Tournaments in Computational Social Choice

Warut Suksompong

National University of Singapore

33rd International Joint Conference on Artificial Intelligence August 3, 2024

Warut Suksompong (NUS)

Outline

• Social choice theory

- How to choose a socially desirable outcome from a set of alternatives.
- Origins in mathematics, economics, and political science.
- Tournaments model scenarios in which decisions are made based on pairwise comparisons.
- Sports, elections, webpage ranking, biological interactions, ...

This tutorial

- Part 1: Tournament solutions (methods for choosing winners from a given tournament)
- Part 2: Single-elimination tournaments (setting up the bracket to help a certain player, bribery issues)
- Based partially on my survey published at IJCAI 2021.
- For work before 2016, see Chapters 3 and 19 in the Handbook of Computational Social Choice [Brandt et al. '16]

W. Suksompong. "Tournaments in computational social choice: Recent developments", IJCAI 2021 F. Brandt, V. Conitzer, U. Endriss, J. Lang, A. D. Procaccia. "Handbook of Computational Social Choice", 2016

Part 1: Tournament Solutions

Tournaments

1:
$$a \succ_1 b \succ_1 c \succ_1 e \succ_1 d$$

2: $d \succ_2 c \succ_2 a \succ_2 b \succ_2 e$
3: $e \succ_3 d \succ_3 b \succ_3 c \succ_3 a$

Tournament $T = (A, \succ)$, where A is the set of alternatives and \succ is the dominance relation. In this example, $A = \{a, b, c, d, e\}$ and $a \succ b$, $b \succ c$, $d \succ b$, $e \succ d$, etc.

Tournament Solutions

- A tournament solution is a method for choosing the "winners" of any tournament.
- Copeland set (CO): Alternatives with the highest outdegree.
- Top cycle (*TC*): Alternatives that can reach every other alternative via a directed path (which by definition has length $\leq n 1$).
- Uncovered set (UC): Alternatives that can reach every other alternative via a directed path of length ≤ 2.

Example

All omitted edges point from right to left.

- Outdegrees:
 - a: 0, b: 2, c: 3, d: 3, e: 3, f: 4
- $CO = \{f\}$
- *TC* = {*b*, *c*, *d*, *e*, *f*}
- $UC = \{c, d, e, f\}$
- No Condorcet winner (alternative that dominates all other alternatives), but a Condorcet loser (a)

Tournaments in COMSOC

Top Cycle

• Equivalent definition of the top cycle:

• (Unique) smallest nonempty set *B* of alternatives such that all alternatives in *B* dominate all alternatives outside *B*.

Top Cycle

- Equivalent definition of TC:
 - (Unique) smallest nonempty set *B* of alternatives such that all alternatives in *B* dominate all alternatives outside *B*.

Proof of equivalence:

- $p \notin B$ cannot reach $q \in B$, so p does not belong to TC.
- $q \in B$ can reach $p \notin B$ directly.
- If q ∈ B could not reach r ∈ B, all alternatives that could reach r would form a smaller subset in the definition of TC, contradiction.

Uncovered Set

- Covering relation: An alternative x covers another alternative y if
 - x dominates y.
 - For any z, if y dominates z, then x also dominates z.
- Strong indicator that x is better than y.
- Equivalent definition of UC:
 - The set of all uncovered alternatives.
 - **Proof:** x can reach y in ≤ 2 steps \iff y does not cover x.

• $CO \subseteq UC \subseteq TC$ always holds.

Axioms

- Condorcet-consistency: If there is a Condorcet winner x, then x is uniquely chosen.
 - CO ✓, TC ✓, UC ✓
- Monotonicity: If x is chosen, then it should remain chosen when it is strengthened against another alternative.
 - CO ✓, TC ✓, UC ✓
- Stability: A set is chosen from two different sets of alternatives if and only if it is chosen from the union of these sets.
 - CO ✗, TC ✓, UC ✗
- Composition-consistency: It chooses the "best" alternatives from the "best" components.
 - CO ✗, TC ✗, UC ✓

Computation

- The input has size $O(n^2)$, where n = number of alternatives.
- Copeland set: Compute all outdegrees in time $O(n^2)$.
- Top cycle:
 - Find the strongly connected components of the tournament, and output the unique one that dominates the rest.
 - Can be done in time $O(n^2)$ by Tarjan's or Kosaraju's algorithm.
- Uncovered set:
 - Use the "can reach everything else in \leq 2 steps" definition.
 - Multiply the adjacency matrix with itself to check reachability in 2 steps.
 - Can be done in $O(n^{2.37})$ using matrix multiplication.

