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Outine 5=
 Overview of  Other Methods
Supervised Learning — K-Nearest Neighbour
— Decision Trees — Support Vector
Machines
 Decision Trees — Bayesian Approach
Ensembles — Hidden Markov
— Bagging Models
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Supervised Learning

« Also called classification

« Learn from past experience, and use the learned
knowledge to classify new data

« Knowledge learned by intelligent algorithms
 Examples:

— Clinical diagnosis for patients
— Cell type classification
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Data

« Classification application involves > 1 class of
data. E.g.,

— Normal vs disease cells for a diagnosis problem

 Training data is a set of instances (samples,
points) with known class labels

e Test data is a set of iInstances whose class labels
are to be predicted
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Typical Notations

 Training data
{(X1 Y1), Xor Y2y oons Ky Y2}
where x; are n-dimensional vectors
and y; are from a discrete space Y.
E.g., Y ={normal, disease}

« Test data
{{ul, ?),{u2, ?), ..., {uk, ?), }
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Process

Training data: X

A classifier, a mapping, a hypothesis

J(U)
Test data: U > _
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Relational Representation (g N>

of Gene Expression Data

n features (order of 1000)

gene, gene, gene; gene, ... gene,

m samples
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Features (aka Attributes)

« Categorical features
— color = {red, blue, green}

e Continuous or numerical features
— gene expression
— age

— blood pressure

 Discretization
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QOutlook Temp Humidity Windy, class
Sunny 75 70 true | Play
Sunny 80 920 true | Don’t
Sunny 85 85 false |Don’t
Sunny i 95 true | Don’t
Sunny 69 70 false | Play
Overcast 12 90 true |Play
Overcast 83 78 false | Play
Overcast 64 65 true |Play
Overcast 81 15 false | Play
Rain 71 80 true | Don’t
Rain 65 70 true |Don’t
Rain 75 80 false |Play
Rain 68 80 false |Play
Rain 70 96 false |Play

% National University
of Singapore
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Overall Picture of 95 .
Supervised Learning

Labelled | Algorithms
i B i

Biomedical Decision trees
Financial Emerging patterns
Government SVM

Scientific Neural networks

Classifiers (Medical Doctors)
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Recap: Evaluation of a Classifie

 Performance on independent blind test data

« K-fold cross validation: Given a dataset, divide it
Into k even parts, k-1 of them are used for
training, and the rest one part treated as test data

« LOOCV, a special case of K-fold CV

 Accuracy, error rate

 False positive rate, false negative rate, sensitivity,
specificity, precision
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Requirements of
Biomedical Classification

National University

 High accuracy/sensitivity/specificity/precision

 High comprehensibility
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Importance of Rule-Based Methoo Fj

« Systematic selection of a small number of
features used for the decision making

= Increase comprehensibility of the knowledge
patterns

« C4.5 and CART are two commonly used rule
Induction algorithms---a.k.a. decision tree
Induction algorithms

Copyright 2012 © Limsoon Wong



1
TINUS
95

National University
of Singapore

Structure of Decision Trees

> a1 /. @ Root node
. @ Internal nodes
> a2
@ 8 Leaf nodes

« Ifx,>a;, & X,>a, thenit’s A class
« C4.5, CART, two of the most widely used
 Easy interpretation, but accuracy generally unattractive
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B2 ®
Elegance of Decision Trees

Every path from r

oot
to a leaf forms a Qg} CAD

decision rule
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Brief History of Decision Trees

CLS (Hunt et al. 1966)--- cost driven
e
CART (Breiman et al. 1984) --- Gini Index

ID3 (Quinlan, 1986) --- Information-driven

—

C4.5 (Quinlan, 1993) --- Gain ratio + Pruning i1deas
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SANUS
A Simple Dataset
QOutlook Temp Humidity Windy, class
Sunny 75 70 true | Play
Sunny 80 920 true | Don’t
Sunny 85 85 false |Don’t
Sunny i 95 true | Don’t
Sunny 69 70 false | Play
Overcast 12 90 true |Play
Overcast 83 78 false | Play
Overcast 64 65 true |Play
Overcast 81 15 false | Play
Rain 71 80 true | Don’t
Rain 65 70 true |Don’t
Rain 75 80 false |Play
Rain 68 80 false |Play
Rain 70 96 false |Play
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A Decision Tree

crcast

false

rue
2

« Construction of atree is equiv to determination of
root node of the tree and root nodes of its sub-trees

