
Tournaments in Computational Social Choice

Warut Suksompong

National University of Singapore

33rd International Joint Conference on Artificial Intelligence
August 3, 2024

Warut Suksompong (NUS) Tournaments in COMSOC August 3, 2024 1 / 57



Outline

Social choice theory
How to choose a socially desirable outcome from a set of alternatives.
Origins in mathematics, economics, and political science.
Tournaments model scenarios in which decisions are made based on
pairwise comparisons.
Sports, elections, webpage ranking, biological interactions, . . .

This tutorial
Part 1: Tournament solutions (methods for choosing winners from a
given tournament)
Part 2: Single-elimination tournaments (setting up the bracket to help
a certain player, bribery issues)
Based partially on my survey published at IJCAI 2021.
For work before 2016, see Chapters 3 and 19 in the Handbook of
Computational Social Choice [Brandt et al. ’16]

W. Suksompong. “Tournaments in computational social choice: Recent developments”, IJCAI 2021
F. Brandt, V. Conitzer, U. Endriss, J. Lang, A. D. Procaccia. “Handbook of Computational Social Choice”, 2016
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Part 1: Tournament Solutions
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Tournaments

a

b

c

de

1: a �1 b �1 c �1 e �1 d
2: d �2 c �2 a �2 b �2 e
3: e �3 d �3 b �3 c �3 a

Tournament T = (A,�), where A is the set of alternatives and � is the
dominance relation. In this example, A = {a, b, c , d , e} and a � b, b � c,
d � b, e � d , etc.
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Tournament Solutions

A tournament solution is a method for choosing the “winners” of any
tournament.

Copeland set (CO): Alternatives with the highest outdegree.

Top cycle (TC ): Alternatives that can reach every other alternative
via a directed path (which by definition has length ≤ n − 1).

Uncovered set (UC ): Alternatives that can reach every other
alternative via a directed path of length ≤ 2.
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Example

a b c d e f

All omitted edges point from right to left.

Outdegrees:

a: 0, b: 2, c : 3, d : 3, e: 3, f : 4

CO = {f }
TC = {b, c , d , e, f }
UC = {c , d , e, f }
No Condorcet winner (alternative that dominates all other
alternatives), but a Condorcet loser (a)
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Top Cycle

Equivalent definition of the top cycle:

(Unique) smallest nonempty set B of alternatives such that
all alternatives in B dominate all alternatives outside B.

T

x y
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Top Cycle

Equivalent definition of TC :

(Unique) smallest nonempty set B of alternatives such that
all alternatives in B dominate all alternatives outside B.

T

B
p q r

Proof of equivalence:

p 6∈ B cannot reach q ∈ B, so p does not belong to TC .
q ∈ B can reach p 6∈ B directly.
If q ∈ B could not reach r ∈ B, all alternatives that could reach r
would form a smaller subset in the definition of TC , contradiction.
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Uncovered Set

Covering relation: An alternative x covers another alternative y if

x dominates y .
For any z , if y dominates z , then x also dominates z .

Strong indicator that x is better than y .

Equivalent definition of UC :

The set of all uncovered alternatives.
Proof: x can reach y in ≤ 2 steps ⇐⇒ y does not cover x .

T

x y

z

CO ⊆ UC ⊆ TC always holds.
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Axioms

Condorcet-consistency: If there is a Condorcet winner x , then x is
uniquely chosen.

CO 3, TC 3, UC 3

Monotonicity: If x is chosen, then it should remain chosen when it is
strengthened against another alternative.

CO 3, TC 3, UC 3

Stability: A set is chosen from two different sets of alternatives if and
only if it is chosen from the union of these sets.

CO 7, TC 3, UC 7

Composition-consistency: It chooses the “best” alternatives from the
“best” components.

CO 7, TC 7, UC 3
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Computation

The input has size O(n2), where n = number of alternatives.

Copeland set: Compute all outdegrees in time O(n2).

Top cycle:

Find the strongly connected components of the tournament, and
output the unique one that dominates the rest.
Can be done in time O(n2) by Tarjan’s or Kosaraju’s algorithm.

Uncovered set:

Use the “can reach everything else in ≤ 2 steps” definition.
Multiply the adjacency matrix with itself to check reachability in
2 steps.
Can be done in O(n2.37) using matrix multiplication.
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Tournament Solutions

Tournament solution containment diagram [Brandt/Brill/Harrenstein ’16]
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Tournament Solutions

Banks set (BA): Alternatives that appear as the maximal element of
some maximal transitive subtournament.