Tournament Solutions

Tournament solution containment diagram [Brandt/Brill/Harrenstein '16]

Warut Suksompong (NUS)

Tournaments in COMSOC

Tournament Solutions

- Banks set (*BA*): Alternatives that appear as the maximal element of some maximal transitive subtournament.
 - Transitive tournament: The alternatives can be ordered as a_1, \ldots, a_k so that a_i dominates a_j for all i < j.
- Slater set (*SL*): Alternatives that are maximal elements in some transitive tournament that can be obtained by inverting as few edges as possible.
- Bipartisan set (*BP*): Alternatives that are chosen with nonzero probability in the (unique) Nash equilibrium of the zero-sum game formed by the tournament matrix.
- Markov set (*MC*): Alternatives that stay most often in the "winner-stays" competition corresponding to the tournament.

Separation Index

Can two given tournament solutions return disjoint sets of alternatives? If so, what is the smallest tournament size for which this can happen?

$s \setminus d$	TC	UC	UC^{∞}	MC	BP	$T^{*}C$	BA	ME	TEQ	CO	SL	MA	KW
TC	-	4 (Fig. 1)	4 (Fig. 1)	4 (Fig. 1)	4 (Fig. 1)	4 (Fig. 1)	4 (Fig. 1)	4 (Fig. 1)	4 (Fig. 1)	4 (Fig. 1)	4 (Fig. 1)	4 (Fig. 1)	4 (Fig. 1)
UC	∞	_	5 (Fig. 2)	5 (Fig. 2)	5 (Fig. 2)	5 (Fig. 2)	7 ^a (Fig. 3)	5 (Fig. 2)	5 (Fig. 2)	4 (Fig. 1)	4 (Fig. 1)	4 (Fig. 1)	4 (Fig. 1)
UC^{∞}	∞	∞	_	6	6	6	5 (Fig. 2)	6	6	4 (Fig. 1)	4 (Fig. 1)	4 (Fig. 1)	4 (Fig. 1)
MC	∞	∞	∞	_	6 ^b	6	5 (Fig. 2)	8 (Fig. 5)	8° (Fig. 5)	4 (Fig. 1)	4 (Fig. 1)	4 (Fig. 1)	4 (Fig. 1)
BP	∞	∞	∞	∞	_	6	5 (Fig. 2)	6	6 ^b	4 (Fig. 1)	4 (Fig. 1)	4 (Fig. 1)	4 (Fig. 1)
$T^{*}C$	∞	$[11,\infty]$	$[11,\infty]$	$[11,\infty]$	$[11,\infty]$	_	5 (Fig. 2)	6	6	4 (Fig. 1)	4 (Fig. 1)	4 (Fig. 1)	4 (Fig. 1)
BA	∞	∞	∞	∞	$[11,\infty]$	$[11,\infty]$	-	5 (Fig. 2)	5 (Fig. 2)	4 (Fig. 1)	4 (Fig. 1)	4 (Fig. 1)	4 (Fig. 1)
ME	∞	∞	$(\operatorname{Prop.}^{\infty} 1)$	(Prop. 1)	$\left[11,\infty \right]$	$\left[11,\infty \right]$	∞ (Prop. 1)	_	8 ^d (Fig. 5)	4 (Fig. 1)	4 (Fig. 1)	4 (Fig. 1)	4 (Fig. 1)
TEQ	∞	∞	∞	$[11,\infty]$	$[11,\infty]$	(Prop. 1)	∞	$[11,\infty]$	-	4 (Fig. 1)	4 (Fig. 1)	4 (Fig. 1)	4 (Fig. 1)
CO	∞	∞	8 (Fig. 6)	8 (Fig. 6)	8 (Fig. 6)	8 (Fig. 6)	13° (Fig. 3)	8 (Fig. 6)	8 (Fig. 6)	-	4 (Fig. 1)	4 (Fig. 1)	4 (Fig. 1)
SL	∞	∞	8^{b}	8 ^b	8 ^b	8	$[11,14]^{\rm f}$	8	8 ^b	6 ^g	_	5	5
MA	∞	∞	8 (Fig. 6)	8 (Fig. 6)	8 (Fig. 6)	8 (Fig. 6)	[11, 15] (Fig. 3)	8 (Fig. 6)	8 (Fig. 6)	8	6	_	6
KW	∞	∞	8	8	8	8	[11, 16] (Fig. 3)	8	8	7	6	7	_

Table of separation indices [Brandt/Dau/Seedig '15]

Warut Suksompong (NUS)

Tournaments in COMSOC

Separation Index

Whether BA and BP always overlap was resolved recently ...

