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Abstract

Fair division is a longstanding problem in economics and has recently received substantial in-
terest in computer science. Several applications of fair division involve agents with unequal enti-
tlements represented by weights. We review work on weighted fair division of indivisible items,
discuss the range of weighted fairness notions that have been proposed, and highlight a number of
open questions.

1 Introduction

Given a set of valuable resources, how can we allocate it to interested agents with possibly differing
preferences in a fair manner? This problem, also known as fair division, is fundamental in society and
ubiquitous in everyday life. Applications of fair division are wide-ranging and include splitting inheri-
tance among relatives, dividing usage rights of a facility between investors, as well as allocating supplies
among organizations or communities. While fair division has long been studied by economists [Brams
and Taylor, 1996, Robertson and Webb, 1998, Moulin, 2003], in the past decade it has also received
substantial interest from computer scientists [Bouveret et al., 2016, Markakis, 2017, Aleksandrov and
Walsh, 2020, Aziz, 2020, Suksompong, 2021, Amanatidis et al., 2023, Nguyen and Rothe, 2023].

Fair division may naturally evoke the idea of treating all involved agents equally, providing them
with an equal opportunity to receive their desired resources. However, in several scenarios, fairness
entails handling the agents unequally based on their entitlements. For instance, in inheritance division,
closer relatives are typically more entitled to the inheritance than more distant ones. Another example
is a situation where investors have made different investments into a facility—those who contributed
more would understandably feel aggrieved if they did not receive a greater share of the usage rights.
In a similar vein, larger organizations or communities normally deserve more of the allotted supplies
and personnel. These entitlements can be represented by numerical weights, and the resulting problem
is therefore referred to as weighted fair division. Clearly, approaches that do not take the weights into
account cannot provide reasonable fairness guarantees in the aforementioned scenarios. Weighted fair
division dates back to at least the seminal books by Brams and Taylor [1996] and Robertson and Webb
[1998], and constitutes one of the most significant extensions of the basic fair division setting.1 It
encompasses the well-studied problem of apportionment, which corresponds to the special case where
the items are identical, for example, seats in a parliament [Balinski and Young, 2001, Pukelsheim, 2014].

In this review, we provide a summary of recent developments in weighted fair division. Like the
general fair division literature, the vast majority of work on weighted fair division in the past few years
has concentrated on the allocation of indivisible items. Therefore, our focus will also be on this prac-
tically important case.2 As we shall see, each fairness notion in the unweighted setting can usually be

1Other extensions include assuming that the items arrive in an online manner [Aleksandrov and Walsh, 2020], introducing
constraints on the permissible allocations [Suksompong, 2021], and considering items of mixed nature [Liu et al., 2024].

2For divisible items, commonly modeled as a cake, recent work in the weighted setting has considered the query complexity
of finding a fair allocation [Cseh and Fleiner, 2020] and the number of cuts necessary [Segal-Halevi, 2019a, Crew et al., 2020].

1



generalized to the weighted setting in multiple ways, and there are often trade-offs between different
generalizations. The richness of the weighted setting is also reflected by the fact that while some un-
weighted approaches continue to ensure strong fairness guarantees in the presence of weights, others
cannot even be extended to incorporate weights in a sensible manner. In addition to discussing and com-
paring the key notions and approaches in weighted fair division, we will also draw attention to several
unresolved questions in this domain.

2 Preliminaries

In this section, we state definitions and notation for the fair allocation of indivisible items.

2.1 Unweighted Setting

Before we formally introduce weighted fair division, we first describe the simpler unweighted setting.
There is a set of agents N = {1, 2, . . . , n} and a set of items M = {o1, o2, . . . , om}. A bundle refers
to a subset of items in M . Each agent i ∈ N has a utility ui(M

′) for each bundle M ′ ⊆ M , where
ui(∅) = 0. When M ′ consists of a single item o, we will write ui(o) instead of ui({o}) for convenience.
Except in Section 5, we will assume that the items are goods. In particular, the agents’ utility functions
are monotonic, i.e., ui(M ′) ≤ ui(M

′′) for any M ′ ⊆ M ′′ ⊆ M ; this implies that ui(o) ≥ 0 for every
o ∈ M . Unless stated otherwise, we also assume that these functions are additive, i.e., ui(M ′) =∑

o∈M ′ ui(o) for every bundle M ′. An instance of unweighted fair division is described by N , M , and
(ui)i∈N . We will use g instead of o when discussing goods.

Given an instance, we are interested in allocating the items to the agents in a fair manner. An
allocation A = (A1, . . . , An) is a list of n bundles such that Ai ∩ Aj = ∅ for all i ̸= j; for each i, the
bundle Ai is allocated to agent i. An allocation is said to be complete if Ai ∪ · · · ∪ An = M . Unless
stated otherwise, we assume that allocations must be complete. To measure the fairness of allocations,
two of the oldest and most fundamental benchmarks are envy-freeness and proportionality.