Transitive tournament: The alternatives can be ordered as a1, . . . , ak
so that ai dominates aj for all i < j .

Slater set (SL): Alternatives that are maximal elements in some
transitive tournament that can be obtained by inverting as few edges
as possible.

Bipartisan set (BP): Alternatives that are chosen with nonzero
probability in the (unique) Nash equilibrium of the zero-sum game
formed by the tournament matrix.

Markov set (MC ): Alternatives that stay most often in the
“winner-stays” competition corresponding to the tournament.
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Separation Index

Can two given tournament solutions return disjoint sets of alternatives?
If so, what is the smallest tournament size for which this can happen?

Table of separation indices [Brandt/Dau/Seedig ’15]
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Separation Index

Whether BA and BP always overlap was resolved recently . . .

Brandt/Grundbacher [2023] showed that BA and BP are disjoint for
this tournament of size 36.

The separation index of BA and BP is between 11 and 36.
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Query Complexity

Unlike computational complexity, the query complexity is never higher
than Θ(n2).

However, it is Θ(n2) for several tournament solutions [Maiti/Dey ’24]

For CO, the algorithm may need to query all edges.

Idea: Consider when all alternatives have the same outdegree.

Proof for TC : Consider two sets A,B with 2k + 1 alternatives each.

A B

In each set, every alternative can reach every other alternative.
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Query Complexity

Proof for TC : Consider two sets A,B with 2k + 1 alternatives each.

A B

If a query is within A or B, answer as in the figure.

Else, answer that a ∈ A dominates b ∈ B.

Claim: All edges between A and B must be queried.

If all a ∈ A dominate all b ∈ B, then TC ⊆ A.
If at least one b ∈ B dominates at least one a ∈ A, then TC 6⊆ A.

A similar idea works for UC .

If TC is small, all of these tournament solutions can be computed
with fewer queries.
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Query Complexity

Bonus: What about deciding whether there is a Condorcet winner?

The query complexity is exactly 2n − blog2 nc − 2.
[Balasubramanian/Raman/Srinivasaragavan ’97, Procaccia ’08]

Algorithm:
Stage 1: Let alternatives compete in a balanced single-elimination
tournament. Suppose the winner is x .
Stage 2: Let x compete against the alternatives that it has not
competed against in Stage 1. Output Yes if x beats all of them.

1 2 3 4 5 6 7 8

2 3 6 8

3 8

3
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Random Tournaments

Several tournament solutions, including TC and UC , tend to select
all alternatives in large random tournaments.

Consider the uniform random model, where each edge is oriented in
either direction with probability 1/2, independently of other edges.

Proof for UC (which implies one for TC ):

The probability that x cannot reach y in two steps ≤ (3/4)n−2

x y

z

By union bound over all pairs of alternatives, the probability that
there exists such a pair x , y is at most n2 · (3/4)n−2 → 0 as n→∞
When no such pair exists, UC is the set of all alternatives.
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Condorcet Random Model

Condorcet random model:

There exists an underlying linear order of players.
In general, a stronger player wins against a weaker player, but the
weaker player upsets the stronger player with uniform probability
p ≤ 1/2.

The uniform random model corresponds to the case p = 1/2.

 Luczak/Ruciński/Gruszka [1996] showed that the top cycle selects all
alternatives with high probability when p = ω(1/n), and this is tight.

The Condorcet random model is still rather unrealistic for two
important reasons.

In tournaments in the real world, the orientations of different edges are
typically determined by different probabilities.
Not all probabilities of the orientation of the edges necessarily respect
the ordering: “bogey teams”.
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Generalized Random Model

Generalized random model:

The orientation of each edge is determined by probabilities within the
range [p, 1− p] for some parameter p, independently of other edges.
These probabilities are allowed to vary across edges.

Question: What is the least p such that the tournament solution
selects all alternatives with high probability?

For TC we need p ∈ ω(1/n), while for UC we only need
p ∈ Ω(

√
log n/n) [Saile/S. ’20]

k-kings: Alternatives that can reach every other alternative via a
directed path of length ≤ k.

2-kings (uncovered set) ⊆ 3-kings ⊆ · · · ⊆ (n − 1)-kings (top cycle)
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Generalized Random Model

We determine how the probability threshold changes as we move from
2-kings to (n − 1)-kings [Manurangsi/S. ’22]

k-kings Threshold p

k = 2 Ω(
√

log n/n)

3 ≤ k ≤ 4 Ω(log n/n)

k = 5 Ω(log log n/n)

6 ≤ k ≤ n − 2 ω(1/n)

k = n − 1 ω(1/n)

The case 6 ≤ k ≤ n− 2 strengthens the previous result for k = n− 1.

