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CS2220: Intro to Computational Biology
Gene Feature Recognitio
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Some relevant biology

Wong Limsoon, CS2220, AY2024/25



1. Transcription

Central
dogma

Protein synthesis

Wong Limsoon , CS2220 , AY2024/25



Transcription

Synthesize mMRNA from
one strand of DNA

RNA polymerase
temporarily separates
double-stranded DNA

It begins transcription at
transcription start site

Once RNA polymerase
reaches transcription stop
site, transcription stops

Wong Limsoon, CS2220, AY2024/25

More “steps” for Eukaryotes:

Transcription produces pre-
MRNA that contains both
Introns & exons

5’cap & poly-A tall are
added to pre-mRNA

RNA splicing removes
Introns & MRNA is made

MRNA are transported out
of nucleus



Translation

Synthesize protein from 43 = 64 codons

MRNA Not 1-to-1 corr to 20 amino acids
Each amino acid is encoded Most organisms use the same
by consecutive seq of 3 decoding table

nucleotides, called a codon
Amino acids can be classified into

The decoding table from 4 groups. A single-base change in
codon to amino acid is a codon is usually insufficient to
called genetic code cause a codon to code for an

amino acid in diff group



Genetic code

Start codon
ATG (code for M)

Stop codon
TAA
TAG
TGA

Wong Limsoon, CS2220, AY2024/25
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TTT Phe [F] || TCT Ser [3] | TAT Twr [Y] | TGT Cys [C]
TTC Phe [F] | TCC Ser [3] | TAC Tyr [Y] | TGOS Cys [C]
TTa Leu [L] || TCA Ser [3] | TAL Ter [end] | TG4 Ter [end]
TTG Leu [L] | TCG Jer [3] | TAG Ter [end] | TGS Trp [W]
CTT Len [L] || OCT Pro [F] | CAT His [H] CGT Arg [R]
CTC Leu[L] | CCCPro[P] | CAC His [H] CGC Arg [R]
CTALeu[L] |CCAPro[P] | CAL Gn[Q] CGA Arg [R]
CTGLeu[L] |CCGPro[P] | CAGGn[Q] CGG Arg [R]
ATT Tle [I] | ACT Thr [T] | AAT Asn [M] | AGT Zer [3]
ATC e [I] | ACC Thr [T] | AAC Asn [N] | AGC Zer [3]
ATA Qe [I] | ACA Thr [T] | AA84 Lys [E] | AGA Arg [E]
ATG Met [M] | ACG Thr [T] | AAG Lys [E] | AGG Arg [R]
GIT Val [V] || GCT Ala[4] | GAT Asp [D] GGT Gy [3]
GIC Val[V] | GCC Ala[4] | GAC Asp [D] | GGC Gly [3]
GTA Val[V] | GCA Ala[A] | GAL Glu [E] GGA Gly [G]
GG Val[V] | GCG Ala[A] | GAG Glu [E] GGG Gly [G]

nbna|amoa|nboa|mmo_}|




Example

Example of computational translation - notice the indication of {alternative) start-codons:

VIRTUAL RIBOSOME

Tran=slation table: Standard 5GCO

>Segl
Feading frame: 1

M v L 5 A A D K G N V ¥ L LA WG ¥ Vv 6 66 242 2 E Y G & E 2 L
5' ATGGTGCTGICTGCCGCCGACARGEECARTGTCAAGGCCGCCTGEEGCAAGETTGECEECCACGCTGCAGAGTATGGCGCAGAGECCCTE 90
S B by

E R M F L. 5 F p T T K T ¥ F P H F D L. 5 H G 5 & Q V K G H G
o' FAGAGEATGTITCCTGAGCTTCCCCACCACCARGACCTACTTCCCCCACTTCGACCTRAGCCACGGCTCCGCGCAGGTCALGGGCCACEEC 180

5' GCGAAGGTGGCCGCCGCGCTGACCARAGCGETGEAACACCTGEACGACCTGCCCGETGCCCTGTCTGARCTGAGTGACCTGCACGCTCAC 270
.................. [ I O TR 1 0 SN O 1 SV 1 1 SO 0 TR,