Definition 2.1. In the unweighted setting, an allocation A is said to satisfy

• envy-freeness (EF) if for every pair of agents i, j ∈ N , it holds that ui(Ai) ≥ ui(Aj);

• proportionality (PROP) if for every agent i ∈ N , it holds that ui(Ai) ≥ 1
n · ui(M).

With indivisible goods, neither envy-freeness nor proportionality can always be satisfied—the sim-
plest counterexample is when there are two agents and only one valuable good. It is therefore natural to
relax these notions by allowing an “up to one good” approximation [Lipton et al., 2004, Budish, 2011,
Aziz et al., 2022].

Definition 2.2. In the unweighted setting, an allocation A is said to satisfy

• envy-freeness up to one good (EF1) if for every pair of agents i, j ∈ N for which Aj ̸= ∅, there
exists a good g ∈ Aj such that ui(Ai) ≥ ui(Aj \ {g});

• proportionality up to one good (PROP1) if for every agent i ∈ N for which Ai ̸= M , there exists
a good g ̸∈ Ai such that ui(Ai ∪ {g}) ≥ 1

n · ui(M).

Every instance with arbitrary monotonic utilities admits an EF1 allocation [Lipton et al., 2004].
Moreover, if the utilities are additive, EF1 implies PROP1; this also means that a PROP1 allocation is
guaranteed to exist under the additivity assumption.

Another route for circumventing the possible non-existence of a proportional allocation is to weaken
the definition of the required share. By far the most extensively studied notion resulting from this
approach is maximin share fairness [Budish, 2011]. Denote by Π(M,n) the collection of all ordered
partitions of M into n subsets.
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Definition 2.3. In the unweighted setting, the maximin share (MMS) of an agent i is defined as

MMSi := max
(S1,...,Sn)∈Π(M,n)

min
j∈{1,...,n}

ui(Sj).

An allocation is said to be an MMS allocation if it gives every agent at least her MMS.

Even though an MMS allocation sometimes fails to exist, there is always an allocation that provides
each agent with more than 3/4 times her MMS [Kurokawa et al., 2018, Akrami and Garg, 2024].

Besides fairness, another important property in allocation problems is economic efficiency, which is
often captured by the notion of Pareto optimality. An allocation A is said to be Pareto optimal (PO) if
no other allocation makes at least one agent better off and no agent worse off. That is, that does not exist
another allocation A′ such that ui(A′

i) ≥ ui(Ai) for every i ∈ N and the inequality is strict for at least
one i ∈ N .

2.2 Weighted Setting

We are now ready to introduce the weighted setting, which is the focus of this review. In the weighted
setting, each agent i ∈ N is additionally endowed with a weight wi > 0 representing her entitlement to
the resource. Hence, besides N , M , and (ui)i∈N , an instance is also described by the weights (wi)i∈N .
The unweighted setting corresponds to the special case where all weights are equal. For convenience,
we denote wN :=

∑
i∈N wi. Both envy-freeness and proportionality can be generalized to the weighted

setting in an intuitive way.

Definition 2.4. In the weighted setting, an allocation A is said to satisfy

• weighted envy-freeness (WEF) if for every pair of agents i, j ∈ N , it holds that ui(Ai)
wi

≥ ui(Aj)
wj

;

• weighted proportionality (WPROP) if for every agent i ∈ N , it holds that ui(Ai) ≥ wi
wN

· ui(M).

Example 2.5. Consider three agents with weights (w1, w2, w3) = (1, 2, 4). In a WEF allocation, agent 1
finds her bundle to be worth no less than half of agent 2’s bundle, while agent 2 believes that his bundle
is at least twice as valuable as agent 1’s. In a WPROP allocation, agent 3’s utility for her own bundle is
at least 4/7 times her utility for the entire set of goods.

Since neither envy-freeness nor proportionality is always satisfiable, the same is true for their weighted
generalizations. As we shall discuss, extending EF1, PROP1, and MMS to the weighted setting is a sig-
nificantly more subtle task than for the former two notions. For brevity, unless stated otherwise, we
consider the weighted setting in the rest of this review.

3 Fairness up to One Good

In this section, we review work on weighted fairness up to one good. By extending EF1 and PROP1
along with certain approaches for satisfying these notions, we will see that strong fairness guarantees
can be attained in the weighted setting. Recall our assumptions from Section 2 that utilities are additive
and allocations are complete unless stated otherwise.

3.1 WEF1 and WWEF1

Given the definitions of EF1 (Definition 2.2) and WEF (Definition 2.4), Chakraborty et al. [2021a]
combined them into WEF1 in a natural manner.
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Figure 1: Illustration for the proof of Theorem 3.2.

Definition 3.1. An allocation A is said to satisfy weighted envy-freeness up to one good (WEF1) if for
every pair of agents i, j ∈ N for which Aj ̸= ∅, there exists a good g ∈ Aj such that

ui(Ai)

wi
≥ ui(Aj \ {g})

wj
.