Exercise: What is the accuracy of this tree?
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Outlook Temperature Humidity |Wind PIaiTennls

Sunny Hot High | Weak
Outlook
e i ‘\ An
LSunnyT ‘Overcast ‘ Rain Example
Source: Anthony Tung
/
Humidity Wind

o
Strong Weak
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Most Discriminatory Feature

 Every feature can be used to partition the training
data

« If the partitions contain a pure class of training
Instances, then this feature is most
discriminatory
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Example of Partitions

« Categorical feature

— Number of partitions of the training data is equal to
the number of values of this feature

* Numerical feature
— Two partitions
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Categorical feature Numerical feature B &
[ , ) § 3 ] ZINUS
Instance # | Outlook Temp | Humidity Windy| class
1 Sunny 75 70 true | Play
2 Sunny 80 90 true |Don’t
3 Sunny 85 85 false | Don’t
4 Sunny 72 95 true |Don’t
5 Sunny 69 70 false |Play
6 Overcast 72 90 true | Play
7 Overcast 83 78 false |Play
8 Overcast 64 65 true | Play
9 Overcast 81 75 false |Play
10 Rain 71 80 true | Don’t
11 Rain 65 70 true | Don’t
12 Rain 75 80 false |Play
13 Rain 68 80 false Play
14 Rain 70 96 false Play
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VY [
true | Play
true | Don’t
false |Don’t
true | Don’t
false |Play
true | Play
false |Play
true | Play
false |Play
true  |Don’t
true | Don’t

false |Play
false Play
false Play

Total 14 training
Instances

A categorical feature is
partitioned based on its
number of possible values

NUS

National University
of Singapore

/ Outlook =

sunny

Outlook =
overcast

10,11,12,13,14
D,D, P, PP

\ Outlook =

rain
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National University
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— AN US
%

5.8,11,13,14
PP.D,P,P

true | Don’t / Temperature
i <=70

Copyright © 2004 by Jinyan Li and Limsoon Wong =

Total 14 training <
Instances

Temperature 1,2,3,4,6,7,9,10,12
> 70 P.D,D,D,P.PP.D,P

N

A numerical feature is
generally partitioned by
choosing a “cutting point”
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Steps of Decision Tree Constructic W

 Select the “best” feature as root node of the
whole tree

« Partition dataset into subsets using this feature
so that the subsets are as “pure” as possible

« After partition by this feature, select the best
feature (wrt the subset of training data) as root
node of this sub-tree

« Recursively, until the partitions become pure or
almost pure
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Let’s Construct a Decision Tree Together—

QOutlook Temp Humidity Windy, class
Sunny 75 70 true | Play
Sunny 80 920 true | Don’t
Sunny 85 85 false |Don’t
Sunny i 95 true | Don’t
Sunny 69 70 false | Play
Overcast 12 90 true |Play
Overcast 83 78 false | Play
Overcast 64 65 true |Play
Overcast 81 15 false | Play
Rain 71 80 true | Don’t
Rain 65 70 true |Don’t
Rain 75 80 false |Play
Rain 68 80 false |Play
Rain 70 96 false |Play
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Three Measures to Evaluate NUS

Which Feature Is Best
 Gini index
* Information gain

* Information gain ratio
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Gini Index

ini(S) = diff of two arbitrarv specimen in S
& o mean specimen in 5

— prob(getting two specimen of diff class in S)
= 1 - prob(getting two specimen of same class in S)

; : C vy D
= 1—)_, prob(getting specimen of class i in 5)°

« Giniindex is the expected value of the ratio of the
diff of two arbitrary specimens to the mean value
of all specimens

 Closer to 1 means similar to “background
distribution”. Closer to 0, means feature is
“unexpected”
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Gini Index

Let 44 = {Cy, ..., Cy} be all the classes. Suppose we are currently at a node
and B is the set of those samples thd,t have been moved to this node. Let f be a feature and d[f]
be the value of the feature f in a sample d. Let S be a range of values that the feature f can take.
Then the Gini index for f in D for the range S is defined as

JiniP(S) =1 " (|{dED |deCy, d[_f]ES}|)

