CS2220: Introduction to Computational Biology **Greedy Motif Search**

Somayyeh Koohi Fall 2024

Materials for this presentation have been adapted from the following sources: **Suprakash Datta,** http://www.cse.yorku.ca/course/5290

Outline

- Randomized Algorithms
- Greedy Profile Motif Search
- Gibbs Sampler

The Motif Finding Problem

Motif Finding Problem: Given a list of *t* sequences each of length *n*, find the "best" pattern of length *l* that appears in each of the *t* sequences.

A New Motif Finding Approach

- **Previously:** we solved the Motif Finding Problem using a Branch and Bound or a Greedy technique.
- Now: randomly select possible locations and find a way to greedily change those locations until we have converged to the hidden motif.

Randomized Algorithms

- Randomized algorithms make random rather than deterministic decisions.
- The main advantage is that no input can reliably produce worst-case results because the algorithm runs differently each time.
- These algorithms are commonly used in situations where no exact and fast algorithm is known.

Profiles Revisited

- Let s=(s₁,...,s_t) be the set of starting positions for *l*-mers in our *t* sequences.
- The substrings corresponding to these starting positions will form:
 - *t* x *l* alignment matrix and
 - 4 x *l profile matrix** **P**.

*We make a special note that the profile matrix will be defined in terms of the frequency of letters, and not as the count of letters.

Scoring Strings with a Profile

- *Prob*(**a**|**P**) is defined as the probability that an *l*-mer
 a was created by the Profile **P**.
- If a is very similar to the consensus string of P then
 Prob(a|P) will be high
- If **a** is very different, then $Prob(\mathbf{a}|\mathbf{P})$ will be low.

$$n$$

$$Prob(\mathbf{a}|\mathbf{P}) = \prod p_{a_i}, i$$

$$i=1$$

Scoring Strings with a Profile (cont'd)

Given a profile: $\mathbf{P} =$

Α	1/2	7/8	3/8	0	1/8	0
С	1/8	0	1/2	5/8	3/8	0
Т	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

The probability of the consensus string: *Prob*(aaacct|P) = ???

Scoring Strings with a Profile (cont'd)

Given a profile: **P** =

Α	1/2	7/8	3/8	0	1/8	0
С	1/8	0	1/2	5/8	3/8	0
Т	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

The probability of the consensus string: $Prob(aaacct|P) = 1/2 \times 7/8 \times 3/8 \times 5/8 \times 3/8 \times 7/8 = .033646$

Introduction to Computational Biology

Scoring Strings with a Profile (cont'd)

Given a profile: **P** =

Α	1/2	7/8	3/8	0	1/8	0
С	1/8	0	1/2	5/8	3/8	0
Т	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

The probability of the consensus string: $Prob(aaacct|P) = 1/2 \times 7/8 \times 3/8 \times 5/8 \times 3/8 \times 7/8 = .033646$

Probability of a different string: $Prob(atacag|P) = 1/2 \times 1/8 \times 3/8 \times 5/8 \times 1/8 \times 1/8 = .001602$

Introduction to Computational Biology

Somayyeh Koohi

P-Most Probable *l*-mer

• Define the **P**-most probable *l*-mer from a sequence as an *l*-mer in that sequence which has the highest probability of being created from the profile **P**.

	Α	1/2	7/8	3/8	0	1/8	0
> =	С	1/8	0	1/2	5/8	3/8	0
	Т	1/8	1/8	0	0	1/4	7/8
	G	1/4	0	1/8	3/8	1/4	1/8

Given a sequence = ctataaaccttacatc, find the P-most probable *l*-mer Introduction to Computational Biology Somayyeh Koohi

P-Most Probable *l*-mer (cont'd)

Α	1/2	7/8	3/8	0	1/8	0
С	1/8	0	1/2	5/8	3/8	0
Т	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

Find the *Prob*(a|P) of every possible 6-mer:

First try: ctataaaccttacatc

Second try: ctataaaccttacatc

Third try: ct ataaac cttacatc

-Continue this process to evaluate every possible 6-mer

P-Most Probable *l*-mer (cont'd) Compute *prob*(a|P) for every possible 6-mer:

String, Highlighted in Red	Calculations	prob(a P)
ctataaaccttacat	1/8 x 1/8 x 3/8 x 0 x 1/8 x 0	0
ctataaaccttacat	1/2 x 7/8 x 0 x 0 x 1/8 x 0	0
ctataaaccttacat	1/2 x 1/8 x 3/8 x 0 x 1/8 x 0	0
ctataaaccttacat	1/8 x 7/8 x 3/8 x 0 x 3/8 x 0	0
ctataaaccttacat	1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8	.0336
ctataaaccttacat	1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8	.0299
ctataaaccttacat	1/2 x 0 x 1/2 x 0 1/4 x 0	0
ctataaaccttacat	1/8 x 0 x 0 x 0 x 0 x 1/8 x 0	0
ctataaaccttacat	1/8 x 1/8 x 0 x 0 x 3/8 x 0	0
ctataaaccttacat	1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8	.0004

Introduction to Computational Biology

P-Most Probable *l*-mer (cont'd) P-Most Probable 6-mer in the sequence is aaacct:

String, Highlighted in Red	Calculations	Prob(a P)
ctataaaccttacat	1/8 x 1/8 x 3/8 x 0 x 1/8 x 0	0
ctataaaccttacat	1/2 x 7/8 x 0 x 0 x 1/8 x 0	0
ctataaaccttacat	1/2 x 1/8 x 3/8 x 0 x 1/8 x 0	0
ctataaaccttacat	1/8 x 7/8 x 3/8 x 0 x 3/8 x 0	0
ctataaaccttacat	1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8	.0336
ctataaaccttacat	1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8	.0299
ctataaaccttacat	1/2 x 0 x 1/2 x 0 1/4 x 0	0
ctataaa cctta cat	1/8 x 0 x 0 x 0 x 0 x 1/8 x 0	0
ctataaac ctta cat	1/8 x 1/8 x 0 x 0 x 3/8 x 0	0
ctataaaccttacat	1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8	.0004

Introduction to Computational Biology

P-Most Probable *l*-mer (cont'd)

aaacct is the P-most probable 6-mer in:

ctataaaccttacatc

because Prob(aaacct|P) = .0336 is greater than the Prob(a|P) of any other 6-mer in the sequence.