In the unweighted setting, EF1 can be satisfied via the round-robin algorithm, which lets the agents
take turns picking their favorite good from the remaining goods in cyclic order, breaking ties arbitrarily,
until the goods run out. The proof is succinct: Consider any pair of agents i and j. If i picks before j,
then i does not envy j in each ‘round’; since utilities are additive, i also does not envy j overall. On the
other hand, if i picks after j, then a similar argument shows that i does not envy j if we ignore j’s first
pick. Hence, in either case, EF1 from i towards j is fulfilled.

Can we generalize the round-robin algorithm to the weighted setting so as to satisfy WEF1? At
first glance, it may seem unclear how to construct a suitable picking sequence based on the weights.
However, as Chakraborty et al. [2021a] suggested, a general and intuitive way to devise such a sequence
is to assign each pick to an agent who has picked least frequently so far, where the frequency is scaled
by the agent’s weight. For example, if there are three agents with weights (w1, w2, w3) = (1, 2, 4),
a corresponding picking sequence is (1, 2, 3, 3, 2, 3, 3, 1, 2, 3, . . . ). Chakraborty et al. showed that the
output of the constructed picking sequence is guaranteed to satisfy WEF1.

Theorem 3.2 ([Chakraborty et al., 2021a]). Consider a picking sequence such that each pick is assigned
to an agent i who minimizes ti/wi, where ti denotes the number of times agent i has picked up to
that point. An allocation chosen by this picking sequence always satisfies WEF1. Thus, there exists a
polynomial-time algorithm for computing a WEF1 allocation.

The proof of Theorem 3.2 is more involved than the aforementioned succinct proof of its unweighted
counterpart. To explain it, we first describe a useful way to visualize the unweighted proof. Suppose
we consider envy from agent i towards agent j. Every time i picks a good, we give her a bucket with 1
unit of water. Every time j picks a good from the second time onwards, we give him an empty bucket
of capacity 1. Agent i is allowed to pour water from any bucket into any of j’s buckets that comes later
in the picking sequence. Since i values a good that she picks at least as much as any good that j picks
in a later turn, in order to establish EF1, it suffices to show that i can fill up all of j’s buckets using such
operations. A similar idea can be used in the weighted setting, except that in order to account for the
weights, every time j picks after the first time, we give her a bucket of capacity wi/wj instead of 1—see
Figure 1 for an illustration when (wi, wj) = (2, 3). However, unlike in the unweighted setting, where
i can accomplish this task by simply pouring all the water from each of her buckets into j’s subsequent
bucket, in the weighted case, i may need to pour water from a bucket into several of j’s buckets.

Besides the round-robin algorithm, two other prominent ways of satisfying EF1 in the unweighted
setting are the envy cycle elimination algorithm [Lipton et al., 2004] and the maximum Nash welfare
(MNW) solution [Caragiannis et al., 2019]. As Chakraborty et al. [2021a] observed, the envy cycle
elimination algorithm does not admit a natural generalization to the weighted setting. Indeed, in the
unweighted setting, if agent i envies agent j, then i would prefer to swap bundles with j. However, in
the weighted case, even if i envies j with respect to the weights, it could be that i’s weight is larger than j,
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and i in fact does not want to make the swap. Hence, the idea of eliminating envy cycles fundamentally
fails in the presence of weights.

Does the MNW solution fare any better? In the unweighted setting, it chooses an allocation that max-
imizes the Nash welfare, which corresponds to the product

∏
i∈N ui(Ai) of the agents’ utilities.3 With

weights, MNW can be generalized to maximum weighted Nash welfare (MWNW), where the weighted
Nash welfare is given by the product

∏
i∈N ui(Ai)

wi with the weights in the exponents.4 Given that
MNW is known to satisfy EF1 [Caragiannis et al., 2019], it perhaps comes as a surprise that MWNW in
fact fails to satisfy WEF1 [Chakraborty et al., 2021a].

Example 3.3. Consider two agents with weights (w1, w2) = (1, 4) and seven identical goods, each
yielding utility 1 to each agent. MWNW assigns one good to agent 1 and the remaining six goods to
agent 2, which results in a violation of WEF1 from agent 1 towards agent 2.

From this counterexample, one can see that the WEF1 condition is rather stringent when wi < wj ,
as the utility of the removed good is scaled by 1/wj . This motivates the following relaxation of WEF1.

Definition 3.4. An allocation A is said to satisfy weak weighted envy-freeness up to one good (WWEF1)
if for every pair of agents i, j ∈ N for which Aj ̸= ∅, there exists a good g ∈ Aj such that

ui(Ai)

wi
≥ ui(Aj \ {g})

wj
or

ui(Ai ∪ {g})
wi

≥ ui(Aj)

wj
.

WWEF1 allows two options for eliminating envy from agent i towards agent j: either remove one
good from j’s bundle (as in WEF1), or copy a good from j’s bundle into i’s bundle. The former option
is more potent when wi > wj , while the latter is more effective if wi < wj . It turns out that this weaker
fairness benchmark is met by MWNW.

Theorem 3.5 ([Chakraborty et al., 2021a]). Every MWNW allocation satisfies WWEF1 and PO.