- Brandt/Grundbacher [2023] showed that *BA* and *BP* are disjoint for this tournament of size 36.
- The separation index of *BA* and *BP* is between 11 and 36.

Tournaments in COMSOC

Query Complexity

- Unlike computational complexity, the query complexity is never higher than Θ(n²).
- However, it is $\Theta(n^2)$ for several tournament solutions [Maiti/Dey '24]
- For CO, the algorithm may need to query all edges.
 - Idea: Consider when all alternatives have the same outdegree.
- Proof for *TC*: Consider two sets A, B with 2k + 1 alternatives each.

• In each set, every alternative can reach every other alternative.

Query Complexity

• Proof for *TC*: Consider two sets A, B with 2k + 1 alternatives each.

- If a query is within A or B, answer as in the figure.
- Else, answer that $a \in A$ dominates $b \in B$.
- Claim: All edges between A and B must be queried.
 - If all $a \in A$ dominate all $b \in B$, then $TC \subseteq A$.
 - If at least one $b \in B$ dominates at least one $a \in A$, then $TC \not\subseteq A$.
- A similar idea works for UC.
- If *TC* is small, all of these tournament solutions can be computed with fewer queries.

Warut Suksompong (NUS)

Query Complexity

- Bonus: What about deciding whether there is a Condorcet winner?
- The query complexity is exactly 2n [log₂ n] 2.
 [Balasubramanian/Raman/Srinivasaragavan '97, Procaccia '08]
- Algorithm:
 - Stage 1: Let alternatives compete in a balanced single-elimination tournament. Suppose the winner is *x*.
 - Stage 2: Let x compete against the alternatives that it has not competed against in Stage 1. Output Yes if x beats all of them.

Random Tournaments

- Several tournament solutions, including *TC* and *UC*, tend to select all alternatives in large random tournaments.
- Consider the uniform random model, where each edge is oriented in either direction with probability 1/2, independently of other edges.
- **Proof for** UC (which implies one for TC):
 - The probability that x cannot reach y in two steps $\leq (3/4)^{n-2}$

- By union bound over all pairs of alternatives, the probability that there exists such a pair x, y is at most $n^2 \cdot (3/4)^{n-2} \to 0$ as $n \to \infty$
- When no such pair exists, UC is the set of all alternatives.

Condorcet Random Model

- Condorcet random model:
 - There exists an underlying linear order of players.
 - In general, a stronger player wins against a weaker player, but the weaker player upsets the stronger player with uniform probability $p \le 1/2$.
- The uniform random model corresponds to the case p = 1/2.
- Łuczak/Ruciński/Gruszka [1996] showed that the top cycle selects all alternatives with high probability when $p = \omega(1/n)$, and this is tight.
- The Condorcet random model is still rather <u>unrealistic</u> for two important reasons.
 - In tournaments in the real world, the orientations of different edges are typically determined by different probabilities.
 - Not all probabilities of the orientation of the edges necessarily respect the ordering: "bogey teams".

Generalized Random Model

• Generalized random model:

- The orientation of each edge is determined by probabilities within the range [p, 1 p] for some parameter p, independently of other edges.
- These probabilities are allowed to vary across edges.
- **Question:** What is the least *p* such that the tournament solution selects all alternatives with high probability?
- For *TC* we need $p \in \omega(1/n)$, while for *UC* we only need $p \in \Omega(\sqrt{\log n/n})$ [Saile/S. '20]
- k-kings: Alternatives that can reach every other alternative via a directed path of length ≤ k.
- 2-kings (uncovered set) \subseteq 3-kings $\subseteq \cdots \subseteq (n-1)$ -kings (top cycle)

Generalized Random Model

We determine how the probability threshold changes as we move from 2-kings to (n-1)-kings [Manurangsi/S. '22]

<i>k</i> -kings	Threshold <i>p</i>				
<i>k</i> = 2	$\Omega(\sqrt{\log n/n})$				
$3 \le k \le 4$	$\Omega(\log n/n)$				
k = 5	$\Omega(\log \log n/n)$				
$6 \le k \le n-2$	$\omega(1/n)$				
k = n - 1	$\omega(1/n)$				

• The case $6 \le k \le n-2$ strengthens the previous result for k = n-1.

- All bounds are asymptotically tight, except for k = 5, where the gap is between Ω(log log n/n) and ω(1/n).
 - $\omega(1/n)$ is tight for the Condorcet random model.