K L. R VvV D P V W F K L L. 5 H 5 L L v T L & 5 H L P 5 D F T P
2" AAGCTGCGIGTIGGACCCGGTCARCTTCARGCTTCTGAGCCACTCCCTGCTGETGACCCTGECCTCCCACCTCCCCAGTGATTTCACCCCC 360

T P e e eeeeens FIDII ) eeennn (I I

A ¥V H A 5 L. b K F L A W ¥V 5 T V L T 5 K Y R *
a' GCOGGEICCACGCCTCCCTGGACARGTTCTTGGCCARCGTGAGCACCGTGCTGACCTCCARATACCGTTAL 423

Annotation key:
>»» : BTART codon (=strict)
}}) : S5TAERT codon (alternatiwve)

i L K VvV A A A LTZXAVYVEU HTLT DT DTLT POGSZAZTL S5 EL S5 DTL HBAH
1 =%% : STQE

Wong Limsoon, CS2220, AY2024/25



Translation initiation sites

An introduction to the World’s simplest TIS recognition system



Translation initiation site

3 filank

Srfilank exon intron ExXon intron ExXon
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mRENA: A,C,G,U
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A sample cDNA

299 HSU27655.1 CAT U27655 Homo sapiens

CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCCATGGCTGAACACTGACTCCCAGCTGTG
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCATGGCTTTTGGCTGTCAGGGCAGCTGTA
GGAGGCAGATGAGAAGAGGGAGATGGCCTTGGAGGAAGGGAAGGGGCCTGGTGCCGAGGA
CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

What makes the second ATG the TIS?

Wong Limsoon, CS2220, AY2024/25

80
160
240

80
160
240
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Recall the knowledge discovery workflow...

Training data gathering

Feature generation
k-grams, distance, domain know-how, ...

Feature selection
Entropy, 72, CFS, t-test, domain know-how...

Feature integration
SVM, ANN, PCL, CART, C4.5, kNN, ...

Wong Limsoon , CS2220 , AY2024/25 1 2



Training & testing data

Vertebrate dataset of Pedersen & Nielsen [isme'97]
3312 sequences

13503 ATG sites

3312 (24.5%) are TIS

10191 (75.5%) are non-TIS

Use for 3-fold x-validation expts

Wong Limsoon , CS2220 , AY2024/25 13



Feature generation

K-grams (ie., k consecutive letters)

K=1,2 3425, ...

Window size vs. fixed position

Up-stream, downstream vs. anywhere in window

In-frame vs. any frame

14
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Exercise

299 HSU27655.1 CAT U27655 Homo sapiens

CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCCATGCGCTGAACACTGACTCCCAGCTGTG 80
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCATGGCTTTTGGCTGTCAGGGCAGCTGTA 160
GGAGGCAGATGAGAAGAGGGAGATGGCCTTGGAGGAAGGGAAGGGGCCTGGTGCCGAGGA 240

CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT

Window = +100 bases

In-frame, downstream: GCT =1, TTT =1, ATG=1...
Any-frame, downstream: GCT =3, TTT =2, ATG = 2...
In-frame, upstream: GCT =2, TTT=0,ATG =0, ...

Find the in-frame downstream ATG



Feature generation - Summary

Raw Data

aryotes; Metazoa; Chordata;

. _H i 0, 10 i i f

........................................................ 1EEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

g

An ATG segment — positive sample

» 286 +1_Index{56)
HHHHHHHHHHNNHNHNHHHNHHHHHHHHHHNHNNNNNHHNNHNNNC CG TCAGAGEGCCGACACTCTTCTCTGTGCGAGCGAG
CCGCCGACCGCCAAGCAAAATGGGAAATGAGGCAAGTTATCCTTTGGAAATGTGCTCACACTTTGATGCAGATGAAATTA
AAAGGCTAGGAAAGAGATTTAAGAAGCTCGATTTGGACAAT

—

Wong Limsoon, CS2220, AY2024/25



Feature generation

K-grams (ie., k consecutive letters)
K=1,2234,5, ..

Too many features

Up-stream, downstream vs. anywhere in window

In-frame vs. any frame

For each value of k, there are 4% - 3 - 2 k-grams w

Ifweusek=1, 2, 3, 4,5, there would be 24 + 96 + 384
+ 1536 + 6144 = 8184 features!