Theorem 3.5 generalizes an influential result of Caragiannis et al. [2019] from the unweighted setting
and provides a concrete fairness guarantee for MWNW. In part due to this guarantee, the computation of
an MWNW solution has recently been a subject of interest [Garg et al., 2022, Brown et al., 2024, Feng
and Li, 2024].

Chakraborty et al. [2021a] further showed, by adapting a market-based algorithm of Barman et al.
[2018], that an allocation fulfilling WEF1 and PO always exists and can be computed in pseudo-
polynomial time. Whether such an allocation can be computed in polynomial time remains open even
in the unweighted case.5

3.2 WPROP1

Next, we consider WPROP1, which is an intuitive combination of PROP1 (Definition 2.2) and WPROP
(Definition 2.4) proposed by Aziz et al. [2020].

Definition 3.6. An allocation A is said to satisfy weighted proportionality up to one good (WPROP1) if
for every agent i ∈ N for which Ai ̸= M , there exists a good g ̸∈ Ai such that

ui(Ai ∪ {g}) ≥ wi

wN
· ui(M).

3Ties can be broken arbitrarily except when the maximum possible product is 0, in which case more care is needed. Also, to
be more precise, the Nash welfare is defined as the geometric mean of the utilities, but an allocation maximizing that objective
is the same as one maximizing the product objective.

4To see why having weights in the exponents is sensible, observe that if the goods were divisible and homogeneous, this
definition of MWNW would allocate the goods to the agents precisely in proportion to their respective weights.

5When there are two agents, Chakraborty et al. [2021a] showed that this can be done using a weighted variant of the classic
adjusted winner procedure [Brams and Taylor, 1996].
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In fact, Aziz et al. defined WPROP1 in a more general setting, allowing items to yield positive
utilities to some agents and negative utilities to others. They demonstrated that when using WPROP1 as
the benchmark, the computation of a fair and efficient allocation becomes tractable.

Theorem 3.7 ([Aziz et al., 2020]). There exists a strongly polynomial-time algorithm that computes an
allocation satisfying WPROP1 and PO.

The proof of Theorem 3.7 relies on first treating the items as divisible, starting from a WPROP
division of the items, and conducting sequential cyclic trades to arrive at a Pareto-dominating alloca-
tion. The resulting allocation satisfies a stronger property than PO called “fractional PO”, and it can be
rounded into an integral allocation that maintains fractional PO and at the same time satisfies WPROP1.

While EF1 implies PROP1 and WEF implies WPROP, Chakraborty et al. [2021a] showed that, sur-
prisingly, WEF1 does not imply WPROP1. Worse still, there exist instances in which the two properties
are conflicting.

Example 3.8. Consider an instance with n = 10 agents with weights (w1, . . . , w10) = (1, 1, . . . , 1, 100)
and m = 10 identical goods, each yielding utility 1 to each agent. In every WEF1 allocation, each agent
must receive exactly one good; otherwise the WEF1 condition from an agent with no good towards an
agent with more than one good would be violated. On the other hand, a WPROP1 allocation necessarily
assigns at least nine goods to the last agent. Hence, no allocation satisfies both WEF1 and WPROP1.

The inherent incompatibility between WEF1 and WPROP1 is highly counterintuitive and prompts a
need to revisit the definitions of these two properties, as we shall discuss next.

3.3 WEF(x, y) and WPROP(x, y)

An alternative formulation of WEF1 is that the weighted envy from agent i towards agent j, defined as the
quantity max

{
0,

ui(Aj)
wj

− ui(Ai)
wi

}
, is allowed to be up to ui(g)

wj
for some g ∈ Aj . From this perspective,

there is no clear reason why ui(g) should be multiplied by 1/wj instead of 1/wi.6 Chakraborty et al.
[2022] proposed a general definition where the multiplier is an arbitrary linear combination of 1/wj and
1/wi.

Definition 3.9. Let x, y ≥ 0 be real numbers. An allocation A is said to satisfy WEF(x, y) if for every
pair of agents i, j ∈ N for which Aj ̸= ∅, there exists a good g ∈ Aj such that

ui(Ai) + y · ui(g)
wi

≥ ui(Aj)− x · ui(g)
wj

,

or equivalently,

ui(Aj)

wj
− ui(Ai)

wi
≤

(
y

wi
+

x

wj

)
· ui(g).

Note that WEF and WEF1 correspond to WEF(0, 0) and WEF(1, 0), respectively. WEF(1, 1) allows
one good to be transferred from j’s bundle to i’s bundle in order to eliminate the weighted envy, and has
therefore been called “transfer weighted envy-freeness up to one good” [Chakraborty et al., 2021a] or
“weighted envy-freeness up to one transfer” [Aziz et al., 2023b]. If all weights are equal, the WEF(x, y)
notion depends only on the sum x+ y; in particular, if x+ y = 1, the notion reduces to EF1. However,
when weights can be different, each choice of (x, y), even with the same sum, leads to a different
condition: a larger x induces a stronger guarantee for agents with lower weights, while a larger y ensures
less envy for those with higher weights.

