CS2220: Introduction to Computational Biology Multiple Alignment

Somayyeh Koohi

Fall 2024

Adapted with modifications from lecture notes prepared by Phillip Compeau,

Bioinformatics Algorithms: An Active LearningApproach

Outline

Multiple sequence alignment (MSA)
Generalize DP to 3 sequence alignment
Heuristic approaches to MSA

- I. Greedy alignment
- II. Progressive alignment ClustalW (using substitution matrix based scoring function)
- III. Consistency-based approach T-Coffee (consistencybased scoring function)

Simultaneous comparison of many sequences often allows us to find similarities that pairwise sequence comparison fails to reveal.

Realignment whispers, multiple alignment shouts.

What is MSA

- A model
- Indicates relationship between residues of different sequences
- Reveals similarity/disimilarity

Multiple Alignment Problem: Find the highestscoring alignment between multiple strings.

- Input: A collection of t strings.
- **Output:** A multiple alignment of these strings having maximal score.

MSA Applications

- S Phylogenetic tree
- 3 Motifs
- 🕫 Patterns
- Structure prediction (RNA, protein)

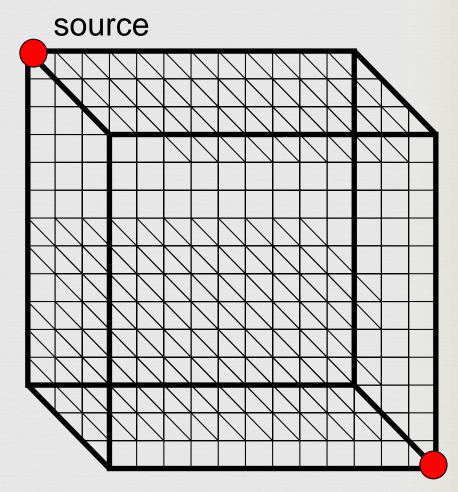
Dynamic Programming

- ᢙ Dynamic Programming allow Optimal Alignment between two sequences
- Allow Insertion and Deletion or Alignment with gaps
- Redlman and Wunsh Algorithm (1970) for global alignment
- ☞ Smith & Waterman Algorithm (1981) for local alignment
- 🛯 Important Steps
 - Create DOTPLOT between two sequences
 - Compute SUM matrix
 - 🛯 Trace Optimal Path

From pairwise to multiple alignment

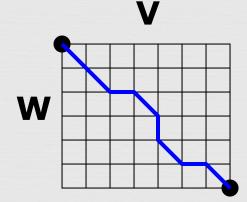
- Alignment of 2 sequences is represented as a 2-row matrix
- In a similar way, we represent alignment of 3 sequences as a 3-row matrix

• Score: more conserved columns, better alignment

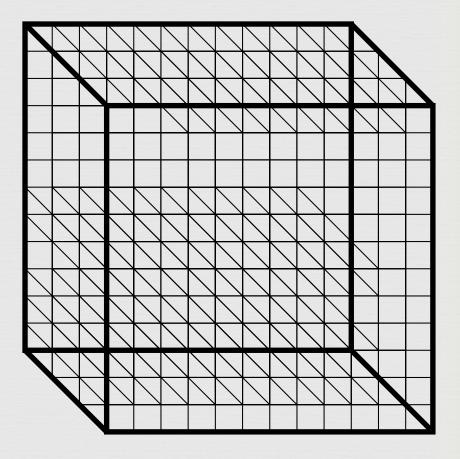


Aligning three sequences

Same strategy as aligning two sequences

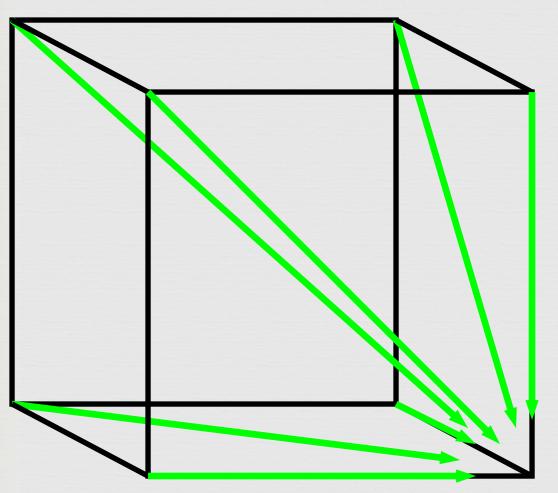

✓ Use a 3-D "Manhattan Cube", with each axis representing a sequence to align

Reference for global alignments, go from source to sink



2D vs 3D alignment grid

2D table


3D graph

Introduction to Computational Biology

Somayyeh Koohi

DP recursion (3 edges vs 7)