This Is too many for most machine learning methods
Most of these 8184 features are irrelevant
They confuses these machine learning methods

17



Feature selection: Principle

Choose a signal w/ low intra-class distance

Choose a signal w/ high inter-class distance

Which of these three features are best for distinguishing
Class 1 from Class 2? Why?

18
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Feature selection: t-statistic

The t-stats of a signal is defined as

_ |1 — o
Jof/n1) + (08/no)
0

where g7 is the variance of that signal
in class ¢, u; 1s the mean of that signal
in class 1, and n; is the size of class 3.

{

19
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Feature selection: ¢2

The X2 value of a signal is defined as:

y2o® k (Ayj— E;;)°
i=14=1 E;; ’

where m is the number of intervals, &
the number of classes, A4;; the number
of samples in the ith interval, jth class,
R; the number of samples in the ith in-
terval, C; the number of samples in the
jth class, N the total number of sam-
ples, and E;; the expected frequency of

Ajj (Eyj = Ry = Cj/N).

20



Example

Suppose you have a sample of 50 men and 50 women
and the following weight distribution is observed:

\
obs exp (obs — exp)?/exp
HM 40 |60*50/100=30 3.3 12=16.6
P = 0.00004,
HW 20 | 60*50/100=30 3.3 df = 1
LM 10 | 40*50/100=20 5.0 So, weight and
LW 30 | 40*50/100=20 5.0 y sex are not indep

Is weight a good attribute for distinguishing men from
women?



Feature selection: CFS

Instead of scoring individual signals, how about scoring a
group of signals as a whole?

Correlation-based Feature Selection (CFS)

A good group contains signals that are highly correlated
with the class, and yet uncorrelated with each other

What is the main challenge in implementing CFS?

22
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‘Exercise: Distributions of two 3-grams

Name: INFRAME_UPSTREAM_ATG Type: Numeric MName: INFRAME_LPSTREAM_CTT Type: Mumetic
Missing: 0 (Doa"ojl Distinck: 11 |_|I'IiC|LIE: 1 |:|:|°."'o:| Missing: 0 |:|:|°.-"o:| Diskinck: 7 |_|I'|il:||.IE: 1 I:l:lo.-"o:I
Skakiskic YValue Skatiskic Yalue

Minirnurm i Minimunm 1]
Maximurm 10 Pasimum A
Mean 0.585 Mean 0.419

Class: Class (Mom) w |[ Yisualize Al ] |C|Hs= Class (Nam) - | Visualize Al

0

v2=1672.97447 Y2

Which is the better one? Why?

Wong Limsoon, CS2220, AY2024/25
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Exercise

CFS selected these features for recognizing TIS:
Position —3

In-frame upstream ATG

In-frame downstream

TAA, TAG, TGA,

CTG, GAC, GAG, and GCC

Why would these features be important for recognizing
TIS in MRNA?

Wong Limsoon, CS2220, AY2024/25




Exercise

Sample k-grams selected by CFS for recognizing TIS:
Position -3

in-frame upstream ATG

in-frame downstream

TAA, TAG, TGA,

CTG, GAC, GAG, and GCC

Why would these features be important for recognizing
TIS in mMRNA?

Wong Limsoon, CS2220, AY2024/25

Here is what ChatGPT said
about position -3...

25



Here is what ChatGPT said
about in-frame up-stream ATG:

Answer, cont’d

Exercise

Sample k-grams selected by CFS for recognizing TIS:
Position -3

in-frame upstream ATG

in-frame downstream

TAA, TAG, TGA,

CTG, GAC, GAG, and GCC

Why would these features be important for recognizing
TIS in mMRNA?

Wong Limsoon, CS2220, AY2024/25
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Answer, cont’d

Exercise

Sample k-grams selected by CFS for recognizing TIS:
Position -3

in-frame upstream ATG

in-frame downstream

TAA, TAG, TGA,

CTG, GAC, GAG, and GCC

Why would these features be important for recognizing
TIS in mMRNA?