6For WWEF1, the multiplier is 1/min{wi, wj}.
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If x+y < 1, an instance with two equal-weight agents and one valuable good shows that WEF(x, y)
cannot always be satisfied. In light of this, the strongest existence guarantee one could hope for is when
x + y = 1. It turns out that this guarantee indeed holds, and moreover there is an inherent trade-off
between different values of (x, y).

Theorem 3.10 ([Chakraborty et al., 2022]). For each x ∈ [0, 1], there exists an allocation satisfying
WEF(x, 1− x), which can be computed in polynomial time.

On the other hand, for each pair of distinct x, x′ ∈ [0, 1], there exists an instance with identical
goods, each yielding utility 1 to each agent, such that no allocation satisfies both WEF(x, 1 − x) and
WEF(x′, 1− x′).

It is worth noting that WEF(x, 1 − x) is strictly stronger than WWEF1 for every x. The algorithm
for computing a WEF(x, 1−x) allocation is a generalization of the picking sequence in Theorem 3.2—
instead of the ratio ti/wi, one can use (ti+(1−x))/wi. Interestingly, when all goods are identical, these
picking sequences belong to a well-studied class of apportionment methods called divisor methods. As
for the incompatibility, the intuition is similar to that of Example 3.8: there is an inevitable compromise
between ensuring that low-weight agents are not empty-handed and providing high-weight agents with
their due share.

Chakraborty et al. [2022] defined WPROP(x, y) in an analogous manner as WEF(x, y).

Definition 3.11. Let x, y ≥ 0 be real numbers. An allocation A is said to satisfy WPROP(x, y) if for
every agent i ∈ N for which Ai ̸= M , there exists a good g ̸∈ Ai such that

ui(Ai) + y · ui(g) ≥
wi

wN
· (ui(M)− n · x · ui(g)).

WPROP is the same as WPROP(0, 0), but WPROP1 corresponds to WPROP(0, 1) rather than
WPROP(1, 0). This explains the counterintuitive phenomenon described at the end of Section 3.2:
there is a ‘mismatch’ between WEF1 and WPROP1, which leads to the incompatibility between the two
notions. Indeed, Chakraborty et al. [2022] showed that WEF(x, y) implies WPROP(x, y) for all x, y;
this generalizes the facts that EF1 implies PROP1 and WEF implies WPROP. They also established
analogous results for WPROP(x, y) as for WEF(x, y) (Theorem 3.10), and showed that MWNW does
not imply WEF(x, 1− x) or WPROP(x, 1− x) for any x. This raises our first open problem.

Open problem 1. For each x ∈ [0, 1), does there always exist an allocation satisfying WEF(x, 1 − x)
and PO? For each x ∈ (0, 1), does there always exist an allocation satisfying WPROP(x, 1 − x) and
PO?

While the case x+ y = 1 is the most interesting in terms of existence by itself, when other require-
ments are added, it may become necessary to consider larger values of x + y. Indeed, this is the case
in the “best of both worlds” framework, which aims to offer fairness guarantees for random allocations
both before and after the randomization (so-called ex-ante and ex-post, respectively) [Aziz et al., 2023a].
Aziz et al. [2023b] and Hoefer et al. [2023] showed that while ex-ante WEF and ex-post WEF(x, y) can
be satisfied simultaneously when x = y = 1, the same is not true for any other pair x, y ∈ [0, 1].

3.4 WEFX

Besides EF1, another well-studied relaxation of envy-freeness in the unweighted setting is envy-freeness
up to any good (EFX), which requires the envy from one agent towards another agent to disappear as
soon as any good in the latter agent’s bundle is removed. EFX can be extended to accommodate weights
in a similar way as EF1.
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Definition 3.12. An allocation A is said to satisfy weighted envy-freeness up to any good (WEFX) if for
every pair of agents i, j ∈ N and every good g ∈ Aj , it holds that

ui(Ai)

wi
≥ ui(Aj \ {g})

wj
.

With equal weights, an EFX allocation is guaranteed to exist for up to three agents, but the existence
question is open beyond three agents [Akrami et al., 2023]. By contrast, Hajiaghayi et al. [2024] showed
that with unequal weights, a WEFX allocation may not exist even for two agents.

Example 3.13. Consider an instance with n = 2 agents with weights (w1, w2) = (3, 4), m = 4 goods,
and the following utilities:

g1 g2 g3 g4
Agent 1 0 2 3 3
Agent 2 0 0 1 1

Since agent 2 has a higher weight, for WEFX to be satisfied, she must receive either g3 and g4 together,
or one of g3, g4 along with both of g1, g2. However, one can check that in either case, WEFX is violated
for agent 1.

In view of this example, one could consider relaxing WEFX to α-WEFX, where α < 1 is a mul-
tiplicative factor on the right-hand side of the inequality in Definition 3.12.7 By using similar utilities
as in Example 3.13, Hajiaghayi et al. [2024] showed that one cannot always attain α-WEFX for any
α > 0.786, and proved guaranteed existence for a factor α that degrades with m, the number of goods.