Generalized Random Model

We determine how the probability threshold changes as we move from 2-kings to (n-1)-kings [Manurangsi/S. '22]

<i>k</i> -kings	Threshold <i>p</i>
<i>k</i> = 2	$\Omega(\sqrt{\log n/n})$
$3 \le k \le 4$	$\Omega(\log n/n)$
k = 5	$\Omega(\log \log n/n)$
$6 \le k \le n-2$	$\omega(1/n)$
k = n - 1	$\omega(1/n)$

- The uncovered set is clearly more selective than k-kings for $k \ge 3$.
- 3-kings and 4-kings are slightly more selective than higher-order kings.
- There is virtually no difference from k = 5 all the way to k = n 1.

- How can we differentiate between the winning alternatives?
- Brill/Schmidt-Kraepelin/S. [2020] proposed using the margin of victory (MoV).
 - Similar concepts have been applied in voting, sports modeling, political districting, etc.
- MoV(x) = minimum number of edges that need to be reversed so that x drops out of the winner set.
 - Can also define a weighted version with weighted edges.
 - The weights may represent the amount of bribe needed to change the match outcomes.
- The MoV of CO, TC, UC can be computed in polynomial time.

Theorem [Brill/Schmidt-Kraepelin/S. '20] The MoV for *CO*, *TC*, *UC* can be as high as |n/2|, but no higher.

- Upper bound: $MoV(x) \le \lfloor n/2 \rfloor$
 - Take $y \neq x$ with the highest outdegree.
 - y has outdegree at least $\left\lfloor \frac{n-1}{2} \right\rfloor$
 - Can make y a Condorcet winner using $(n-1) \lfloor \frac{n-1}{2} \rfloor = \lfloor n/2 \rfloor$ reversals.
- Lower bound: Possible that $MoV(x) \ge \lfloor n/2 \rfloor$
 - Since $CO \subseteq UC \subseteq TC$, suffices to prove for CO.
 - Suppose x is a Condorcet winner (outdegree n-1), while the maximum outdegree of $y \neq x$ is $\lfloor \frac{n-1}{2} \rfloor$
 - Each reversal decreases outdeg(x) − outdeg(y) by ≤ 1 (except the reversal between x and y, which decreases the difference by 2)

- Brill et al. [2021] conducted an axiomatic analysis of the MoV.
- Cover-consistency: x covers $y \Rightarrow MoV(x) \ge MoV(y)$
 - CO ✓, TC ✓, UC ✓
 - MoV is typically aligned with the covering relation.
- Degree-consistency: outdeg(x) > outdeg(y) ⇒ MoV(x) ≥ MoV(y)
 CO ✓, TC ✓, UC X
- Strong deg.-cons.: outdeg(x) ≥ outdeg(y) ⇒ MoV(x) ≥ MoV(y)
 CO X, TC ✓, UC X
- MoV often provides information beyond simply the outdegrees.

- Does MoV really distinguish among winners?
- Brill et al. [2021] ran experiments to answer this question.

 On average, the number of alternatives with maximum MoV is a small fraction of the winners.

Warut Suksompong (NUS)

- Randomized tournament solution: Returns a probability distribution over the alternatives
- Condorcet-consistency: A Condorcet winner should receive probability 1
- k-strongly-non-manipulable-α: No group of size k can increase their combined probability by more than α

LONDON 2012: THE SUMMER OLYMPICS

Reports: Eight Badminton Players Tossed Out Of Olympics

The Disgrace of Gijon: West Germany and Austria's match of shame at 1982 World Cup

• Observation: No Condorcet-consistent randomized tournament solution can be 2-SNM- α for any $\alpha < 1/3$.

- For any randomized tournament solution, some pair of players receive a combined probability of at most 2/3.
- This pair of players can reverse their match outcome and increase their probability to 1.

Theorem [Schneider/Schvartzman/Weinberg '17] A uniformly random SE bracket is 2-SNM-1/3.

- Coupling argument: For a bracket where a pair of players could gain by manipulating, tie it with two other brackets with no manipulation potential for this pair
- Many other rules are 2-SNM-1/2 or worse!
- Randomized King-of-the-Hill:
 - If there is a Condorcet winner, declare it as the winner.
 - Else, select a player uniformly at random, and remove it along with all players that it beats. Repeat the previous step.

Theorem [Schvartzman/Weinberg/Zlatin/Zuo '20]

Randomized King-of-the-Hill is 2-SNM-1/3 and cover-consistent.

