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Abstract

The field of social choice theory investigates how
individual preferences are aggregated to reach col-
lective decisions. While traditional social choice
addresses problems such as choosing a winning
candidate based on voter rankings or fairly allocat-
ing resources among individuals with the same en-
titlement, the wide range of decision-making sce-
narios in real-world applications calls for an exten-
sion beyond these basic frameworks. In this pa-
per, I present an overview of my efforts to expand
the reach of social choice theory in the domains
of fair division, voting, and tournaments. Further-
more, I discuss avenues and challenges of bringing
the developed theory closer to practice.

1 Introduction
Social choice theory is a discipline that examines methods
for combining individual preferences into a satisfactory col-
lective decision [Arrow et al., 2002]. Its applications are
wide-ranging—for example, a group of students choosing a
restaurant for dinner, a university dividing resources among
its departments, or a country electing its president. While
early social choice theory primarily centered around the ax-
iomatic aspect of aggregation rules, the past two decades have
witnessed a significant surge of interest in the computational
perspective [Brandt et al., 2016].

Even basic social choice settings can lead to surprisingly
challenging theoretical questions. Consider, for instance, the
setting of fairly allocating indivisible items among agents
with additive valuations. A fundamental notion of fairness
is envy-freeness, which means that no agent should envy an-
other agent based on the allocated bundles. With discrete
items, envy-freeness cannot always be satisfied, as is clear
when two agents vie for a single valuable item. A natural
relaxation is envy-freeness up to any item (EFX), which re-
quires any envy that an agent has toward another agent to
disappear as soon as any item in the latter agent’s bundle is
removed. EFX has received substantial attention within the
fair division community since its introduction by Caragiannis
et al. [2016]. However, except for a few special cases, it re-
mains unknown whether an EFX allocation is guaranteed to

exist. This stands in contrast with the weaker notion of envy-
freeness up to one item (EF1)—this notion only requires the
envy to disappear upon the removal of some item, and can
always be fulfilled. A similarly intriguing question concerns
another fairness notion called maximin share (MMS), which
is defined as the highest value that each agent can guarantee
for herself by partitioning the items into n parts and receiving
the worst part, where n denotes the number of agents [Bud-
ish, 2011]. Although it is known that an allocation that gives
every agent at least her MMS does not always exist, deter-
mining the best approximation has proven elusive thus far.

While these questions undoubtedly deserve further inves-
tigation, an equally important research direction lies in ex-
tending the model to encompass various real-life scenarios.
Indeed, many practical applications of fair division cannot be
adequately addressed within the confines of the basic frame-
work. For example, when dividing inheritance among rela-
tives, it is typical that closer relatives are entitled to a larger
share of the inheritance, thereby rendering the usual notion
of envy-freeness inappropriate. In a similar vein, when dis-
tributing office space between research groups, it is desirable
for each group to receive a connected set of offices in order to
facilitate communication, so a method that ignores this con-
straint can lead to an unusable solution. Investigating alterna-
tive paradigms is therefore crucial for broadening the appli-
cability of social choice theory. The same holds for other do-
mains of social choice such as voting, where the classic model
involves selecting a winning candidate from voter rankings.

This paper provides an overview of my endeavors to ex-
pand the reach of social choice theory in the areas of fair di-
vision, voting, and tournaments, as well as to bridge the gap
between the developed theory and its practical application.

2 Fair Division
In fair division, the aim is to allocate resources fairly among
interested agents with possibly differing preferences [Thom-
son, 2016]. The literature considers both divisible resources,
such as land and time, as well as indivisible resources, such
as books, furniture, and electronic devices.

2.1 Unequal Entitlements
As mentioned earlier, some applications of fair division in-
volve agents with unequal entitlements which can be repre-
sented by weights. Besides inheritance division, this is the



case when allocating usage rights of a facility to investors
who have made varying amounts of investment.