Open problem 2. For n = 2 agents, is there a positive constant α such that an α-WEFX allocation
always exists? What about for larger n?

3.5 Non-Additive Utilities

Although utilities are frequently assumed to be additive in the fair division literature, certain goods
in practical applications may exhibit complementarity or substitution effects, resulting in non-additive
utilities. In the unweighted setting, an EF1 allocation is guaranteed to exist even for arbitrary monotonic
utilities [Lipton et al., 2004]. However, as Chakraborty et al. [2021a] showed, this is not true for WEF1.

Example 3.14. Consider an instance with n = 2 agents with weights (w1, w2) = (1, 2), and m = 6
goods. Agent 1 has an additive utility function with utility 1 for every good, while agent 2 has utility 0
for the empty bundle and utility 1 for any other bundle. If agent 1 receives more than one good, agent 2
has weighted envy towards agent 1 even after removing any good from agent 1’s bundle. On the other
hand, if agent 1 receives at most one good, WEF1 from agent 1 towards agent 2 is violated. Thus, there
is no WEF1 allocation in this instance.

By increasing the number of goods in Example 3.14, one can show that the impossibility persists
even if WEF1 is relaxed to WWEF1 and the ‘up to one good’ condition is weakened to ‘up to c goods’
for any constant c. Note that the utility functions in this example are particularly simple: both of them
are binary submodular, also known as matroid-rank.8 Such utility functions are relevant when allocating

7Multiplicative approximations have also been studied for EFX in the unweighted setting [Amanatidis et al., 2020, Plaut
and Roughgarden, 2020].

8A monotonic utility function u is called binary if the utility of any set of goods increases by 0 or 1 upon the addition of a
new good. It is called submodular if the gain in utility from adding a good to a set is at most the gain from adding the same
good to its subset.
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course slots to students or dividing public housing estates among ethnic groups [Babaioff et al., 2021b,
Benabbou et al., 2021]

Montanari et al. [2024] proposed two families of notions tailored for submodular utilities. The
first family, TWEF(x, y), is based on the concept of “transferability” studied in the unweighted setting
by Benabbou et al. [2021]. TWEF(x, y) stipulates that an agent i should not be considered to envy
another agent j if i’s utility would not increase upon transferring all of j’s goods to i’s bundle, and
therefore rules out such scenarios as Example 3.14, where agent 2 remains envious even when already at
maximum utility. The second family, WMEF(x, y), is an extension of the notion marginal EF1 (MEF1)
of Caragiannis et al. [2019] from the unweighted setting. The idea is that, instead of comparing i’s utility
for her own bundle with her utility for j’s bundle as in WEF1, we compare it with her marginal utility
of j’s bundle given i’s bundle (i.e., ui(Ai ∪ Aj) − ui(Ai)); for submodular utilities, this results in a
weaker benchmark. Importantly, when utilities are additive, both TWEF(x, y) and WMEF(x, y) reduce
to WEF(x, y), which in turn reduces to EF1 if all weights are equal and x+ y = 1.

Montanari et al. [2024] showed that TWEF(x, 1 − x) can be satisfied for every x when utilities
are matroid-rank,9 and the same holds for WMEF(x, 1 − x) when utilities are general submodular. As
a result, meaningful fairness guarantees can be made in weighted fair division even for non-additive
utilities. Interestingly, these authors also demonstrated that for matroid-rank utilities, the maximum
weighted harmonic welfare (MWHW) rule, defined based on harmonic numbers, offers better guarantees
than MWNW. Viswanathan and Zick [2023] proved that, under the matroid-rank assumption, there exists
a polynomial-time algorithm that can optimize a range of objectives, including MWNW and MWHW.

Despite these positive results for submodular utilities, it remains intriguingly open whether similar
fairness guarantees can be extended to other significant classes of utilities.

Open problem 3. For supermodular utilities, does there exist a meaningful envy-freeness notion that
can always be satisfied and moreover reduces to EF1 in the unweighted additive setting? What about
for subadditive utilities?

3.6 Monotonicity and Strategyproofness

In addition to fairness and efficiency, two other sets of desirable properties for allocation rules are mono-
tonicity and strategyproofness. In particular, resource-monotonicity stipulates that when an extra good
is added, no agent’s utility should decrease as a result. Likewise, population-monotonicity means that
introducing an additional agent should not benefit any existing agent, while weight-monotonicity states
that if an agent’s weight increases, her utility should not go down. On the other hand, strategyproofness
requires that agents do not have an incentive to misreport their utility functions. A stronger version,
group-strategyproofness, asserts that no group of agents can misreport in such a way that all agents in
the group strictly benefit.

While the monotonicity properties are intuitive and one may be tempted to think that any reasonable
allocation rule should satisfy them, this is in fact not the case. As Chakraborty et al. [2021b] showed,
even in the unweighted setting, prominent rules such as MNW and envy cycle elimination fail resource-
monotonicity. Nevertheless, these authors proved that several picking sequences—including those in
Theorems 3.2 and 3.10—satisfy resource- and population-monotonicity for any number of agents n, as
well as weight-monotonicity for n = 2. Combined with their fairness guarantees and their simplicity,
this establishes picking sequences as strong candidate rules for weighted fair division.