Wong Limsoon, CS2220, AY2024/25

Here i1s what ChatGPT said about
these TAA, TAG, TGA:

27



Answer, cont’d

Exercise

Sample k-grams selected by CFS for recognizing TIS:
Position -3

in-frame upstream ATG

in-frame downstream

TAA, TAG, TGA,

CTG, GAC, GAG, and GCC

Why would these features be important for recognizing
TIS in mMRNA?

Wong Limsoon, CS2220, AY2024/25

Here i1s what ChatGPT said about
these codons:

28



ChatGPT Is quite clever!

Wong Limsoon, CS2220, AY2024/25
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Feature integration

KNN

Given a test sample, find the k training samples that are
most similar to it. Let the majority class win

SVM

Given a group of training samples from two classes,
determine a separating plane that maximises the margin
of error

Naive Bayes, ANN, C4.5, ...

30
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Results: 3-fold x-validation

predicted |predicted
as positive |as negative

Y Exercise:
EZ;:EZ Eg ?; What is TP/(TP+EP)?

TP/(TP+FN) TN/(TN+FP) TP/(TP +FP) Accuracy

Naive Bayes 84.3% 86.1% 66.3% 85.7%
SVM 73.9% 93.2% 77.9% 88.5%
Neural Network  77.6% 93.2% 78.8% 89.4%

Decision Tree 74.0% 94.4% 81.1% 89.4%




Improvement by voting

Apply any 3 of Naive Bayes, SVM, Neural Network, &
Decision Tree. Decide by majority

TP/(TP+FN) TN/(TN+FP) TP/(TP+FP) Accuracy

NB+SVM+NN  79.2% 92.1% 76.5% 88.9%
NB+SVM+Tree 78.8% 92.0% 76.2% 88.8%
NB+NN+Tree 77.6% 94.5% 82.1% 90.4%
SVM+NN+Tree 75.9% 94.3% 81.2% 89.8%
Best of 4 84.3% 94.4% 81.1% 89.4%

Worst of 4 73.9% 86.1% 66.3% 85.7%

Wong Limsoon, CS2220, AY2024/25 32



Improvement by “scanning rule”

Apply Naive Bayes or SVM left-to-right until first ATG
predicted as positive. That's the TIS; skip the rest

Naive Bayes & SVM models were trained using TIS vs.
Up-stream ATG

TP/(TP+FN) TN/(TN+FP) TP/(TP+FP) Accuracy

NB 84.3% 86.1% 66.3% 85.7%
SVM 73.9% 93.2% 77.9% 88.5%
NB+Scanning 87.3% 96.1% 87.9% 93.9%

SVM+Scanning 88.5% 96.3% 88.6% 94.4%




Performance comparison

TP/(TP + FN)

TN/(TN + FP)

TP/(TP + FP)

Accuracy

NB

Decision Tree
NB+NN+Tree
SVM+Scanning
Pedersen&Nielsen
Zien

Hatzigeorgiou

84.3%

74.0%

77.6%

88.5%

78%

69.9%

86.1%

94.4%

94.5%

96.3%

87%

94.1%

66.3%

81.1%

82.1%

88.6%

85.7%

89.4%

90.4%

94.4%*

85%

88.1%

94%*

Wong Limsoon, CS2220, AY2024/25

* result not directly comparable
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Technique comparison

Pedersen & Nielsen psweo7] Our approach
Neural network

o Explicit feature generation
No explicit features

Explicit feature selection

Zien Bioinform00 ' '
[Bioinform'00] Use any machine learning

SVM + kernel engineering method w/o any form of
No explicit features complicated tuning
Hatzigeorgiou sisinformo2] Scanning rule is useful

when predicting TIS for

Multiple neural networks
MRNA

Scanning rule
No explicit features

Wong Limsoon, CS2220, AY2024/25
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Exercise

Should the scanning rule be used when predicting TIS
on whole chromosome?

Wong Limsoon, CS2220, AY2024/25
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MRNA—protein

Ribonucleic acid

Wong Limsoon, CS2220, AY2024/25

Codon 1 A‘

Coaon3LO

G

c

]

B

C Codon 2 T
G=

G

A Codon 3 E!
G_|

c=

U Codon 4 I—

l.I_

c

G Codon 5 R
G—

A=

G Codon & S

c

U

A

G

How about using k-grams
from the translation?