All bounds are asymptotically tight, except for k = 5, where the gap
is between Ω(log log n/n) and ω(1/n).

ω(1/n) is tight for the Condorcet random model.
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Generalized Random Model

We determine how the probability threshold changes as we move from
2-kings to (n − 1)-kings [Manurangsi/S. ’22]

k-kings Threshold p

k = 2 Ω(
√

log n/n)

3 ≤ k ≤ 4 Ω(log n/n)

k = 5 Ω(log log n/n)

6 ≤ k ≤ n − 2 ω(1/n)

k = n − 1 ω(1/n)

The uncovered set is clearly more selective than k-kings for k ≥ 3.

3-kings and 4-kings are slightly more selective than higher-order kings.

There is virtually no difference from k = 5 all the way to k = n − 1.

Warut Suksompong (NUS) Tournaments in COMSOC August 3, 2024 23 / 57



Margin of Victory

How can we differentiate between the winning alternatives?

Brill/Schmidt-Kraepelin/S. [2020] proposed using the margin of
victory (MoV).

Similar concepts have been applied in voting, sports modeling,
political districting, etc.

MoV(x) = minimum number of edges that need to be reversed
so that x drops out of the winner set.

Can also define a weighted version with weighted edges.
The weights may represent the amount of bribe needed to change
the match outcomes.

The MoV of CO, TC , UC can be computed in polynomial time.
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Margin of Victory

Theorem [Brill/Schmidt-Kraepelin/S. ’20]

The MoV for CO, TC , UC can be as high as bn/2c, but no higher.

Upper bound: MoV(x) ≤ bn/2c
Take y 6= x with the highest outdegree.
y has outdegree at least

⌊
n−1

2

⌋
Can make y a Condorcet winner using (n − 1)−

⌊
n−1

2

⌋
= bn/2c

reversals.

Lower bound: Possible that MoV(x) ≥ bn/2c
Since CO ⊆ UC ⊆ TC , suffices to prove for CO.
Suppose x is a Condorcet winner (outdegree n − 1), while the
maximum outdegree of y 6= x is

⌊
n−1

2

⌋
Each reversal decreases outdeg(x)− outdeg(y) by ≤ 1 (except
the reversal between x and y , which decreases the difference by 2)

Warut Suksompong (NUS) Tournaments in COMSOC August 3, 2024 25 / 57



Margin of Victory

Brill et al. [2021] conducted an axiomatic analysis of the MoV.

Cover-consistency: x covers y ⇒ MoV(x) ≥ MoV(y)

CO 3, TC 3, UC 3
MoV is typically aligned with the covering relation.

Degree-consistency: outdeg(x) > outdeg(y) ⇒ MoV(x) ≥ MoV(y)

CO 3, TC 3, UC 7

Strong deg.-cons.: outdeg(x) ≥ outdeg(y) ⇒ MoV(x) ≥ MoV(y)

CO 7, TC 3, UC 7

MoV often provides information beyond simply the outdegrees.
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Margin of Victory

Does MoV really distinguish among winners?

Brill et al. [2021] ran experiments to answer this question.

On average, the number of alternatives with maximum MoV is
a small fraction of the winners. 3
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Randomized Tournament Solutions

Randomized tournament solution: Returns a probability distribution
over the alternatives

Condorcet-consistency: A Condorcet winner should receive
probability 1

k-strongly-non-manipulable-α: No group of size k can increase their
combined probability by more than α
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Randomized Tournament Solutions

Observation: No Condorcet-consistent randomized tournament
solution can be 2-SNM-α for any α < 1/3.

a

b c

For any randomized tournament solution, some pair of players receive
a combined probability of at most 2/3.

This pair of players can reverse their match outcome and increase
their probability to 1.
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Randomized Tournament Solutions

Theorem [Schneider/Schvartzman/Weinberg ’17]

A uniformly random SE bracket is 2-SNM-1/3.

Coupling argument: For a bracket where a pair of players could gain
by manipulating, tie it with two other brackets with no manipulation
potential for this pair

Many other rules are 2-SNM-1/2 or worse!

Randomized King-of-the-Hill:

If there is a Condorcet winner, declare it as the winner.
Else, select a player uniformly at random, and remove it along with all
players that it beats. Repeat the previous step.