Pairwise: 3 possible paths (match/mismatch, insertion, and deletion) In **3-D**, 7 edges in each unit cube

Architecture of 3D alignment cell

(i-1,j,k-1)(*i*-1,*j*-1,*k*-1) (i-1,j-1,k)(i-1, j, k)(i, j, k-1)(i,j-1,k-1)

(i, j-1, k)

Introduction to Computational Biology

(i,j,k)

Multiple alignment: dynamic programming

•
$$s_{i,j,k} = \max \begin{pmatrix} s_{i-1,j-1,k-1} + \delta(v_i, w_j, u_k) \\ s_{i-1,j-1,k} + \delta(v_i, w_j, u_k) \\ s_{i-1,j,k-1} + \delta(v_i, u_k) \\ s_{i,j-1,k-1} + \delta(\underline{,}, w_j, u_k) \\ s_{i,j-1,k} + \delta(\underline{,}, w_j, u_k) \\ s_{i,j-1,k} + \delta(\underline{,}, w_j, u_k) \\ s_{i,j,k-1} + \delta(\underline{,}, w_j, u_k) \\ s_{i,j,k-1} + \delta(\underline{,}, u_k) \end{pmatrix}$$
 cube diagonal: no indels

• $\delta(x, y, z)$ is an entry in the 3D scoring matrix

DP-based MSA: running time

- For 3 sequences of length *n*, the run time is $7n^3$; O(n^3)
- For *k* sequences, build a *k*-dimensional Manhattan, with run time $(2^{k}-1)(n^{k})$; $O(2^{k}n^{k})$
- Conclusion: dynamic programming approach for alignment between two sequences is easily extended to *k* sequences (simultaneous approach) but it is impractical due to exponential running time.
 - Limited only up to 8-10 sequences (1989)
 - DCA (Divide and Conquer; Stoye et al., 1997), 20-25 sequences
 - OMA (Optimal Multiple Alignment; Reinert et al., 2000)

Heuristics MSA

• Computing exact MSA is computationally almost impossible, and in practice are used (progressive alignment)

- Practical approach for multiple alignment
- Compare all sequences pair wise
- Perform cluster analysis
- Generate a hierarchy for alignment
- first aligning the most similar pair of sequences
- Align alignment with next similar alignment or sequence

Outline

Reuristic approaches to MSA

- I. Greedy alignment
- II. Progressive alignment ClustalW (using substitution matrix based scoring function)
- III. Consistency-based approach T-Coffee (consistencybased scoring function)

(I) Greedy MSA Algorithm

- 1. Starts by selecting the two strings having the highest scoring pairwise alignment (among all possible pairs of strings)
- 2. Uses this pairwise alignment as a building block for iteratively adding one string at a time to the growing multiple alignment.
- 3. Select the string having maximum score against the current alignment at each stage.

➔ Problem of constructing a multiple alignment of t sequences is reduced to constructing t alignments

Profile representation of multiple alignment

Alignment		T a T a T T T	C C C t - t C - a C	6 - 6 6 - 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 - 6 - 6 - 6 6 6	G T G G G G G G G G G G G G G G G G G G	- GG GGGG t	g A A A A A A A	T C T C T T A T	TTTTTTCa	T T T T T C C C a	t a t t C C a C - C	t C C t - C t - C C
Profile	A:	.2	.1	0	0	0	0	.8	.1	.1	.1	.2	0
	C:	.1	.5	0	0	0	0	0	.3	.1	.2	.4	.5
	G:	0	0	.7	.6	.8	.6	.1	0	0	0	0	0
	T:	.6	.2	0	0	.1	.1	0	.5	.8	.6	.2	.3

Introduction to Computational Biology

Aligning alignments/profiles

Given two alignments, can we align them?