E! S AV 4 (el
‘Tyr - |Cys ~ |C

|Leu T. |Ser ‘Stup (Ochre) |Stup (Tmber) |.f—\

|Leu - |Ser ‘Stup (Amber) |Trp W |G

|C |Leu |Pro D‘I-Ls 1% | |J‘35.rg R |U
|Leu |Pro - ‘I—Iis - |J‘35._rg o |C

Lew  |[Pro Gin | Airg A

Lew  |Pro Gin Q_|.Arg |G

A I Thr A S U
C e ImroN
|Ile |Thr Lys K_|_Arg A

‘Lys brg | G

val |Ala \Asp | Gy G U

Ala | Gly =

|val | Ala \Glu | Gly A

[Val | Ala Giu | Gly IE

37



Amino-acid features

False TIS False TIS
{(upstream) True TIS (downstream)

' v !

cDNA
sequence

______ GGACGG (False)ACTGOC. .. ... GR (False) TA_ ...
G9bps 99bps 33aa 3302
a (false) TIS window coding amino acid sequence

...... CTCGAT (True)GCACCT. ... oo LD (True) AP......
ﬁ—/ e — —— o —
bps 99bps 33aa 33aa
a (true) TIS window amino acid sequence

38
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Amino-acid features

New feature space (total of 927 features + class label)

42 1-gram amino 882 2-gram amino 3 bio-know- class
acid patterns acid patterns ledge patterns label
UP-A, UP-R, UP-AA, UP-AR, ..., DOWN4-G True,
L UP-N, DOWN- UP-NN, DOWN-AA, UP3-AorG, False
A, DOWN-R, ..., DOWN-AR, ..., UP-ATG
DOWN-N DOWN-NN (boolean tvpe,
(numeric type) (numeric type) Y orN)
Frequency as values
1,3,50,4, ... 6,2,7,0,5,... N, N, N, False
6,5,7,9,0, ... 2,0,3,10,0, ... Y, Y, Y, True

Wong Limsoon, CS2220, AY2024/25
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Amino acid K-grams discovered by entropy

Sample k-grams selected by CFS for recognizing TIS:
Position —3

Fold UP- DOWN- UP3- DOWN- DOWN- UP- DOWN- DOWN- DOWN- UP-

ATG  STOP  AorG A v A L D E G
1 1 2 4 3 6 3 8 9 7 10
2 1 2 3 4 5 6 [ 8 9 10
3 1 2 3 + 5 6 8 9 7 10

Wong Limsoon, CS2220, AY2024/25 40



Independent validation sets

From Hatzigeorgiou:
480 fully sequenced human cDNAs

188 left after eliminating sequences similar to training set
(Pedersen & Nielsen’s)

3.42% of ATGs are TIS

Our own:

Well-characterized human gene sequences from
chromosome X (565 TIS) and chromosome 21 (180 TIS)

41
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Validation results, on Hatzigeorgiou’s

Algorithm Sensitivity  Specificity  Precision  Accuracy
SVMs(linear) 96.28% 89.15% 2531%  89.42%
SVMs(quad) 94.14% 90.13% 26.70%  90.28%

Ensemble Trees 92.02% 92.71% 32.52% 92.68%

Using top 100 features selected by entropy and trained
on Pedersen & Nielsen’s dataset

42



Validation results, on Chr X & 21

Our | | M
method— |

M | -j’ _
-
g 06 i .\ _
@ __—AT
& 04 kR - Gpr
W

0.2 |

0 & | | | |
0 02 04 06 08 1

1-specificity

Using top 100 features selected by entropy and trained
on Pedersen & Nielsen’s

43

Wong Limsoon, CS2220, AY2024/25



About the inventor: Huiqging Liu

Liu Huiging
PhD, NUS, 2004

Director of Translational Bioinformatics
at Daiichi Sankyo

Asian Innovation Gold Award 2003

New Jersey Cancer Research Award
for Scientific Excellence 2008

Gallo Prize 2008

44
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Recognition of
Transcription Start Sites

An introduction to the World’s best TSS recognition system of its time:
A heavy tuning approach