Envy-freeness can be extended to the weighted setting in
a natural manner. For example, if Alice’s weight is twice of
Bob’s, then Alice is “weighted envy-free” toward Bob if she
finds her bundle to be worth at least twice of Bob’s bundle. In
the same spirit, we say that agent i is weighted EF1 (WEF1)
toward agent j if, whenever j’s bundle Aj is nonempty, there
exists an item g ⊆ Aj such that

vi(Ai)

wi
≥ vi(Aj \ {g})

wj
,

where vi denotes agent i’s valuation function, Ai denotes i’s
bundle, and wi and wj denote i’s and j’s weights, respec-
tively. In our work, we showed that a WEF1 allocation always
exists and can be found efficiently using a weighted picking
sequence, where agents take turns picking their favorite items
and each subsequent pick is assigned to an agent who has
picked least frequently relative to her weight [Chakraborty et
al., 2021a]. This demonstrates that a strong fairness guaran-
tee can be made even in the presence of arbitrary entitlements.

Among numerous ways in which the weighted setting dif-
fers from its unweighted counterpart, one of the most notable
is the trade-off between satisfying higher-weight agents and
lower-weight ones. This is exhibited by a simple instance
where there are n agents and n identical items, but one of the
agents has a larger weight than all the remaining agents com-
bined. The only WEF1 allocation assigns one item to each
agent; this is also the only allocation that leaves no agent
empty-handed. However, the allocation can be reasonably
objected as unfair by the high-weight agent. To address this
inevitable trade-off, we generalized WEF1 to WEF(x, 1−x),
where x ∈ [0, 1] is a parameter [Chakraborty et al., 2022].
WEF1 corresponds to WEF(1, 0), and higher x favors lower-
weight agents. We proved that for any x, WEF(x, 1− x) can
be satisfied by a weighted picking sequence where the assign-
ment of the next pick is adjusted according to x. In another
paper, we showed that unlike several other methods, these
picking sequences possess strong monotonicity properties—
for example, resource-monotonicity states that when an ex-
tra item is added, no agent should receive lower value as a
consequence [Chakraborty et al., 2021b]. We also general-
ized these fairness notions and guarantees from additive val-
uations to submodular valuations (i.e., valuations that exhibit
decreasing marginal returns) [Montanari et al., 2024].

In addition to picking sequences, another important fair
allocation method is the maximum weighted Nash welfare
(MWNW) rule, which returns an allocation that maximizes
the weighted product of the agents’ values, where the weights
appear in the exponents. Even in the unweighted setting,
MWNW fails monotonicity and strategyproofness properties
and is hard to compute. However, we showed that all of these
desirable properties can be recovered under arbitrary weights,
provided that the agents have binary additive valuations [Suk-
sompong and Teh, 2022]. In a subsequent paper, we proved
that these attractive properties continue to hold for arbitrary
“weighted additive welfarist rules” with concave functions, of
which MWNW is a special case, and for agents with binary
submodular valuations [Suksompong and Teh, 2023].

2.2 Group Preferences
Another natural extension of the basic fair division setting is
the extension to groups. In this model, agents in the same
group receive the same bundle of items but may have differ-
ing preferences over them. This occurs, for instance, when
distributing household goods among families—members of
the same family may have varying thoughts about having a
television or a fitness equipment in their house.

In a paper that introduced this setting, we proved that when
all groups are of the same size and the agents’ valuations are
drawn randomly from probability distributions, an envy-free
allocation exists with high probability as long as the number
of items exceeds the number of agents by at least a logarith-
mic factor [Manurangsi and Suksompong, 2017]. We also
showed that when the number of groups is constant, there ex-
ists an allocation that is envy-free up to Θ(

√
n) items (where

n denotes the total number of agents across all groups) [Ma-
nurangsi and Suksompong, 2022], and established the ex-
istence of EF1 allocations for small groups [Kyropoulou et
al., 2020]. In addition, we investigated democratic fairness,
which aims to satisfy a fraction of the agents in each group
when satisfying all of them is impossible [Segal-Halevi and
Suksompong, 2019]. For instance, we proved that with two
groups, there always exists an allocation that is EF1 to at least
1/2 of the agents in each group, and the fraction 1/2 is tight.