Open problem 4. For each n ≥ 3, does there exist a rule that satisfies resource-, population-, and
weight-monotonicity along with WWEF1?

As for strategyproofness, with equal weights and additive utilities, it is known that no rule satis-
fies both EF1 and strategyproofness [Amanatidis et al., 2017], and the only rule that is both Pareto

9However, instead of requiring allocations to be complete, they ensured other efficiency properties.
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optimal and strategyproof is serial dictatorship [Klaus and Miyagawa, 2002]. Nevertheless, Suksom-
pong and Teh [2023] showed that with matroid-rank utilities and possibly different weights, MWNW
and MWHW (with specific tie-breaking) satisfy all three monotonicity properties as well as group-
strategyproofness.10 Together with the fairness and efficiency guarantees of these rules, this implies that
virtually all desirable properties can be fulfilled simultaneously under matroid-rank utilities.

4 Share-Based Notions

In this section, we turn our attention to share-based notions. As mentioned in Section 2, the most widely
studied share-based notion in the unweighted setting is maximin share fairness (MMS). Like EF1 and
PROP1, we will see that there are several valid ways to extend MMS to the weighted setting.

4.1 WMMS and NMMS

The first weighted extension of MMS was proposed by Farhadi et al. [2019].

Definition 4.1. The weighted maximin share (WMMS) of an agent i is defined as

WMMSi := max
(S1,...,Sn)∈Π(M,n)

min
j∈{1,...,n}

wi

wj
· ui(Sj).

For c ≤ 1, we say that an allocation is c-WMMS if it yields utility at least c · WMMSi for every
agent i. We will use analogous terminology for the remaining share-based notions.

Intuitively, the definition of WMMS involves finding the ‘most proportional’ allocation with respect
to all agents’ weights and agent i’s utility function. In contrast to MMS, no constant approximation of
WMMS can be guaranteed.

Theorem 4.2 ([Farhadi et al., 2019]). There always exists a 1/n-WMMS allocation, and the factor 1/n
cannot be improved in the worst case. Moreover, such an allocation can be found in polynomial time.

To find a 1/n-WMMS allocation, one can use the simple (unweighted) round-robin algorithm, with
an additional specification that the agents pick in non-increasing order of weight. Nevertheless, a draw-
back of WMMS is that the WMMS of an agent depends not only on the agent’s weight (relative to
the total weight), but also on the weight of every other agent. Moreover, the definition of WMMS is
rather difficult to understand, especially when compared to MMS. With these observations in mind,
Chakraborty et al. [2022] proposed an alternative extension of MMS.

Definition 4.3. The normalized maximin share (NMMS) of an agent i is defined as

NMMSi :=
wi

wN
· n · MMSi.

The NMMS of an agent depends only on the agent’s relative weight, and since NMMS is simply
an appropriately scaled version of MMS, it is arguably easier to understand. Chakraborty et al. [2022]
showed that 1/n-NMMS can be guaranteed (by the same algorithm as 1/n-WMMS), and this factor is
again tight. Perhaps more notably, they showed that WEF1 implies 1/n-NMMS, which means that any
algorithm that yields WEF1 (cf. Section 3.1) ensures 1/n-NMMS as well.11 This generalizes a result of
Amanatidis et al. [2018] that EF1 implies 1/n-MMS in the unweighted setting.

10They showed this for a broader class of rules called weighted additive welfarist rules. Their result generalizes earlier
results by Halpern et al. [2020] and Suksompong and Teh [2022] in more restricted settings.

11On the other hand, WEF1 does not imply any positive approximation of WMMS.
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4.2 OMMS and APS

The fact that neither WMMS nor NMMS admits a constant approximation raises the question of whether
there exist any natural shares that allow such an approximation. As it turns out, the answer to this
question is positive, as exhibited by the following two shares.

Definition 4.4. For any positive integers ℓ ≤ d, let

MMSℓ-out-of-d
i := max

S∈Π(M,d)
min

T∈Unions(S,ℓ)
ui(T ),

where Unions(S, ℓ) denotes the collection of all unions of ℓ bundles from the d-partition S.12 Then, the
ordinal maximin share (OMMS) of an agent i is defined as

OMMSi := max
ℓ,d: ℓ

d
≤ wi

wN

MMSℓ-out-of-d
i .

Definition 4.5. The AnyPrice share (APS) of an agent i is defined as

APSi := max
P∈AllowedCollections(M,wi)

min
T∈P

ui(T ).

Here, AllowedCollections(M,wi) includes all collections P of bundles such that some assignment of
weights to the bundles in P satisfies the following two properties: (i) the total weight of all bundles in P
is wN ; (ii) for each good, the total weight of the bundles to which the good belongs is at most wi.