Wong Limsoon, CS2220, AY2024/25
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Transcription start site

intran EX oI intran X1 I flank

|
4 |
transcription "\\ "u\\ |
x 8
|
|

Y ",
LY b i
R S mRNA: A C.G,U

coding region

46
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Structure of Dragon Promoter Finder

SUPPLIED SELECTED BY OUTPUT
BY USER USER
{ 1 H ] [ 1
DNA ACCURACY
Aquince RANGE
MODEL
SELECTOR
MODEL_1
DATA- -
WINDOW
P ——— B :D | PREDICTION
SELECTOR
-200 to +50 voveLn | »
window size | SLDING
WINDOW Model selected based

on desired sensitivity

47
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Each model
has two
submodels
based on GC
content

GC content

HC + #G
Window Size

(C+G) =

Why are the submodels
based on GC content?

SUPPLIED
BY USER
1

DNA
sequence

GC-rich sTbmodeI

SUBMODEL_A

SLIDING
DATA-
WINDOW

é—. PREDICTION

SUBMODEL_B

GC-poor submodel

QUTPUT

48



Data analysis within submodel

BASIC PREDICTOR MODEL
DNA SEQUENCE PREDICTOR
SUPPLIED QUTPUT
BY USER

...................................................

S
— 1 Promoter Sensor

\

—— }=—=3 Exon Senson\-

content of \ \

data
pre-processing |(—m= PREDICTION
and ANN

a sliding
data- :'\V Intron Sensor
window

K-gram (k = 5) positional weight matrix

49
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Promoter, exon, intron sensors

These sensors are positional weight matrices of k-
grams, k = 5 (aka pentamers)

They are calculated as below using promoter, exon,
Intron data respectively

Pentamer at it" position in input

Window size—#7—4 | ) [
I 2.7 ®f}'.:} i1t pi = p;
(Zmaxf},} 0,if p; # pj
i=1 / |
Frequency of jt pentamer at jth pentamer at ith position

ith position in training window in training window

50



Just making sure you know what | mean

3 DNA seq of length 10:
Seq, = ACCGAGTTCT
Seq, = AGTGTACCTG
Seq; = AGTTCGTATG

1-mer posl pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9 posl10

3/3 |0/3 [0/3
0/3 |1/3 [1/3
0/3 |2/3 |[0/3
0/3 |0/3 [2/3

4|0 |>

Wong Limsoon , CS2220 , AY2024/25 5 1



Just making sure you know what | mean

3 DNA seq of length 10:
Seq, = ACCGAGTTCT
Seq, = AGTGTACCTG
Seq; = AGTTCGTATG

Exercise:

How many rows should
this 2-mer table have?

2-mer

posi

pos2

pos3

pos4

pos5S

pos6

pos7

pos8

pos9

AA 0/3 0/3 0/3
AC 1/3 0/3 0/3 1/3
1T 0/3 0/3 1/3 1/3

52



Feature generation & integration by ANN

Tuning parameters

Sp = Sat( P
S; = Sat(cf —0;,
Spp = Sat(O' Jﬂa(,z:bu)
where the function sat is defined by
‘a, if X>a
sat(x,a,b)y=<x, if hb<x<a.
b, if b>x

Tuned
threshold

.

S|
SIE
eX -e X
tanh(x) e net=2Xs*

Feature generation

Feature integration by ANN

53



Accuracy comparison

Accuracy of Dragon Promoter Finder Ver. 1.2 & 1.3
100 T T T ] T ' T ' 1

— DPFvi2
— DPFv13

& NNPP2.1(0.99)
i @ NNPP2.1{0.8)

1 % Promoterinspector |

g B Promoter2.0

a 70- : &
£ | @

o

= 60

>

o

s

— 5ot s ]

Sensitivity in %

:Witry+(§3 submodels

without C+G submodels

0 10 20 30 40 50 60 70 80 80 100
Positive predictive value ppyv in % = 100 x TR/(TP+FP)
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Training data criteria & preparation

Contain both positive and TSS from EPD

negative sequences 793 vertebrate promoters
Sufficient diversity, 200 to +50 bp of TSS
resembling different
transcription start non-TSS from GenBank
mechanisms