- x GGGCACTGCAT
- y GGTTACGTC-- Alie
- z GGGAACTGCAG

Alignment 1

- w GGACGTACC-- Alignment 2
- v GGACCT-----

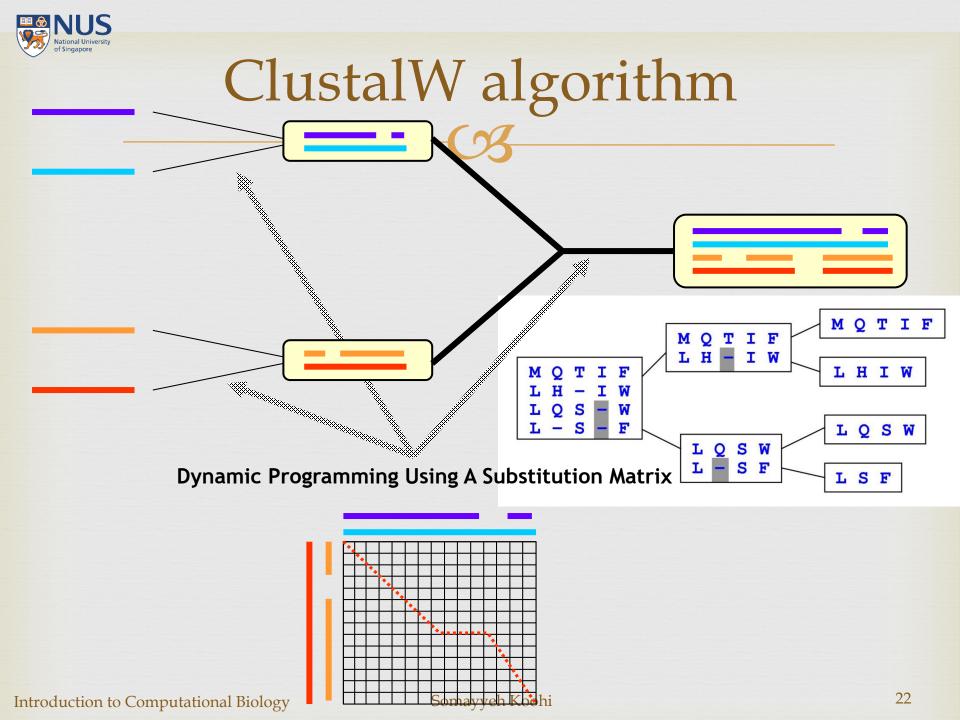
Aligning alignments/profiles

Given two alignments, can we align them?Hint: use alignment of corresponding profiles

- **x** GGGCACTGCAT
- y GGTTACGTC--

Combined Alignment

- z GGGAACTGCAG
- w GGACGTACC--
- v GGACCT----


(II) Progressive alignment

- *Progressive alignment* uses guide tree
- Sequence weighting & scoring scheme and gap penalties
- Progressive alignment works well for close sequences, but deteriorates for distant sequences
 - Gaps in consensus string are permanent
 - Use profiles to compare sequences

ClustalW

- Popular multiple alignment tool today
- 'W' stands for 'weighted' (sequences are weighted differently).
- Three-step process
 - 1.) Construct pairwise alignments
 - 2.) Build guide tree
 - 3.) Progressive alignment guided by the tree

Step 1: Pairwise alignment

- Aligns each sequence again each other giving a similarity matrix
- Similarity = exact matches / sequence length (percent identity)

(.17 means 17 % identical)

Step 2: Guide tree

	$oldsymbol{v}_1$	\mathbf{v}_2	v_3	\mathbf{v}_4	T <i>T</i>
\mathbf{v}_1	-				
\mathbf{v}_2	.17	_			V_3
	.87		-		
	.59			_	V_2

Calculate: V_{1,3} = alignment (V₁, V₃) V_{1,3,4} = alignment((V_{1,3}), V₄) V_{1,2,3,4} = alignment((V_{1,3,4}), V₂)

ClustalW uses NJ to build guide tree; Guide tree *roughly* reflects evolutionary relations