OMMS was implicitly considered by Babaioff et al. [2021c] and explicitly studied by Segal-Halevi
[2019b].13 APS was introduced by Babaioff et al. [2021a], who established several important properties
of it. While Babaioff et al. [2021a] defined APS for non-additive utilities, their main results hold only
for additive utilities. Note that of the four weighted share-based notions, APS is the only one that does
not reduce to MMS in the unweighted setting.

Theorem 4.6 ([Babaioff et al., 2021a]). There always exists a 3/5-APS allocation, and such an alloca-
tion can be computed in polynomial time.

Babaioff et al. showed Theorem 4.6 by analyzing a bidding game in which the weights serve as
budgets and at each round the highest bidder wins, taking any goods she wants and paying her bid for
each good taken. The same authors also proved that an agent’s APS is always at least her OMMS, which
means that a 3/5-OMMS allocation always exists as well. Hence, a significant fraction of both OMMS
and APS can be guaranteed for arbitrary instances.

Open problem 5. What is the largest constant c such that a c-APS allocation always exists? What about
c-OMMS?

5 Chores

Up until now, our focus has been on the case of goods, which is also the primary focus of the fair
division literature. Nevertheless, the opposite case of chores—items that yield disutility to agents—is
also relevant in several applications and has received due interest. We assume throughout this section
that utilities are additive and ui(o) ≤ 0 for all i ∈ N and o ∈ M .

With chores, the weights are interpreted as obligations rather than entitlements: the higher the
weight, the more obligation the agent has. The definition of WEF (Definition 2.4) can be used as is.
However, WEF1 needs to be modified so that instead of an agent removing a good from another agent’s
bundle, she removes a chore from her own bundle.

12Thus, the canonical MMS corresponds to 1-out-of-n MMS.
13It was also called pessimistic share by Babaioff et al. [2021a].
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Definition 5.1. In chore division, an allocation A is said to satisfy weighted envy-freeness up to one
chore (WEF1) if for every pair of agents i, j ∈ N for which Ai ̸= ∅, there exists a chore o ∈ Ai such
that ui(Ai\{o})

wi
≥ ui(Aj)

wj
.

By modifying the picking sequence from the case of goods (Theorem 3.2), both Wu et al. [2023]
and Hajiaghayi et al. [2024] established the existence of a WEF1 allocation.

Theorem 5.2 ([Wu et al., 2023, Hajiaghayi et al., 2024]). In chore division, a WEF1 allocation always
exists and can be computed in polynomial time.

As in the case of goods, Hajiaghayi et al. [2024] showed that a WEFX allocation does not necessarily
exist for chores. Aziz et al. [2020] proved that WPROP1 and PO can be satisfied together even for
combinations of goods and chores. Li et al. [2022] demonstrated that WPROPX, a stronger notion than
WPROP1, can always be fulfilled and moreover provides a constant approximation to APS for chores.
Feige and Huang [2023] established the existence of an allocation that gives every agent no worse than
1.733 times her APS; they achieved this by reducing any given instance to one in which all agents agree
on the ordering of the chores, considering a fractional allocation of the chores and rounding it into an
integral allocation, and running a picking sequence defined based on this integral allocation. Aziz et al.
[2019] investigated WMMS in chore division, although their positive results are restricted to the case of
two agents or binary valuations.

Open problem 6. In chore division, what is the best approximation of WMMS that can be guaranteed?

6 Conclusion

Weighted fair division constitutes a significant extension of the basic fair division framework and has
garnered considerable attention in recent times. As we have seen throughout this review, the weighted
setting is often richer and more challenging than its unweighted counterpart. Indeed, each notion from
the unweighted case can typically be extended to accommodate weights in multiple ways. Moreover,
several methods that work well in the absence of weights cease to do so when weights are involved.

Among a wide range of potential future directions, we highlight two that we find particularly inter-
esting.

Open problem 7. Although MMS has been explored in the context of non-additive utilities [Barman and
Krishnamurthy, 2020, Ghodsi et al., 2022], the study of weighted share-based notions has been mostly
restricted to additive utilities. Are there appropriate share-based notions for non-additive utilities in the
weighted setting?

Open problem 8. The notion WEF1 can be extended to handle combinations of goods and chores in a
similar way as in the unweighted setting [Aziz et al., 2022]. Can this extension, or some relaxation of it,
always be satisfied?
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Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia, editors, Handbook of
Computational Social Choice, chapter 12, pages 284–310. Cambridge University Press, 2016.

Steven J. Brams and Alan D. Taylor. Fair Division: From Cake-Cutting to Dispute Resolution. Cam-
bridge University Press, 1996.

Adam Brown, Aditi Laddha, Madhusudhan Reddy Pittu, and Mohit Singh. Approximation algorithms
for the weighted Nash social welfare via convex and non-convex programs. In Proceedings of the
35th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1307–1327, 2024.

Eric Budish. The combinatorial assignment problem: Approximate competitive equilibrium from equal
incomes. Journal of Political Economy, 119(6):1061–1103, 2011.
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