Warut Suksompong (NUS)

Tournaments in COMSOC

- Schvartzman/Weinberg/Zlatin/Zuo (2020):
 - Assume Condorcet-consistency
 - There exists a rule that is k-SNM-2/3 for all k 🗸
 - No rule can be k-SNM-1/2 for large enough $k \times$
- Ding/Weinberg (2021):
 - Outcomes of matches are randomized
 - Randomized Death Match: Pick two uniformly random players, eliminate the loser, and repeat
 - This rule and Random SE Bracket perform optimally for 2-SNM
- Dinev/Weinberg (2022):
 - $\bullet~\text{RDM}$ is 3-SNM-31/60, and this is tight for this rule
- Dale/Fielding/Ramakrishnan/Sathyanarayanan/Weinberg (2022):
 - Multiple prizes according to full ranking

Part 2: Single-Elimination Tournaments

Single-Elimination Tournaments

• An alternative is said to be a single-elimination winner if it wins a balanced single-elimination tournament under some bracket.

Single-Elimination Tournaments

The winner of a given SE tournament can depend significantly on the initial bracket!

The Tournament Fixing Problem (TFP): Given

- A set of players
- Information for each pair of players (x, y) about whether x or y would win in a head-to-head matchup ("tournament graph")
- A player of interest v

Does there exist a bracket such that v wins the tournament?

Theorem [Aziz/Gaspers/Mackenzie/Mattei/Stursberg/Walsh '18] TFP is NP-complete.

- Kim/Vassilevska Williams [2015]: The problem remains NP-complete even when the player of interest v is a king that beats n/4 other players in the tournament graph.
- A king is a player who can reach any other player via at most 2 edges in the tournament graph.

Algorithms

Theorem [Kim/Vassilevska Williams '15] TFP can be solved in time $O(2^n poly(n))$.

• In fact, the algorithm can also count the number of brackets under which *v* wins the tournament.

• Idea:

- Consider all possible ways of partitioning the set of players S into two subsets T and S \ T of equal size such that v ∈ T.
- Iterate over all players $w \in S \setminus T$ beaten by v.
- Compute the number of winning brackets of v in T and w in $S \setminus T$.
- Use a fast subset convolution subroutine of Björklund/Husfeldt/ Kaski/Koivisto [2007].

Algorithms

- Players can be partitioned into a constant number of types: Polynomial-time solvable [Aziz et al. '18]
- Let k be the size of a smallest feedback arc set (a set of edges whose removal leaves the tournament acyclic)
- Aziz et al. [2018]: $n^{O(k)}$ via dynamic programming
- Ramanujan/Szeider [2017]: Fixed-parameter tractable (FPT) algorithm running in time $2^{O(k^2 \log k)} n^{O(1)}$
 - Translate TFP into an algebraic system of equations and feeding it into an integer linear programming (ILP) solver
- Gupta et al. [2018]: $2^{O(k \log k)} n^{O(1)}$ via combinatorial algorithm
- Zehavi [2023]: Same running time for feedback vertex set
- Open direction: Other parameters, e.g., directed treewidth?

Tournament Value Maximization

- What if the organizers want to maximize the profit/popularity of the tournament?
- Tournament Value Maximization problem: Given
 - A set of players
 - Information for each pair of players (x, y) about whether x or y would win in a head-to-head matchup ("tournament graph"), and their value if they meet in a certain round

Find a bracket that maximizes the sum of values across all matches.

• The values are round-oblivious if the value of every pair is independent of the round in which they meet.

Tournament Value Maximization

- This problem was studied by Chaudhary/Molter/Zehavi [2024]
- The problem is NP-hard (and APX-hard) when
 - All values are in $\{0,1\}$
 - There are 3 distinct values and the values are round-oblivious
- 1/log *n* approximation based on maximum-weight matching
- If the total value of a tournament can be determined by the number of wins of each player, there exists an n^{O(log n)} algorithm.
- If players can be classified as "popular" or "unpopular", and the value of each match equals the popularity of the winning player, there is a linear-time greedy algorithm.

Let v be a king. Suppose v beats A and loses to B.

Theorem (King who beats half the players) [Vassilevska Williams '10] If $|A| \ge n/2$, then v is a SE winner.

Theorem (Superking) [Vassilevska Williams '10]

If every player in B loses to at least $\log_2 n$ players from A, then v is a SE winner.

Let v be a king. Suppose v beats A and loses to B.

Theorem [Kim/S./Vassilevska Williams '17]

Suppose that B is a disjoint union of three sets H, I, J such that

- **1** |H| < |A|
- **2** Each player in *I* loses to at least $\log_2 n$ players in *A*.
- outdeg $(j) \leq |A|$ for all $j \in J$.

Then v is a SE winner.

• Superking: $H = J = \emptyset$, King who beats n/2: $I = J = \emptyset$

Let v be a king. Suppose v beats A and loses to B.