As discussed earlier, when allocating indivisible items, an-
other popular fairness notion is MMS. Unfortunately, even
for two groups with three agents each, there may not exist an
allocation that gives every agent any positive fraction of her
MMS. This can be seen in a simple instance with three items
such that each agent has value 1 for two of the items and 0
for the remaining item, where the three agents in each group
value distinct pairs of items. In the case of two groups, I char-
acterized the group sizes for which a positive MMS approx-
imation can be attained [Suksompong, 2018]. Nevertheless,
to provide guarantees for larger groups, cardinal approxima-
tions are insufficient. In light of this, we considered ordi-
nal approximations, where instead of partitioning into g parts
(where g denotes the number of groups), we partition into k
parts for some parameter k > g. For arbitrary group sizes, we
determined the asymptotically tight bound on k such that an
ordinal MMS approximation with parameter k can be guar-
anteed [Manurangsi and Suksompong, 2024].

Furthermore, we considered the allocation of divisible re-
sources, often referred to as cake cutting, among groups. We
showed that it is possible to partition the agents into groups
of any desired sizes and divide an interval cake so that each
group receives a single connected piece of the cake and the
resulting allocation is envy-free [Segal-Halevi and Suksom-
pong, 2021].1 We also established an analogous result for
chore division [Segal-Halevi and Suksompong, 2023].

2.3 Constraints
The majority of the fair division literature assumes that any
allocation of the resource is feasible. However, there are sev-
eral applications where this assumption does not hold due to

1If we are not allowed to partition the agents, it is not difficult to
see that this task may be impossible.



constraints on the allocation. In my survey, I summarized the
types of constraints that have been explored in the literature
thus far [Suksompong, 2021a]. In particular, my research has
focused on connectivity and separation constraints.

Connectivity constraints are relevant when the items form
a linear structure, such as retail units on a street or time
slots for using a conference center. In my work, I studied
the existence of connected allocations that satisfy approxi-
mate versions of envy-freeness as well as two other funda-
mental fairness notions, proportionality (each agent receives
at least 1/n of her value for the entire set of items) and
equitability (every agent’s value for her own bundle is the
same) [Suksompong, 2019]. Bouveret et al. [2017] intro-
duced a more general model where the items can form an
arbitrary graph. In this model, we studied the price of con-
nectivity, which captures the loss of fairness or social wel-
fare due to the connectivity requirement [Bei et al., 2022a;
Bei et al., 2024]. Our results reveal that the price depends
significantly on the structure of the graph; their proofs involve
applying a number of tools from graph theory. In another pa-
per, we showed that deciding whether there exists a connected
fair allocation is NP-hard even when the agents have binary
valuations and the items lie on a line [Goldberg et al., 2020].
This hardness holds for each of the three fairness notions—
envy-freeness, proportionality, and equitability—as well as
any combination of them. In the same work, we also explored
envy-freeness in connected cake cutting. Specifically, we de-
vised an efficient algorithm that computes an approximately
envy-free allocation and established the NP-hardness of var-
ious decision problems on the existence of envy-free alloca-
tions, e.g., when we fix the ordering of the agents or constrain
the positions of certain cuts.

In some scenarios, not only do we want each agent’s share
to be connected, but we also want different agents’ shares to
be sufficiently separated from one another. Indeed, this may
be necessary in order to respect social distancing guidelines,
allow time to erase data between machine processes, or pre-
vent cross-fertilization of crops from different land plots. We
initiated the study of separation constraints in fair division by
examining them in the context of cake cutting [Elkind et al.,
2022]. While an MMS allocation does not always exist, if
we relax the MMS notion in an ordinal manner by partition-
ing the cake into n + 1 instead of n pieces (cf. Section 2.2),
we showed that we can recover guaranteed existence. In a
follow-up work, we examined the more general setting of
land division, where geometric considerations play a crucial
role since, for example, a long but thin piece of land may offer
little value [Elkind et al., 2023a]. Once again, we illustrated
the usefulness of ordinal MMS by providing guarantees in
terms of this notion for a variety of geometric shapes.