800 exons
Sufficient diversity, 4000 introns
resembling different non- 250 bp,
promoters

non-overlapping,

Sanitized as much as <50% identities

possible

Wong Limsoon , CS2220 , AY2024/25 55



Tuning data preparation

To tune adjustable system parameters in Dragon, a
separate tuning data set was needed

TSS from

20 full-length gene seqs
with known TSS

-200 to +50 bp of TSS
no overlap with EPD

Wong Limsoon, CS2220, AY2024/25

Non-TSS from

1600 human 3’'UTR seqs
500 human exons

500 human introns

250 bp

no overlap
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Testing data criteria & preparation

Seqs should be from the 159 TSS from 147 human
training or evaluation of and human virus seqs

other systems (no bias!)
Cumulative length of more

Seqs should be disjoint than 1.15Mbp
from training and tuning
data sets Taken from GENESCAN,

Geneld, Genie, etc.
Seqs should have TSS |

Seqs should be cleaned
to remove redundancy,
<50% identities
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About the inventor: Vlad Bajic

Viadimir B. Bajic
Principal Scientist, I1°R, 2001-2006

Director & Professor,
Computational Bioscience
Research Center, KAUST

Passed away in 2019



Recognition of
Poly-A signal sites

A twist to the “feature generation, feature selection, feature integration”
approach

Wong Limsoon, CS2220, AY2024/25
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Eukaryotic pre-mRNA processing

Fukaryotic pre-mRNA processing

cxXon exon

pre-mRNA S
S'UTR

Capping / splicing l\r

C l e aV ag e l\_" [ sata

Polyadenylation l,_/

mature mRNA @ |

Image credit:

msoon, CS2220, AY2024/25



http://www.polya.org/

Polyadenylation in eukaryotes

Add poly(A) tail to RNA Poly(A) tail is impt for
Begins as transcription nuclear export, translation
finishes & stability of mMRNA

3’-most segment of newly-  Tail is shortened over time
WELLS NS IS E 0l When tail is short enough,

Poly(A) tail Is then the mRNA is degraded
synthesized at 3' end

The structure of a typical human protein coding mRNA including the untranslated regions (UTRs)

Cap|[5' UTR Coding sequence (CDS) 3'UTR P':Eh'fi‘ﬁ‘
Start Stop al
3!

Source: Wikipedia
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http://upload.wikimedia.org/wikipedia/commons/b/ba/MRNA_structure.svg

Poly-A signals In human

Wong Limsoon, CS2220, AY2024/25

Table 2. Most Significant Hexamers in 3’ Fragments: Clustered Hexamers

Observed % Position

Hexamer (expected) sites pe average = SD Location®
455 25715 5

AAUAAA 3286 (317) 58.2 0 ~-16 = 4.7 508 __‘
AUUAAA 843 (112) 14.9 0 -17 =53 158 - _‘_ .
AGUAAA 156 (32) 2.7 6 x 10-%7 16 = 5.9 33 - X ‘ A ]
UAUAAA 180 (53) 3.2 4 x 104 -18 = 7.8 33 - “. .
CAUAAA 76 (23) 1.3 1x10°'8 —17 = 5.9 18 [ - ,‘ |
GAUAAA 72 (21) 1.3 2 x 108 —18 = 6.9 13 i h‘. |
AAUAUA 96 (33) 1.7 2x10°"” -18 = 6.9 13 i “h |
AAUACA 70 (16) 1.2 5x 1072 ~18 = 8.7 13 i ok,
AAUAGA 43(14) 07 1x10°° ~18 + 63 18 A |
AAAAAG 49 (11) 0.8 5x10°"7 ~18 + 89 1g [ A i
ACUAAA 36 (11) 0.6 1x10°% —17 + 8.1 13 [ : A

Beaudoing et al., Genome Research, 10:1001-1010, 2000
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Poly-A signals in Arabidopsis

In human, 58.2% of PAS is A AUAAA

Table 2. Most Significant Hexamers in 3’ Fragments: Clustered Hexamers

Observed %o Position
Hexamer (expected)® sites P average * SD Location®
-35 -15
—45 —25 =5
500
AAUAARA 3286 (317) 58.2 0 16 = 4.7 0