O el |D|

The purity of a split of the value range S of an attribute f by some split-point into subranges 5,
and S5 1s then defined as

gfﬂf}'}{ﬂl..ﬂg] — Z |{d e D |;[f] = S]‘l * 'U”“_r I[S]
S€{S,,52) |D|

we choose the feature f and the ‘-:-pllt pmnt P th:]l minimizes
yim'}} (51,.92) over r].].]. puwlhle dlt.er[ld,tn'e f{-‘dt-l.lri-‘h dnd "5-[]][12- I)Ul[lth o
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Gini Index of Outlook

QOutlook Temp Humidity Windy class

Sunny 75 70 true | Play )
Sunny 80 90 true  Don’t i i0(g) =1 - ) (Hffﬁ D|deCi df]€ 5“)
Sunny 85 85 false | Don’t = ||

Sunny 72 95 true | Don’t

Sunny 69 70 false | Play

Overcast 72 90 true | Play

Overcast RaE e false |Play gini?(51,8) = Y [{d € D | d[f] € S}| « gini?(8)
Overcast 64 65 true | Play S€{5,52} |D|

Overcast 81 7] false | Play

Rain 71 80 true | Don’t

Rain 65 70 true | Don’t

Rain 75 80 false | Play

Rain 68 80 false | Play

Rain 70 96 false |Play

« gini(Sunny) =1 - (2/5)?> - (3/5)?=10.48

« gini(Overcast) =1 - (4/4)>-(0/5)>=0

« gini(Rain) =1 - (3/5)?> - (2/5)? = 0.48

. gini(Outlook) = 5/14 * 0.48 + 4/14 * 0 + 5/14 * 0.48 = 0.34



Characteristics of C4.5/CART Tree Q{?

« Single coverage of training data (elegance)
* Divide-and-conquer splitting strategy

 Fragmentation problem = Locally reliable but
globally insignificant rules

* Miss many globally significant rules; mislead system
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Example Use of Decision Tree Methods: Proteomics
Approaches to Biomarker Discovery

* In prostate and bladder cancers (Adam et al.
Proteomics, 2001)

* In serum samples to detect breast cancer (Zhang
et al. Clinical Chemistry, 2002)

* In serum samples to detect ovarian cancer
(Petricoin et al. Lancet; Li & Rao, PAKDD 2004)

Copyright 2012 © Limsoon Wong



Decision Tree Ensembles
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Motivating Example

h,, h,, h; are indep classifiers w/ accuracy = 60%
C,, C, arethe only classes
tis atestinstance in C,
h(t) = argmaxcci ey N, €{hy, hy, g} | hy(t) = CH
Then prob(h(t) = C,)
= prob(h,(t)=C; & h,(t)=C; & h4(t)=C,) +
prob(h,(t)=C; & h,(t)=C, & h,(t)=C,) +
prob(h,(t)=C; & h,(1)=C, & h(t)=C,) +
prob(h,(t)=C, & hy(t)=C, & h4(t)=C,)
= 60% * 60% * 60% + 60% * 60% * 40% +
60% * 40% * 60% + 40% * 60% * 60% = 64.8%
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Bagging

 Proposed by Breiman (1996)
 Also called Bootstrap aggregating

« Make use of randomness injected to training data

Copyright 2012 © Limsoon Wong
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Malin Ideas

Original training set -
’." :: ”.. Draw 100 samples
o ‘ .yyjth replacement

J

Copyright 2012 © Limsoon Wong
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Given a new test sample T

bagged(T) = argmaxg, ey [{hi € H | hi(T) = Cj

where U = {C}, ..., C,}

Exercise: What does the above formula mean?
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Summary of Ensemble Classifier

NU

aaaaaaa | University
of Singapore

Bagging

Rules may
not be correct
..................................................................................................................... . when

applied to
AdaBoost.M1 ) training data

CS4 Rules correct

Exercise: Describe the decision tree
ensemble classifiers not explained in this ppt
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Other Machine Learning Approaches
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Outline

« K-Nearest Neighbour

« Support Vector Machines
 Bayesian Approach
 Hidden Markov Models

Exercise: Name and describe one other
commonly used machine learning method

Copyright 2012 © Limsoon Wong
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ZINUS
How kNN Works
e Given a new case « A common ‘“distance”

measure betw

. Find k “nearest” samples x and y is

oSt similay points in NSRRI
the training data set where f ranges over
features of the
* Assign new case to samples

the same class to
which most of these
neighbours belong

Exercise: What does the formula above mean?
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Neighborhood

5 of class ©
3 of class +

Y -0

Image credit: Zaki
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Some Issues

 Simple to implement
« Must compare new case against all training cases
— May be slow during prediction