Theorem [Kim/S./Vassilevska Williams '17]

Suppose that B is a disjoint union of three sets H, I, J such that

- **1** |H| < |A|
- **2** Each player in *I* loses to at least $\log_2 n$ players in *A*.
- outdeg $(j) \leq |A|$ for all $j \in J$.

Then v is a SE winner.

• Idea: Match players to maintain all invariants, and apply induction

Structural Results

3-king: A player who can reach any other player via at most 3 edges in the tournament graph.

A 3-king might not be a SE winner even if it beats n - 3 players! [Kim/Vassilevska Williams '15]

Structural Results

- Sufficient conditions for a 3-king to win a SE tournament.
- Kim/Vassilevska Williams [2015]:
 - **1** $|A| \ge n/3$
 - 2 Each $b \in B$ beats no more players than v does
 - **③** There is a perfect matching from *B* onto *C* (in particular, $|B| \ge |C|$)
- Kim/S./Vassilevska Williams [2017]:
 - **1** $|A| \ge n/2$
 - 2 Every $a \in A$ beats every $b \in B$
 - $|B| \ge |C|$
- Any two of these three conditions are insufficient.
- Open direction: To what extent can we weaken these conditions?

Bribery

- Bribery-TFP (BTFP): The organizers are allowed to bribe up to *b* players to lose a match they would otherwise win.
 - If b = 0, BTFP reduces to TFP, which is NP-hard.
 - If $b = \log_2 n$, the tournament can be trivially rigged.

Theorem [Kim/Vassilevska Williams '15]

For any constant $\varepsilon > 0$, BTFP is NP-hard when $b \leq (1 - \varepsilon) \log_2 n$.

- Gupta/Saurabh/Sridharan/Zehavi [2019]:
 - Algorithm running in time $2^{O(k^2 \log k)} n^{O(1)}$, where k = size of a smallest feedback arc set
 - Obfuscation operations which can take in one bribery solution and output another solution in polynomial time

• Russell/Walsh [2009], Mattei/Goldsmith/Klapper/Mundhenk [2015]:

• Bracket given in advance, but bribery is allowed

- Players have varying strengths, so not all tournament graphs are equally likely to occur.
- Condorcet random model:
 - There exists an underlying linear order of players.
 - In general, a stronger player beats a weaker player, but the weaker player upsets the stronger player with probability $p \le 1/2$.

- Observation: If p ∈ o(log n/n), the weakest player is expected to win o(log n) matches, which is insufficient to be a SE winner.
- If p ∈ Ω(√log n/n), with high probability, every player can win under some bracket [Vassilevska Williams '10]
- In fact, p ∈ Θ(log n/n) is the sharp threshold! [Kim/S./Vassilevska Williams '17]
- With bribery, for any p, it suffices to bribe the top O(log n) players in the linear ordering to make any player win [Konicki/Vassilevska Williams '19]

- Generalized random model: For each pair *i*, *j*, player *i* beats player *j* with probability *p*_{*i*,*j*}, independently of other pairs
 - No linear ordering of players!

Theorem [Manurangsi/S. '22]

If $p_{i,j} \in \Omega(\log n/n)$ for all i, j, then with high probability, every player can win a SE tournament under some bracket.

- Probabilistic TFP (PTFP): Player *i* beats player *j* with probability $q_{i,j}$.
- The bracket must be chosen before this uncertainty is resolved.

Theorem [Chatterjee/Ibsen-Jensen/Tkadlec '16]

There exists a deterministic tournament graph such that:

- For one winning bracket of a player, the winning probability can drop by Θ(εn) through ε-perturbations.
- For another winning bracket of this player, the drop is only $\Theta(\varepsilon \log n)$.
- The robustness can vary significantly across brackets!
- Open question: Suppose that the probability matrix is monotonic,
 i.e., q_{i,j} ≥ q_{i,j-1} for all i ≤ j − 2. What is the complexity of PTFP?
- If bribery is allowed, it is NP-hard [Konicki/Vassilevska Williams '19]

Seeded Setting

- Results on TFP so far assume that any bracket can be chosen.
- Many real-world tournaments assign seeds to players to prevent top players from meeting too early.
- For example, in ATP tennis tournaments with 32 players:
 - 8 players are assigned seeds 1, 2, ..., 8.
 - The top 2 seeds cannot meet until the final.
 - The top 4 seeds cannot meet until the semifinals.
 - The top 8 seeds cannot meet until the quarterfinals.
- Let n = number of players, s = number of seeds

Seeded Setting

Theorem [Manurangsi/S. '23]

For any $n \ge 4$ and any s, a king who beats n - 2 players may not be able to win a SE tournament.