Theorem [Schvartzman/Weinberg/Zlatin/Zuo ’20]

Randomized King-of-the-Hill is 2-SNM-1/3 and cover-consistent.
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Randomized Tournament Solutions

Schvartzman/Weinberg/Zlatin/Zuo (2020):

Assume Condorcet-consistency
There exists a rule that is k-SNM-2/3 for all k 3
No rule can be k-SNM-1/2 for large enough k 7

Ding/Weinberg (2021):

Outcomes of matches are randomized
Randomized Death Match: Pick two uniformly random players,
eliminate the loser, and repeat
This rule and Random SE Bracket perform optimally for 2-SNM

Dinev/Weinberg (2022):

RDM is 3-SNM-31/60, and this is tight for this rule

Dale/Fielding/Ramakrishnan/Sathyanarayanan/Weinberg (2022):

Multiple prizes according to full ranking
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Part 2: Single-Elimination Tournaments
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Single-Elimination Tournaments

An alternative is said to be a single-elimination winner if it wins
a balanced single-elimination tournament under some bracket.
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Single-Elimination Tournaments

a b c d e f g h

b c f h

c h

c
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Tournament Fixing Problem

The winner of a given SE tournament can depend significantly on the
initial bracket!

The Tournament Fixing Problem (TFP): Given

A set of players

Information for each pair of players (x , y) about whether x or y
would win in a head-to-head matchup (“tournament graph”)

A player of interest v

Does there exist a bracket such that v wins the tournament?
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Complexity

Theorem [Aziz/Gaspers/Mackenzie/Mattei/Stursberg/Walsh ’18]

TFP is NP-complete.

Kim/Vassilevska Williams [2015]: The problem remains NP-complete
even when the player of interest v is a king that beats n/4 other
players in the tournament graph.

A king is a player who can reach any other player via at most
2 edges in the tournament graph.
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Algorithms

Theorem [Kim/Vassilevska Williams ’15]

TFP can be solved in time O(2npoly(n)).

In fact, the algorithm can also count the number of brackets under
which v wins the tournament.

Idea:
Consider all possible ways of partitioning the set of players S into
two subsets T and S \ T of equal size such that v ∈ T .
Iterate over all players w ∈ S \ T beaten by v .
Compute the number of winning brackets of v in T and w in S \ T .
Use a fast subset convolution subroutine of Björklund/Husfeldt/
Kaski/Koivisto [2007].
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Algorithms

Players can be partitioned into a constant number of types:
Polynomial-time solvable [Aziz et al. ’18]

Let k be the size of a smallest feedback arc set (a set of edges whose
removal leaves the tournament acyclic)

Aziz et al. [2018]: nO(k) via dynamic programming

Ramanujan/Szeider [2017]: Fixed-parameter tractable (FPT)

algorithm running in time 2O(k2 log k)nO(1)

Translate TFP into an algebraic system of equations and feeding it into
an integer linear programming (ILP) solver

Gupta et al. [2018]: 2O(k log k)nO(1) via combinatorial algorithm

Zehavi [2023]: Same running time for feedback vertex set

Open direction: Other parameters, e.g., directed treewidth?
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Tournament Value Maximization

What if the organizers want to maximize the profit/popularity of the
tournament?

Tournament Value Maximization problem: Given

A set of players
Information for each pair of players (x , y) about whether x or y
would win in a head-to-head matchup (“tournament graph”), and their
value if they meet in a certain round

Find a bracket that maximizes the sum of values across all matches.

The values are round-oblivious if the value of every pair is
independent of the round in which they meet.
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Tournament Value Maximization

This problem was studied by Chaudhary/Molter/Zehavi [2024]

The problem is NP-hard (and APX-hard) when

All values are in {0, 1}
There are 3 distinct values and the values are round-oblivious

1/ log n approximation based on maximum-weight matching

If the total value of a tournament can be determined by the number
of wins of each player, there exists an nO(log n) algorithm.

If players can be classified as “popular” or “unpopular”, and the value
of each match equals the popularity of the winning player, there is a
linear-time greedy algorithm.
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Structural Results

Let v be a king.
Suppose v beats A and loses to B.

j
�� ���� ��
�

��+
�
�/ ?
S
Sw
Q
QQs

�
��+ ?

Q
QQs?

Q
QQs

PPPPPPq?
�

��+

������)

v

A

B

Theorem (King who beats half the players) [Vassilevska Williams ’10]

If |A| ≥ n/2, then v is a SE winner.