150
AUUABA  seain s o ress of M

30 .
AGUAAA 156 (32) 2.7 6x 1057 16 = 5.9 (}Ejj BeaudOII’]g et al,,

UAUAAA 180 (53) 3.2 4% 10 —18 + 7.8 0 m Genome Research’

CAUAAA 76 (23) 13 1x107® -17 = 5.9 0 E:j‘-j 101001_1010] 2000
GAUAAA 72 (21) 1.3 2x 10718 —18 + 6.9 13|::Ij

AAUAUA 96 (33) 1.7 2x 1077 —18 + 6.9 Tg E:j:‘
AAUACA 70 (16) 1.2 5 x 10723 —18 + 8.7 13 E—j:'
AAUAGA 43(14) 0.7 1x10°° 18 = 6.3 18 I:jj
AAAAAG 49(11) 0.8 5x10°"7 18 = 8.9 12'::3
ACUAAA 36 (11) 0.6 1x10°° —17 = 8.1 13 I:m

In contrast PAS in Arabidopsis Is highly degenerate
E.g., only 10% of Arabidopsis PAS is AAUAAA!
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Cascade
classifier
approach on
Arab PAS sites

| Training Data | e

I — [

Prediction scores at every 10bp interval
l—.— —.—l

=51, s2, s3, 54, s5H, =6, =7, =5, s9=

Cascade Classifier {SMO2)

{+ve) if score = threshold
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Data collection

Dataset #1 from Hao Han, 811 +ve seq (-200/+200)
Dataset #2 from Hao Han, 9742 —ve seq (-200/+200)

Dataset #3 from Qingshun Li
6209 (+ve) seq (-300/+100)
1581 (-ve) intron (-300/+100)
1501 (-ve) coding (-300/+100)
864 (-ve) &’utr (-300/+100)
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Feature generation, selection, & integration

Feature generation

3-grams, compositional features (4U/1N. G/U*7, etc.)
Freq of features above in 3 diff windows:

(-110/+5), (-35/+15), (-50/+30)

Feature selection: y2

Feature integration & cascade: SVM
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Score profile relative to candidate sites

o
o e
® 0.4 (+ve)
o — (w)
2 03

0.2 -

0.1

0

-50 -40 -30 -20 -10 0 10 20 30 40 50
Location
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Validation results

Wong Limsoon, CS2220, AY2024/25

SN 0 SKO 1 SMO 2 PASS 1.0
Control S & &P | Threshold | BM &35FP | Tleeshold | BH & 5P | Threshold
S EUETICES
D 0% 0.26 P4%% 0.24 9 5% 3.7
SUTR T9% 0.42 2 5% 0.49 TEY 3.5
Intron 4% 0.59 71% 0.67 3% .3

Tahle 2. Equal-etror-rate points of ARI01, SMOZ, and PASS 1.0 for 3N_10
SN_10 SKO 1 SMO 2 PASS 1.0
Control S & &P | Threshold | BM &35FP | Tleeshold | BH & 5P | Threshold
FEUETICES
D 24% 0.36 Pa% 0.31 Pa%% 4
SUTR 26% 0.53 29%% 0.6 a1% 3.7
Intron T3% 0.62 TT% 0.77 6 7% f.6

Table 3. Eeual-ertor-rate points of SMO 1, SMOZ, and PAZS 1.0 for 3H_30.
SN 30 SMO 1 SKO 2 PASS 10
Control S & 3P | Threshold | BH &3P | Threshold | 3H &3P | Threshold
Sefuetices
CD3 7% 0.44 7% 0.37 57 4.3
SUTR 90% 0.62 B2% 0.67 a4% f.2
Intron T9% 0.75 2 3% 0.51 7% f.8
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About the inventor: Koh Chuan Hock

Koh Chuan Hock
BComp (CB), NUS, 2008
PhD, NUS, 2012

Data Science Mgr at
Indeed Inc, Japan

Retired in 2023 to relax!
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Concluding remarks...
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What we have learned

Gene feature recognition applications: TIS, TSS, PAS

General methodology: “Feature generation, feature
selection, feature integration”

Important tactics
Multiple models to optimize overall performance
Feature transformation (DNA - amino acid)

Classifier cascades

Wong Limsoon , CS2220 , AY2024/25 7 1
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