2.4 Other Settings
Next, I briefly describe other contexts that I have introduced
or contributed to within the domain of fair division.
Two-Sided Preferences. In fair division with two-sided
preferences, not only do the “agents” have preferences over
the “items”, but the items also have preferences over the
agents. This is the case when allocating players to sports
teams or volunteers to community service clubs. We devised

algorithms that are fair and stable with respect to the prefer-
ences of both sides [Igarashi et al., 2023].

Externalities. Some applications of fair division involve
externalities: an agent getting a high-value item can make
you feel better if that agent is your friend, but worse if she is
your enemy. We extended envy-based notions to accommo-
date the externalities that may arise [Aziz et al., 2023].

Differential Privacy. In certain situations, one may desire
an allocation that is not only fair, but also private. We ap-
plied the well-established framework of differential privacy
and examined the trade-off between fairness and privacy in
this setting [Manurangsi and Suksompong, 2023a].

Reachability. Given an initial fair allocation and a target
fair allocation, how can we make local changes (e.g., ex-
changing a pair of items) to reach the latter from the former
in such a way that every intermediate allocation is also fair?
Applications of this reachability problem include a company
that wishes to redistribute some of its employees between its
teams or a museum that plans to reallocate certain exhibits
among its branches. We derived results on the feasibility
and complexity of this task for different valuation classes and
numbers of agents [Igarashi et al., 2024].

House Allocation. In the house allocation problem, each
agent is required to receive exactly one item; in particular,
the number of items is at least the number of agents and some
items may be left unallocated. Our works were among the
first to inspect fairness considerations for this problem [Gan
et al., 2019; Kamiyama et al., 2021; Choo et al., 2024].

Graphical Cake Cutting. The cake in the cake-cutting lit-
erature is typically represented by an interval. However,
this representation is insufficient when dividing complex re-
sources such as road networks. In light of this, we introduced
a more general model of graphical cake cutting, where the
cake corresponds to the edges of an arbitrary graph. We in-
vestigated the existence and computation of approximately
fair allocations when the fairness notion is proportionality
[Bei and Suksompong, 2021], MMS [Elkind et al., 2021],
and envy-freeness [Yuen and Suksompong, 2023].

3 Voting
Voting is a cornerstone of social choice theory, with tradi-
tional models assuming ranked ballots submitted by voters
[Zwicker, 2016]. Nevertheless, practical applications often
feature a range of alternative input and output formats.

3.1 Budget Aggregation
A natural voting setting that has received little attention until
recently is the aggregation and coordination of budget.

When the budget is not owned by the agents, this problem
is also known as portioning. Formally, each agent submits a
preference on how she prefers a central budget to be divided
among a set of alternatives—e.g., time for different activities
at a conference or money for various government initiatives—
and the goal is to aggregate these preferences into the actual
division. Under the assumption that an agent’s preference



depends linearly on the distance between her ideal distribu-
tion and the actual distribution, we analyzed common aggre-
gation rules with respect to desirable axioms [Elkind et al.,
2023b]. We found that a simple rule that takes the average of
the agents’ preferences performs well in relation to these ax-
ioms. In addition, while any two of three properties capturing
efficiency, strategyproofness, and fairness can be satisfied, we
showed in another paper that no rule can fulfill all three simul-
taneously [Brandt et al., 2024]. We also proposed a different
valuation model, motivated by representation considerations,
under which the three properties are satisfiable together.

On the other hand, when the budget is owned by the agents,
the problem is sometimes referred to as donor coordination.
Under two well-known valuation models from the economics
literature, we demonstrated that the Nash product rule, which
selects an allocation that maximizes the product of the agents’
values, satisfies strong incentive and efficiency properties
[Brandl et al., 2022; Brandt et al., 2023]. In light of the sub-
stantial volume of contributions made to donation programs
around the world every year, these findings have the potential
to help vastly improve the effectiveness of the donations.