Introduction to Computational Biology

Somayyeh Koohi

Step 3: Tree based recursion

Align (Node N)

if (N->left_child is a Node) A1=Align (N->left_child)

else if (N->left_child is a Sequence) A1=N->left_child

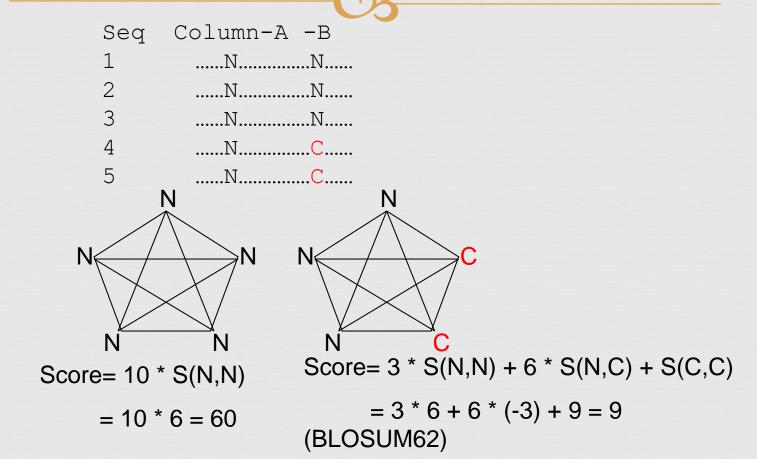
if (N->right_child is a node) A2=Align (N->right_child)

else if (N->right_child is a Sequence) A2=N->right_child

Return dp_alignment (A1, A2) }

Progressive alignment: Scoring scheme

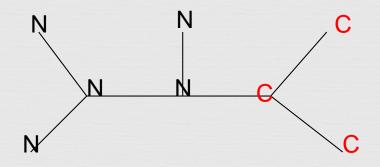
- Scoring scheme is arguably the most influential component of the progressive algorithm
- Matrix-based algorithms
 - ClustalW, MUSCLE, Kalign
 - Use a substitution matrix to assess the cost of matching two symbols or two profiled columns
 - Once a gap, always a gap



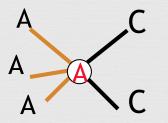
Substitution matrix based scoring

Sum of pairs (SP score)
Tree based scoring
Entropy score

Sum of pairs score (SP score)


Problem: over-estimation of the mutation costs (assuming each sequence is the ancestor of itself; requires a weighting scheme

Introduction to Computational Biology


Somayyeh Koohi

Tree-based scoring

"Real" tree: Cost = 1 But we do not know the tree!

Star tree Cost=2 But the tree is wrong!

Entropy-based scoring

In information theory, entropy is a measure of the uncertainty associated with a random variable (a means to quantify information using some kind of currency, usually bits. The rarer, or equivalently more interesting, a thing is, the more bits its worth). The entropy H of a discrete random variable X with possible values $x_1, ..., x_n$ is H(X) = E(I(X)), where I(X) is the information content of X.

If p denotes the probability mass function of X then the entropy is, $H(X) = \sum_{i} p(x_i) I(x_i) = -\sum_{i} p(x_i) \log_2 p(x_i).$

Assume a genome has the following frequencies in its DNA: p(A) = 0.2, p(T) = 0.2, p(C) = 0.3, p(D) = 0.3,then its entropy is $-(0.2log_2(0.2) + 0.2log_2(0.2) + 0.3log_2(0.3) + 0.3log_2(0.3)) = 1.97.$

Entropy: Example

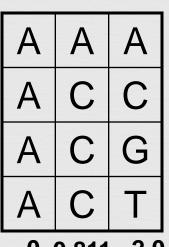
$$entropy \begin{pmatrix} A \\ A \\ A \\ A \\ A \end{pmatrix} = 0$$

$$entropy \begin{pmatrix} A \\ T \\ G \\ C \end{pmatrix} = -\sum \frac{1}{4} \log \frac{1}{4} = -4(\frac{1}{4}*-2) = 2$$

Given a DNA sequence, what is its maximum entropy?