Proof: Let x be our desired winner, and y and z be the top two seeds.

- Only y can beat z, so z makes the final in every bracket.
- Even if x makes the final, x will lose to z.

Warut Suksompong (NUS)

Tournaments in COMSOC

Seeded Setting

- Superking: A king x such that for any y who beats x, there exist at least log₂ n players who lose to x but beat y.
- Superkings can win a knockout tournament [Vassilevska Williams '10]
- This remains true if s = 2, but not if $s \ge 4$ [Manurangsi/S. '23]
- Ultraking: A king x such that for any y who beats x, there exist at least n/2 players who lose to x but beat y.

Theorem [Manurangsi/S. '23]

For any *s*, an ultraking can win a knockout tournament.

 This result would no longer hold if we replace n/2 by n/2 - 1 in the ultraking definition.

SE winners & Tournament Solutions

The set of SE winners can also be viewed as a tournament solution.

Theorem [Kim/S./Vassilevska Williams '17]

Every player in the Copeland set is a SE winner.

 Proof: Since CO ⊆ UC, any player in CO is a king who beats at least n/2 other players.

Theorem [Kim/S./Vassilevska Williams '17]

For any 0 < r < 1, there exists a tournament such that

- the proportion of kings who are SE winners is less than r, and
- **2** the proportion of SE winners who are kings is also less than r.
 - Kings and SE winners are largely disjoint!

SE winners & Tournament Solutions

Theorem [Kim/S./Vassilevska Williams '17]

For any 0 < r < 1, there exists a tournament such that

- the proportion of kings who are SE winners is less than r, and
- 2 the proportion of SE winners who are kings is also less than r.

- The set of kings is $A \cup \{x, y\}$.
- If $|B| \gg |A|$ and the players in B are of roughly equal strength, then all players in B are SE winners while none of the players in A is.

SE winners & Tournament Solutions

• A SE winner may have a low Copeland score (= outdegree).

Theorem [Hulett '19]

There exists a tournament graph such that the SE winner according to a uniformly random bracket has Copeland score $n \cdot 2^{-\Theta(\sqrt{\log n})}$.

- $n \cdot 2^{-\Theta(\sqrt{\log n})}$ is lower than, say, $\Theta(n/\log n)$.
- Choosing a uniformly random alternative already yields Copeland score (n-1)/2.
- As an indicator of strength, the ability to win a SE tournament does not necessarily align with the Copeland score.

Future Directions

• Study other tournament formats

- Double-elimination [Stanton/Vassilevska Williams '13, Aziz et al. '18]
- Round-robin
- Stepladder/challenge-the-champ [Mattei/Goldsmith/Klapper/ Mundhenk '15, Yang/Dimitrov '21, Chaudhary/Molter/Zehavi '24]
- Swiss-system [Führlich/Cseh/Lenzner '24]
- Multi-stage tournaments
- Promotion/relegation features
- Perform empirical studies on real-world tournaments, e.g., using data from sports competitions [Russell/van Beek '11, Mattei/Walsh '16]
- Examine the effects of the tournament structure on fairness [Ryvkin/Ortmann '08, S. '16, Arlegi/Dimitrov '20]

Let's make tournaments great again!

References

Surveys

- F. Brandt, M. Brill, P. Harrenstein. "Tournament solutions", Handbook of Computational Social Choice (2016), chapter 3.
- V. Vassilevska Williams. "Knockout tournaments", Handbook of Computational Social Choice (2016), chapter 19.
- W. Suksompong. "Tournaments in computational social choice: Recent developments", IJCAI (2021)

Research papers

- R. Arlegi, D. Dimitrov. "Fair elimination-type competitions", European Journal of Operational Research (2020)
- H. Aziz, S. Gaspers, S. Mackenzie, N. Mattei, P. Stursberg, T. Walsh. "Fixing balanced knockout and double elimination tournaments", Artificial Intelligence (2018)
- R. Balasubramanian, V. Raman, G. Srinivasaragavan. "Finding scores in tournaments", Journal of Algorithms (1997)
- A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto. "Fourier meets möbius: Fast subset convolution", STOC (2007)
- F. Brandt, A. Dau, H. G. Seedig. "Bounds on the disparity and separation of tournament solutions", Discrete Applied Mathematics (2015)
- F. Brandt, F. Grundbacher. "The Banks set and the bipartisan set may be disjoint", arXiv (2023)
- M. Brill, U. Schmidt-Kraepelin, W. Suksompong. "Refining tournament solutions via margin of victory", AAAI (2020)
- M. Brill, U. Schmidt-Kraepelin, W. Suksompong. "Margin of victory in tournaments: Structural and experimental results", AAAI (2021)
- K. Chatterjee, R. Ibsen-Jensen, J. Tkadlec. "Robust draws in balanced knockout tournaments", IJCAI (2016)
- J. Chaudhary, H. Molter, M. Zehavi. "How to make knockout tournaments more popular?", AAAI (2024)
- J. Chaudhary, H. Molter, M. Zehavi. "Parameterized analysis of bribery in challenge the champ tournaments", arXiv (2024)

References

Research papers (cont.)