3.2 Cake Sharing
Consider a scenario where a group of agents need to decide
the time periods to reserve a sports facility or a conference
room for their joint usage. Given their limited budget, they
can only reserve the facility for a certain amount of time, so
they need to aggregate their preferences in order to make this
decision. To capture such scenarios, we introduced the model
of cake sharing as a voting analog of cake cutting, where the
cake represents a heterogeneous divisible item [Bei et al.,
2022b]. We then showed that when agents have approval
preferences—meaning that each of them either approves or
disapproves each part of the resource—there exists a rule that
is both fair and strategyproof.

In a follow-up work, we considered a more general set-
ting where the resource may consist of both divisible and in-
divisible items [Lu et al., 2024]. This serves to model, for
example, time slots for which some must be reserved as a
whole while others may be booked fractionally. Our frame-
work generalizes both cake sharing and multiwinner voting,
another well-studied variant of voting. We formulated repre-
sentation notions for this context and assessed the degree to
which important voting rules satisfy these notions.

4 Tournaments
Tournaments are frequently used in order to select among al-
ternatives whose relations are given by pairwise comparisons,
such as players or teams in sports competitions [Suksompong,
2021b]. In particular, a tournament solution is a function that
maps these relations to a subset of the alternatives. Perhaps
surprisingly, Fey [2008] showed that several common tour-
nament solutions are likely to select all alternatives in large
random tournaments, thereby limiting their usefulness as dis-
criminators. To address this issue, we introduced the con-
cept of margin of victory (MoV) for tournament solutions and
studied it from the axiomatic and computational perspectives
[Brill et al., 2022]. Furthermore, our experiments show that

MoV exhibits a significant degree of discriminatory power,
thereby enabling effective differentiation among alternatives.

A popular tournament format for organizing sports com-
petitions is that of knockout tournaments—this format is ex-
citing due to its “do-or-die” nature, with players immedi-
ately eliminated after only a single loss. Since an outcome
of a knockout tournament can depend heavily on the cho-
sen bracket, a line of work has investigated the question of
whether the tournament organizers can fix the bracket in such
a way that their favorite player wins the tournament. While
this line of work assumes that any bracket can be chosen, in
real-world tournaments there are often seed constraints. We
therefore examined the problem in the presence of seeds, and
uncovered similarities and differences in comparison to the
unseeded setting [Manurangsi and Suksompong, 2023b].

5 From Theory to Practice
Social choice theory has undoubtedly made significant strides
in recent years, leading to better methods for collective deci-
sion making. Nevertheless, work remains to be done in order
to make it more useful in practical applications. I highlight
two paths that the community can pursue toward this goal.

First, we need a broader and ideally more unified theory for
handling the diverse applications that can arise. Let me illus-
trate this with a message from my department head when we
discussed lab seat allocation in our department [Lee, 2022].

We have large labs (capacity of 50 to 100 seats) and
multiple faculty members sharing the labs. Each
faculty member prefers to fit all their students in
the same lab, and would like to have all their stu-
dents to be seated in the same region of the large
lab. If everyone fits, it may not be too difficult. It
gets tricky (and requires fair policy) if the lab is not
large enough and some students need to be seated
in other labs that may be further away. An even
harder problem is the dynamic one, where students
leave and new students arrive—maybe the policy
can include allowing faculty members to swap the
seats of their students in the dynamic case?

Although this problem contains elements that have been ex-
plored in the fair division literature—including connectivity
requirements, cardinality constraints, and the online nature—
the current literature does not offer a readily applicable solu-
tion to their combination, thereby restricting its practicality.

Second, rather than limiting the solutions that we develop
to research papers, we should endeavor to make their imple-
mentations publicly avaliable. My recent effort toward this
goal is reflected by Fast & Fair, an open-source platform for
fair division applications [Han and Suksompong, 2024]. Not
only does Fast & Fair provide implementations of algorithms
for practical fair division scenarios, but unlike the few exist-
ing platforms in this domain, it is also open to community
contributions. This allows other researchers and developers
to contribute code for their own applications and benefit from
our standardized graphical widgets and interfaces. I believe
that such efforts can serve to highlight the usefulness of so-
cial choice to a broader audience and, in the process, bring its
rich and captivating theory closer to practice.
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