 No need to train
 But need to design distance measure properly

= May need expert for this

« Can’t explain prediction outcome
— Can’t provide a model of the data

Copyright 2012 © Limsoon Wong
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Example Use of khN: OQvarian Cancer Diagn QIUS
Based on SELDI Proteomic Data

e Lietal, Bioinformatics

.
E 100
20:1638-1640, 2004 3
E' o5
« Use kNN to diagnose :
ovarian cancers using .
proteomic spectra -
:
- Data set is from Petricoin g 80 ——L— Ll
et al., Lancet 359:572-577, Number of top-ranked m/z ratios

2002

i - # &L 1 1 ™ .I'. (4 . 5 i K
Fig. 1. Minimum, median and maximum of percentages of correct
prediction as a function of the number of top-ranked m/z ratios in
50 independent partitions into learning and validation sets.
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Support Vector Machines
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Basic Idea

Image credit: Zien

feature ﬂ a

space

(c)

(a) Linear separation not possible w/o errors
(b) Better separation by nonlinear surfaces in input space

(c ) Nonlinear surface corr to linear surface in feature space.
Map from input to feature space by “kernel” function @

= “Linear learning machine” + kernel function as classifier
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Linear Learning Machines

 Hyperplane separating the x’s and o’s points is
given by (WeX) + b = 0, with (WeX) = 2 W[j]*X[]]
= Decision function is lIm(X) = sign((W-X) + b))

Copyright 2012 © Limsoon Wong



Linear Learning Machines

e Solutionis alinear combination of training points
X, with labels Y,

W = 2, o, *Y  *X,,
with a, > 0, and Y, = +1
= lIm(X) = sign(Z, o, *Y,* (X, *X) + b)

1

“data” appears only in dot product!

Copyright 2012 © Limsoon Wong



Kernel Function
« lIm(X) = sign(Z, o, *Y,* (X,.°X) + b)

« svm(X) = sigh(Z, 0, *Y,* (DX,*» ®X) + b)
= svm(X) = sign(Z, o, *Y, * K(X,,X) + b)
where K(X,,X) = (®X,* ®X)

Copyright 2012 © Limsoon Wong
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Kernel Function

« svm(X) = sigh(Z, o, *Y, * K(X,,X) + b)
= K(A,B) can be computed w/o computing ®

* In fact replace it w/ lots of more “powerful”
kernels besides (A * B). E.q.,

— K(A,B) = (A + B)
— K(A,B) = exp(~ || A B|[2/ (2*5)), ...

Copyright 2012 © Limsoon Wong



How SVM Works

« svm(X) = sigh(Z, o, *Y, * K(X,,X) + b)

* To find o, Is a quadratic programming problem
max: X, a,—0.5* X, X a.*a, Y, XY, *K(X,X,)
subject to: 2, a, *Y, =0
and for all o , C 2 o 20

 To find b, estimate by averaging
Yy, = 204 7Y KX, X,)
for all a;, 20
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Example Use of SVM: Recognltlon of Nfsgysv

Protein Translation Initiation Sites

Srflank exon intron exon intron EH O I rfiank
.‘x;n TS = T
: I3 h, | | A £
" \ | | b +
: ‘~ | | 4 7 DNA:A,C,GT
N Y | | F A O e bt ]
transcription \\ L | ),,’r J;,
\ g b o 4
! -l l ;'f ,.*'f
"" v, v Illl = v v |J = v v, 7] -
e ST s e mRNA: A CLG,U
coding region

Zien et al., Bioinformatics 16:799-807, 2000

Use SVM to recognize protein translation initiation sites from
genomic sequences

Raw data set is same as Liu & Wong, JBCB 1:139-168, 2003
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Bayesian Approach




TNUS
Bayes Theorem 95 o
P(d[h)  P(h)
P —
(hld) P(d)

* P(h) = prior prob that hypothesis h holds
 P(d|h) = prob of observing data d given h holds

* P(h|d) = posterior prob that h holds given
observed data d

Copyright 2012 © Limsoon Wong



Bayesian Approach

 Let H be all possible classes. Given a test
Instance w/ feature vector {f, = vy, ..., f. = v}, the
most probable classification is given by

argma’xhjEHP(hjlfl — U1, -- ':'fﬂ — Un)
 Using Bayes Theorem, rewrites to

P(fl =’U1,..-,fn=Un|hj)*P(hj)
P(fl =T}1:"'afﬂ=vﬂ)