Introduction to Computational Biology

Somayyeh Koohi


Alignment entropy

ᢙ Define frequencies for the occurrence of each letter in each column of multiple alignment

- $p_A = 1, p_T = p_G = p_C = 0$ (1st column)
- $p_A = 0.75$, $p_T = 0.25$, $p_G = p_C = 0$ (2nd column)
- $p_A = 0.50$, $p_T = 0.25$, $p_C = 0.25 p_G = 0$ (3rd column)

RCompute entropy of each column

An alignment with 3 columns

0 0.811 2.0 Alignment entropy= 2.811

(III) Consistency-based approaches

T-Coffee
M-Coffee & 3D-Coffee (Expresso)
Principle
Primary library
Library extension

T-Coffee: Primary library

Input sequences

SeqA	GARFIELD	THE	LAST	FAT (CAT
SeqB	GARFIELD	THE	FAST	CAT	
SeqC	GARFIELD	THE	VERY	FAST	CAT
SeqD	THE FAT C	CAT			

Primary library: collection of global/local pairwise alignments

SeqA	GARFIELD	THE LAS	FAT CAT	SeqB	GARFIELD	THE		FAST	CAT
SeqB	GARFIELD	THE FAS	I CAT	SeqC	GARFIELD	THE	VERY	FAST	CAT
SeqA	GARFIELD	THE LAS	Г FA-Т САТ	SeqB	GARFIELD	THE	FAST	CAT	
SeqC	GARFIELD	THE VER	Y FAST CAT	SeqD		THE	FA-T	CAT	
SeqA	GARFIELD	THE LAS	FAT CAT	SeqC	GARFIELD	THE	VERY	FAST	CAT
SeqD		THE	- FAT CAT	SeqD		THE		FA-T	CAT

Introduction to Computational Biology

T-Coffee: Library extension

6-1

	_					0	
		-	TIELD THE D TIELD THE D			SeqB SeqC	
			TIELD THE D			SeqB SeqD	
		-	TIELD THE D			SeqC SeqD	-
	SeqA	GARFIELD	THE L	AST	FAT CAT	C	Different "weights"
	SeqB	GARFIELD	THE F	AST	CAT		SeqA GARFIELD THE LAST FAT CAT
Trip	ets seqA	GARFIELD	THE L	AST	FAT CAI		SeqB GARFIELD THE FAST CAT
	SeqC	GARFIELD	THE V	ERY	FAST CA	\ \ \T 	DP on the "consistency matrix"
	SeqB	GARFIELD	THE		FAST CA	λT	
	SeqA	GARFIELD	THE L	AST	FAT CA1		SeqA GARFIELD THE LAST FA-T CAT SeqB GARFIELD THE FAST CAT
	SeqD		THE 		FAT CAT		Extended library: new pairwise alignment (AB), (AC), (AD), (BC), (BD) and (CD)
	SeqB	GARFIELD	THE		FAST CA	Ϋ́	

Introduction to Computational Biology

Pre-Coffee uses progressive strategy to derive multiple alignment

- **Guide tree**
- ☞ First align the closest two sequences (DP using the weights derived from the extended library)
- Align two "alignments" (using the weights from the extended library -- average over each column)
- - The substitution values (weights) are derived from extended library which already considered gaps
 - High scoring segments (consistent segments) enhanced by the data set to the point that they are insensitive to the gap penalties

Multiple alignment: History

1975 Sankoff

Formulated multiple alignment problem and gave DP solution **1988 Carrillo-Lipman**

Branch and Bound approach for MSA

1990 Feng-Doolittle

Progressive alignment 1994 Thompson-Higgins-Gibson-ClustalW

Most popular multiple alignment program 1998 DIALIGN (Segment-based multiple alignment) 2000 T-coffee (consensus-based) 2004 MUSCLE 2005 ProbCons (uses Bayesian consistency) 2006 M-Coffee (consensus meta-approach) 2006 Expresso (3D-Coffee; use structural template) 2007 PROMALS (profile-profile alignment)

MSA - Summary

R Progress in Progressve Techniques

- Clustal-W (1.8) (Thompson et al., 1994)
- Automatic substitution matrix
- Automatic gap penalty adjustment
- Delaying of distantly related sequences
- Portability and interface excellent
- ST-COFFEE (Notredame et al., 2000)
- Improvement in Clustal-W by iteration
- Pair-Wise alignment (Global + Local)
- Most accurate method but slow
- MAFFT (Katoh et al., 2002)
- Utilize the FFT for pair-wise alignment
- Fastest method
- Accuracy nearly equal to T-COFFEE

References

- Recent evolutions of multiple sequence alignment algorithms. 2007, 3(8):e123
- Chapter 5