- E. Dale, J. Fielding, H. Ramakrishnan, S. Sathyanarayanan, S. M. Weinberg. "Approximately strategyproof tournament rules with multiple prizes", EC (2022)
- A. Dinev, S. M. Weinberg. "Tight bounds on 3-team manipulations in randomized death match", WINE (2022)
- K. Ding, S. M. Weinberg. "Approximately strategyproof tournament rules in the probabilistic setting", ITCS (2021)
- P. Führlich, A. Cseh, P. Lenzner. "Improving ranking quality and fairness in Swiss-system chess tournaments", Journal
 of Quantitative Analysis in Sports (2024)
- S. Gupta, S. Roy, S. Saurabh, M. Zehavi. "When rigging a tournament, let greediness blind you", IJCAI (2018)
- S. Gupta, S. Roy, S. Saurabh, M. Zehavi. "Winning a tournament by any means necessary", IJCAI (2018)
- S. Gupta, S. Saurabh, R. Sridharan, M. Zehavi. "On succinct encodings for the tournament fixing problem", IJCAI (2019)
- R. Hulett. "Single-elimination brackets fail to approximate Copeland winner", APPROX (2019)
- M. P. Kim, W. Suksompong, V. Vassilevska Williams. "Who can win a single-elimination tournament?", SIAM Journal on Discrete Mathematics (2017)
- M. P. Kim, V. Vassilevska Williams. "Fixing tournaments for kings, chokers, and more", IJCAI (2015)
- C. Konicki, V. Vassilevska Williams. "Bribery in balanced knockout tournaments", AAMAS (2019)
- T. Łuczak, A. Ruciński, J. Gruszka. "On the evolution of a random tournament", Discrete Mathematics (1996)
- A. Maiti, P. Dey. "Query complexity of tournament solutions", Theoretical Computer Science (2024)
- P. Manurangsi, W. Suksompong. "Generalized kings and single-elimination winners in random tournaments", Autonomous Agents and Multi-Agent Systems (2022)
- P. Manurangsi, W. Suksompong. "Fixing knockout tournaments with seeds", Discrete Applied Mathematics (2023)

References

Research papers (cont.)

- N. Mattei, J. Goldsmith, A. Klapper, M. Mundhenk. "On the complexity of bribery and manipulation in tournaments with uncertain information", Journal of Applied Logic (2015)
- N. Mattei, T. Walsh. "Empirical evaluation of real world tournaments", arXiv (2016)
- A. D. Procaccia. "A note on the query complexity of the Condorcet winner problem", Information Processing Letters (2008)
- M. S. Ramanujan, S. Szeider. "Rigging nearly acyclic tournaments is fixed-parameter tractable", AAAI (2017)
- T. Russell, P. van Beek. "An empirical study of seeding manipulations and their prevention", IJCAI (2011)
- T. Russell, T. Walsh. "Manipulating tournaments in cup and round robin competitions", ADT (2009)
- D. Ryvkin, A. Ortmann. "The predictive power of three prominent tournament formats", Management Science (2008)
- C. Saile, W. Suksompong. "Robust bounds on choosing from large tournaments", Social Choice and Welfare (2020)
- J. Schneider, A. Schvartzman, S. M. Weinberg. "Condorcet-consistent and approximately strategyproof tournament rules", ITCS (2017)
- A. Schvartzman, S. M. Weinberg, E. Zlatin, A. Zuo. "Approximately strategyproof tournament rules: on large manipulating sets and cover-consistence", ITCS (2020)
- I. Stanton, V. Vassilevska Williams. "The structure, efficacy, and manipulation of double-elimination tournaments", Journal of Quantitative Analysis in Sports (2013)
- W. Suksompong. "Scheduling asynchronous round-robin tournaments", Operations Research Letters (2016)
- V. Vassilevska Williams. "Fixing a tournament", AAAI (2010)
- Y. Yang, D. Dimitrov. "Weak transitivity and agenda control for extended stepladder tournaments", Economic Theory Bulletin (2021)
- M. Zehavi. "Tournament fixing parameterized by feedback vertex set number is FPT", AAAI (2023)