* Since denominator is independent of h;, this
simplifies to
argmaxy g P(fi =vi,..., fn = vnl|h;) * P(h;)

argmaxy, . c g
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Naive Bayes

* But estimating P(f;=v, ..., f,;=v,|h;) accurately may
not be feasible unless training data set is large

+ “Solved” by assuming f,, ..., f, are conditionally
Independent of each other

« Then argmax, cgP(fi =v1,---, fo = valhj) * P(hy)
= argmax;, i | [ P(fi = vilh;) * P(h;)

where P(h;) and P(f;=v|h;) can often be estimated
reliably from typical training data set

Exercise: How do you estimate P(h;) and P(f;=v;|h;)?
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Abstractly, the probability model for a classifier is a conditional model

p(C|Fy,...,F,)

over a dependent class variable ¢ with a small number of outcomes or classes, conditional on several feature vanables ) through .. The
prablem is that if the number of features s is large or when a feature can take on a large number of values, then basing such a madel on
probability tables is infeasible. YWe therefore reformulate the model to make it more tractable.

Using Bayes' theorem, we write

plF,..., Fy) '

In practice we are anly interested in the numerator of that fraction, since the denominator does not depend on < and the values of the features
F are given, so that the denorminator is effectively constant. The numerator is equivalent to the joint probability model

p(C,F,..., F,)
which can be rewritten as follows, using repeated applications of the definition of conditional probability:
p(C, Fy,...,F,)
=p(C) p(F, ..., F,|C)
= p(C) p(F1|C) p(F3,..., F4|C, F1)
= p(C) p(F1|C) p(E2|C, Fy) p(Fs, ..., Fy|C, Fi, Fy)
= p(C) p(F1|C) p(F:|C, Fy) p(F3|C, Fi, F3) p(Fy, ..., R |C, R, F3, Fy)

and so forth. Mow the “naive” conditional independence assumptions corme into play: assume that each feature 7 is conditionally independent

of every other feature F, far J % i . This means that

p(Ei|C, Fy) = p(Fi|C)
and so the joint model can be expressed as

p(C, Fy, ..., F,) = p(C) p(Fi|C) p(Fs|C) p(F5|C) ---
= p(C) [ p(E]C).

i=1

Copyright 2012 © Limsoon Wong

p(C|F, ..., Fy) =

Source: Wikipedia



Independence vs
Conditional Independence
* Independence: P(A,B) = P(A) * P(B)
 Conditional Independence: P(A,B|C) = P(A|C) * P(B|C)
* Indep does not imply conditional indep

— Consider tossing a fair coin twice
* Ais event of getting head in 1st toss
* B is event of getting head in 2nd toss
« Cis event of getting exactly one head

— Then A={HT, HH}, B={HH, TH} and C={HT, TH}
— P(A,B|C) =P({HH}|C)=0

— P(A|C) = P(A,C)/P(C) =P({HT})/P(C)=(1/4)/(1/2) =1/2
— Similarly, P(B|C) =1/2
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Example Use of Bayesian: D@Slgn of Screens ¥ Nanonawnwers.ty
Macromolecular Crystallization

Hennessy et al., Acta Cryst
D56:817-827, 2000

Xtallization of proteins
requires search of expt
settings to find right
conditions for diffraction-
guality xtals

BMCD is a db of known
xtallization conditions

Use Bayes to determine
prob of success of a set of
expt conditions based on
BMCD

of Singapore

Diftraction

' Buller t | Temp 3 ['/ T \ 4 Muunul;
. & \k Concen

._\"\_
’ PPT
x\'[unu,u @

Figure 1

Crystallization parameter dependency graph. The graph represents the
parameters included in the calculation of the estimated probability of
success and their dependencies. A connecting arc from pH to buffer
indicates that the probability distribution for the buffer mav depend on
the value of the pH. The lack of a connecting arc between two parameters
reflects conditional independence (the probability distnbution for a
parameter is independent of the value of the other parameter).

