systems. In Proceedings of the 8th International Conference on Autonomous Agents and Multiagent
Systems-Volume 2. 773-780.

S. Mittal. 2013. Emergence in stigmergic and complex adaptive systems: A formal discrete event systems
perspective. Cognitive Systems Research 21, 22—39.

M. Mnif and C. Muller-Schloer. 2006. Quantitative emergence. In Proceedings of IEEE Mountain Workshop
on Adaptive and Learning Systems. 78-84.

J. C. Mogul. 2006. Emergent (mis)behavior vs. complex software systems. In Proceedings of 1st ACM
SIGOPS /EuroSys European Conference on Computer Systems. 293—-304.

T. Moncion, P. Amar, and G. Hutzler. 2010. Automatic characterization of emergent phenomena in complex
systems. Journal of Biological Physics and Chemistry 10, 16-23.

I. Norros, B. J. Prabhu, and H. Reittu. 2006. Flash crowd in a file sharing system based on random encounters.
In Proceedings of Workshop on Interdisciplinary Systems Approach in Performance Evaluation and
Design of Computer & Communications Systems. 42-51.

T. O’Conner. 1994. Emergent properties. American Philosophical Quarterly 31, 2, 91-104.

K. K. Ramakrishnan and H. Yang. 1994. The Ethernet capture effect: Analysis and solution. In Proceedings
of 19th Conference on Local Computer Networks. 228-240.

M. Randles, H. Zhu, and A. Taleb-Bendiab. 2007. A formal approach to the engineering of emergence and its
recurrence. In Proceedings of 2nd International Workshop on Engineering Emergence in Decentralized
Autonomic Systems. 1-10.

C. W. Reynolds. 1987. Flocks, herds and schools: A distributed behavioral model. In Proceedings of 14th
Annual Conference on Computer Graphics and Interactive Techniques. 25-34.

C. Rouff, A. Vanderbilt, M. Hinchey, W. Truszkowski, and J. Rash. 2004. Properties of a formal method for
prediction of emergent behaviors in swarm-based systems. In Proceedings of 2nd IEEE International
Conference on Software Engineering and Formal Methods. 24-33.

N. Salazar Salazar, J. Rodriguez-Aguilar, J. Arcos, A. Peleteiro, and J. Burguillo-Rial. 2011. Emerging coop-
eration on complex networks. In Proceedings of the International Conference on Autonomous Agents and
Multiagent Systems. 669-676.

A. K. Seth. 2008. Measuring emergence via nonlinear Granger causality. Artificial Life XI 324, 1, 545-552.

C. E. Shannon. 2000. A mathematical theory of communication. Bell System Technical Journal 27, 3, 379—
423.

C. Szabo and Y. M. Teo. 2012a. An integrated approach for the validation of emergence in component-based
simulation models. In Proceedings of the Winter Simulation Conference. 2412—-2423.

C. Szabo and Y. M. Teo. 2012b. Semantic validation of emergent properties in component-based simulation
models. Ontology, Epistemology, and Teleology of Modeling and Simulation Philosophical Foundations
for Intelligent M&S Applications. 319-333.

Y. M. Teo, L. B. Linh, and C. Szabo. 2013. Formalization of emergence in multi-agent systems. In Proceedings
of the ACM SIGSIM Conference on Principles of Advanced Discrete Simulation. 231-240.

T. De Wolf, G. Samaey, T. Holvoet, and D. Roose. 2005. De-centralized autonomic computing: Analysing
self-organizing emergent behavior using advanced numerical methods. In Proceedings of the 2nd Inter-
national Conference on Autonomic Computing. 52—63.

B. Zhan, D. N. Monekosso, P. Remagnino, S. A. Velastin, and L. Q. Xu. 2008. Crowd analysis: A survey.
Machine Vision and Application 19, 5-6, 345-357.

Received February 2014; revised May 2015; accepted July 2015

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 6, Publication date: September 2015.