Theorem (Superking) [Vassilevska Williams ’10]

If every player in B loses to at least log2 n players from A, then v is
a SE winner.p
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Structural Results

Let v be a king.
Suppose v beats A and loses to B.

j
�� ���� ��
�

��+
�
�/ ?
S
Sw
Q
QQs

�
��+ ?

Q
QQs?

Q
QQs

PPPPPPq?
�

��+

������)

v

A

BH I J

Theorem [Kim/S./Vassilevska Williams ’17]

Suppose that B is a disjoint union of three sets H, I , J such that

1 |H| < |A|
2 Each player in I loses to at least log2 n players in A.

3 outdeg(j) ≤ |A| for all j ∈ J.

Then v is a SE winner.p

Superking: H = J = ∅, King who beats n/2: I = J = ∅
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Structural Results

Let v be a king.
Suppose v beats A and loses to B.

j
�� ���� ��
�

��+
�
�/ ?
S
Sw
Q
QQs

�
��+ ?

Q
QQs?

Q
QQs

PPPPPPq?
�

��+

������)

v

A

BH I J

Theorem [Kim/S./Vassilevska Williams ’17]

Suppose that B is a disjoint union of three sets H, I , J such that

1 |H| < |A|
2 Each player in I loses to at least log2 n players in A.

3 outdeg(j) ≤ |A| for all j ∈ J.

Then v is a SE winner.p

Idea: Match players to maintain all invariants, and apply induction
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Structural Results

3-king: A player who can reach any other player via at most 3 edges in the
tournament graph.
abcde j

�� ���� ���� ��

�
��+
�
�/ ?
S
Sw
Q
QQs

�
��+ ?

Q
QQs

�
��+ ?

Q
QQs

?
Q
QQs

PPPPPPq?
�
��+

������)

?
Q
QQs

PPPPPPq?
�
��+

������)

v

A

B

C

A 3-king might not be a SE winner even if it beats n − 3 players!
[Kim/Vassilevska Williams ’15]
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Structural Results

Sufficient conditions for a 3-king to win a SE tournament.

Kim/Vassilevska Williams [2015]:
1 |A| ≥ n/3
2 Each b ∈ B beats no more players than v does
3 There is a perfect matching from B onto C (in particular, |B| ≥ |C |)

Kim/S./Vassilevska Williams [2017]:
1 |A| ≥ n/2
2 Every a ∈ A beats every b ∈ B
3 |B| ≥ |C |

Any two of these three conditions are insufficient.

Open direction: To what extent can we weaken these conditions?
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Bribery

Bribery-TFP (BTFP): The organizers are allowed to bribe up to
b players to lose a match they would otherwise win.

If b = 0, BTFP reduces to TFP, which is NP-hard.
If b = log2 n, the tournament can be trivially rigged.

Theorem [Kim/Vassilevska Williams ’15]

For any constant ε > 0, BTFP is NP-hard when b ≤ (1− ε) log2 n.

Gupta/Saurabh/Sridharan/Zehavi [2019]:

Algorithm running in time 2O(k2 log k)nO(1), where k = size of a smallest
feedback arc set
Obfuscation operations which can take in one bribery solution and
output another solution in polynomial time

Russell/Walsh [2009], Mattei/Goldsmith/Klapper/Mundhenk [2015]:

Bracket given in advance, but bribery is allowed
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Probabilistic Approaches

Players have varying strengths, so not all tournament graphs are
equally likely to occur.

Condorcet random model:

There exists an underlying linear order of players.
In general, a stronger player beats a weaker player, but the weaker
player upsets the stronger player with probability p ≤ 1/2.

x1 x2

x3 x4

0.8

0.8

0.8

0.8

0.8

0.8
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Probabilistic Approaches

Observation: If p ∈ o(log n/n), the weakest player is expected to win
o(log n) matches, which is insufficient to be a SE winner.

If p ∈ Ω(
√

log n/n), with high probability, every player can win under
some bracket [Vassilevska Williams ’10]

In fact, p ∈ Θ(log n/n) is the sharp threshold! [Kim/S./Vassilevska
Williams ’17]

With bribery, for any p, it suffices to bribe the top O(log n) players in
the linear ordering to make any player win [Konicki/Vassilevska
Williams ’19]
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Probabilistic Approaches

Generalized random model: For each pair i , j , player i beats player j
with probability pi ,j , independently of other pairs

No linear ordering of players!

x1 x2

x3 x4

0.6

0.7

0.8

0.2

0.5

0.35

Theorem [Manurangsi/S. ’22]

If pi ,j ∈ Ω(log n/n) for all i , j , then with high probability, every player can
win a SE tournament under some bracket. p
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Probabilistic Approaches

Probabilistic TFP (PTFP): Player i beats player j with probability qi ,j .