— _-f' qm
x'l.'_unu..rl

Copyright 2012 © Limsoon Wong



Hidden Markov Models




What is a HMM

HMM is a stochastic generative
model for seqs

Defined by model parameters ‘ ‘

— finite set of states S

— finite alphabet A

— transition prob matrix T
— emission prob matrix E

Move from state to state as per T
while emitting symbols as per E

Copyright 2012 © Limsoon Wong



Order of a HMM

* In nth order HMM, T & E depend on all n previous
states

 E.g., for 1st order HMM, given emissions X = Xy, X,
..., & states S =s,, S,, ..., the prob of this seq is

Prob(X,5) = Hth{:ﬂdai} = HE{:L‘JSJ * T(8i_1,8;)

Copyright 2012 © Limsoon Wong



Using HMM

 Given the model parameters, compute the
probability of a particular output sequence. Solved
by the forward algorithm

« Given the model parameters, find the most likely
sequence of (hidden) states which could have
generated a given output sequence. Solved by the
Viterbi algorithm

« Given an output sequence, find the most likely set
of state transition and output probabilities. Solved
by the Baum-Welch algorithm

Exercise: Describe these algorithms

Copyright 2012 © Limsoon Wong
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Example: Dishonest Casino

 Casino has two dices: « Game:
— Fair dice — You bet $1
« P()=1/6,i=1..6 — You roll
— Loaded dice — Casino rolls
* P()=1/10,1=1.5 — Highest number wins $2

- P(i)=1/2,i=6

« Question: Suppose we
played 2 games, and the
sequence of rolls was 1, 6,
2, 6. Were we likely to have
been cheated?

« Casino switches betw fair
& loaded die with prob 1/2.
Initially, dice is always fair

Copyright 2012 © Limsoon Wong



I ————————
TINUS

National University

“Visualization” of Dishonest Casin

1/2
1/2 1/2

1/2

Emission Matrix Transition Matrix

H1|Fair)= 1/6 K1|Loaded)= 1/10 T(Loaded,Loaded) = 1/2
EH2|Fair)= 1/6 H2|Loaded)= 1/10 T({Loaded, Fair)= 1/2
H3|Fair)= 1/6 H3|Loaded)= 1/10 T(Fair,Fair) = 1/2
EH4|Fair)= 1/6 H4|Loaded)= 1/10 T(Fair,Loaded) = 1/2
ES|Fair)= 1/6  HKS5|Loaded)= 1/10 T(?,Fair)= 1.0
H6|Fair)= 1/6  H6|Loaded)= 1/2 T(? Loaded) = 0.0

Copyright 2012 © Limsoon Wong



1,6, 2,67 95 US>
We were probably cheated...

Prob(X, S = Fair, Fair, Fair, Fair) = FE(1|Fair)«T(?, Fair) *
E(6|Fair) «+ T(Fair, Fair)
E(2|Fair) = T(Fair, Fair) =
E(6| Fair) * T(Fair, Fair)
1 1 1 1 1 1
= — %]k —k —k — k — %k — %

1
6 6 26 2%6"2
— 0.6451 %1075

Prob(X. S = Fair, Loaded, Fair, Loaded) = FE(1|Fair)+T(?, Fair) =
E(6|Loaded) + T (Fair, Loaded) *
E(2| Fair )=* T(Loaded, Fair) =
E(6|Loaded) + T Fair, Loaded)

1 1 1 1 1 1 1
= _—klk—k—k—k—%— % —

6 2 2 6 2 2 2
= 8.6806* 10"
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Example Use of HMM: PrOtein FamilieS MOde

« Baldi et al., PNAS 91:1059-
1063, 1994 a

e HMMis used to model
families of biological
sequences, such as S " 5
kinases, globins, &
Immunoglobulins

e Bateman et al., NAR 32:D138-
D141, 2004

; FiG. 1. HMM architecture. § and E are the start and end states.
* HMMisu Sed tom Od el Sequence of main states m; is the backbone. Side states d; (resp. ;)

6190 fam | | | es Of p rOtei N correspond to deletions (resp. insertions).
domains in Pfam
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Concluding Remarks...




What have we learned?

e Decision Trees

« Decision Trees Ensembles
— Bagging

e Other Methods
— K-Nearest Neighbour
— Support Vector Machines
— Bayesian Approach
— Hidden Markov Models

Copyright 2012 © Limsoon Wong
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« Weka is a collection of machine learning
algorithms for data mining tasks. The algorithms
can either be applied directly to a dataset or
called from your own Java code. Weka contains
tools for data pre-processing, classification,
regression, clustering, association rules, and
visualization.

Exercise: Download a copy of WEKA. What are the names
of classifiers in WEKA that correspond to C4.5 and SVM?
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http://www.cs.waikato.ac.nz/ml/weka
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