The bracket must be chosen before this uncertainty is resolved.

Theorem [Chatterjee/Ibsen-Jensen/Tkadlec ’16]

There exists a deterministic tournament graph such that:

For one winning bracket of a player, the winning probability can drop
by Θ(εn) through ε-perturbations.

For another winning bracket of this player, the drop is only Θ(ε log n).

The robustness can vary significantly across brackets!

Open question: Suppose that the probability matrix is monotonic,
i.e., qi ,j ≥ qi ,j−1 for all i ≤ j − 2. What is the complexity of PTFP?

If bribery is allowed, it is NP-hard [Konicki/Vassilevska Williams ’19]
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Seeded Setting

Results on TFP so far assume that any bracket can be chosen.

Many real-world tournaments assign seeds to players to prevent
top players from meeting too early.

For example, in ATP tennis tournaments with 32 players:

8 players are assigned seeds 1, 2, . . . , 8.
The top 2 seeds cannot meet until the final.
The top 4 seeds cannot meet until the semifinals.
The top 8 seeds cannot meet until the quarterfinals.

Let n = number of players, s = number of seeds
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Seeded Setting

Theorem [Manurangsi/S. ’23]

For any n ≥ 4 and any s, a king who beats n − 2 players may not be able
to win a SE tournament.q

Proof: Let x be our desired winner, and y and z be the top two seeds.

A

x

y

z

Only y can beat z , so z makes the final in every bracket.

Even if x makes the final, x will lose to z .
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Seeded Setting

Superking: A king x such that for any y who beats x , there exist
at least log2 n players who lose to x but beat y .

Superkings can win a knockout tournament [Vassilevska Williams ’10]

This remains true if s = 2, but not if s ≥ 4 [Manurangsi/S. ’23]

Ultraking: A king x such that for any y who beats x , there exist
at least n/2 players who lose to x but beat y .

Theorem [Manurangsi/S. ’23]

For any s, an ultraking can win a knockout tournament.

This result would no longer hold if we replace n/2 by n/2− 1 in
the ultraking definition.
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SE winners & Tournament Solutions

The set of SE winners can also be viewed as a tournament solution.

Theorem [Kim/S./Vassilevska Williams ’17]

Every player in the Copeland set is a SE winner.

Proof: Since CO ⊆ UC , any player in CO is a king who beats
at least n/2 other players.

Theorem [Kim/S./Vassilevska Williams ’17]

For any 0 < r < 1, there exists a tournament such that

1 the proportion of kings who are SE winners is less than r , and

2 the proportion of SE winners who are kings is also less than r .

Kings and SE winners are largely disjoint!
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SE winners & Tournament Solutions

Theorem [Kim/S./Vassilevska Williams ’17]

For any 0 < r < 1, there exists a tournament such that

1 the proportion of kings who are SE winners is less than r , and

2 the proportion of SE winners who are kings is also less than r .

A B

x y

The set of kings is A ∪ {x , y}.
If |B| � |A| and the players in B are of roughly equal strength, then
all players in B are SE winners while none of the players in A is.
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SE winners & Tournament Solutions

A SE winner may have a low Copeland score (= outdegree).

Theorem [Hulett ’19]

There exists a tournament graph such that the SE winner according to a
uniformly random bracket has Copeland score n · 2−Θ(

√
log n).

n · 2−Θ(
√

log n) is lower than, say, Θ(n/ log n).

Choosing a uniformly random alternative already yields Copeland
score (n − 1)/2.

As an indicator of strength, the ability to win a SE tournament does
not necessarily align with the Copeland score.
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Future Directions

Study other tournament formats

Double-elimination [Stanton/Vassilevska Williams ’13, Aziz et al. ’18]
Round-robin
Stepladder/challenge-the-champ [Mattei/Goldsmith/Klapper/
Mundhenk ’15, Yang/Dimitrov ’21, Chaudhary/Molter/Zehavi ’24]
Swiss-system [Führlich/Cseh/Lenzner ’24]
Multi-stage tournaments
Promotion/relegation features

Perform empirical studies on real-world tournaments, e.g., using data
from sports competitions [Russell/van Beek ’11, Mattei/Walsh ’16]

Examine the effects of the tournament structure on fairness
[Ryvkin/Ortmann ’08, S. ’16, Arlegi/Dimitrov ’20]
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Let’s make tournaments great again!
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