P-Most Probable *l*-mers in Many Sequences

• Find the **P**-most probable *l*-mer in each of the sequences.

3/8

1/2

0

1/8

ctataaacgttacatc atagcgattcgactg cagcccagaaccct cggtataccttacatc tgcattcaatagctta tatcctttccactcac ctttaca ttatcct

	1/0	1/ 4	U	
ctccaaatc	1/8	1/4	3/8	
agtcatcct		-	-	

1/2

1/8

1/8

1/4

Α

Т

G

7/8

0

1/8

0

1/8

3/8

1/4

0

0

7/2

0

5/8

Ω

P-Most Probable *l*-mers in Many Sequences (cont'd)

c + 2 + 2 - 2 - c + c + 2 - 2 + c							
Claladacyllacalc	t	g	С	а	а	а	1
atagcgattcgactg	g	С	g	а	t	а	2
	t	С	С	С	а	а	3
cagcccagaaccct	t	С	С	а	а	g	4
caataaaccttacatc	t	С	g	а	t	а	5
Cyylyaacticatatt	g	t	С	С	а	g	6
tgcattcaatagctta	t	t	С	С	t	а	7
	t	t	С	С	а	t	8
tgtcctgtccactcac	0	0	0	4/8	5/8	5/8	А
ctccaatcctttaca	0	4/8	6/8	4/8	0	0	С
	6/8	3/8	0	0	3/8	1/8	Т
ggtctacctttatcct	2/8	1/8	2/8	0	0	2/8	G

P-Most Probable *I*-mers form a new profile

Introduction to Computational Biology

Somayyeh Koohi

Comparing New and Old Profiles

			1	-	-									
1	а	а	а	С	g	t								
2	а	t	а	g	С	g								
3	а	а	С	С	С	t								
4	g	а	а	С	С	t								
5	а	t	а	g	С	t								
6	g	а	С	С	t	g								
7	а	t	С	С	t	t								
8	t	а	С	С	t	t	╏┎	Λ	1/2	7/0	2/0	0	1/0	0
A	5/8	5/8	4/8	0	0	0		A	1/2	1/0	3/0	0	1/0	0
C	0	0	1/0	6/9	1/0	0		C	1/8	0	1/2	5/8	3/8	0
C	0	0	4/0	0/0	4/0	0		т	1/8	1/8	0	0	1/4	7/8
Т	1/8	3/8	0	0	3/8	6/8			1/1		1/0	2/0	4/4	1/0
G	2/8	0	0	2/8	1/8	2/8		G	1/4	0	Π/Ծ	3/8	1/4	1/8

Reduction frequency increased, Blue – frequency descreased Computational Biology Somayyeh Koohi 18

Greedy Profile Motif Search

- Use P-Most probable *l*-mers to adjust start positions until we reach a "best" profile; this is the motif.
- 1) Select random starting positions.
- 2) Create a profile **P** from the substrings at these starting positions.
- 3) Find the **P**-most probable *l*-mer **a** in each sequence and change the starting position to the starting position of **a**.
- 4) Compute a new profile based on the new starting positions after each iteration and proceed until we cannot increase the score anymore.

GreedyProfileMotifSearch Algorithm

- 1. <u>GreedyProfileMotifSearch(DNA, t, n, 1)</u>
- 2. Randomly select starting positions $\mathbf{s} = (s_1, \dots, s_t)$ from *DNA*
- 3. *bestScore* $\leftarrow 0$
- *4.* while Score(s, *DNA*) > *bestScore*
- 5. Form profile **P** from **s**
- 6. *bestScore* ← Score(**s**, *DNA*)
- 7. for $i \leftarrow 1$ to t
- 8. Find a P-most probable /-mer a from the /th sequence
- 9. $s_i \leftarrow$ starting position of **a**
- 10. return bestScore

GreedyProfileMotifSearch Analysis

- Since we choose starting positions randomly, there is little chance that our guess will be close to an optimal motif, meaning it will take a very long time to find the optimal motif.
- It is unlikely that the random starting positions will lead us to the correct solution at all.
- In practice, this algorithm is run many times with the hope that random starting positions will be close to the optimum solution simply by chance.

Gibbs Sampling

- GreedyProfileMotifSearch is probably not the best way to find motifs.
- However, we can improve the algorithm by introducing **Gibbs Sampling**, an iterative procedure that discards one *l*-mer after each iteration and replaces it with a new one.
- Gibbs Sampling proceeds more slowly and chooses new *l*-mers at random increasing the odds that it will converge to the correct solution.

How Gibbs Sampling Works

- 1) Randomly choose starting positions
 - $\mathbf{s} = (s_1,...,s_t)$ and form the set of *l*-mers associated with these starting positions.
- 2) Randomly choose one of the *t* sequences.
- 3) Create a profile **P** from the other t -1 sequences.

4) For each position in the removed sequence, calculate the probability that the *l*-mer starting at that position was generated by \mathbf{P} .

5) Choose a new starting position for the removed sequence at random based on the probabilities calculated in step 4.

6) Repeat steps 2-5 until there is no improvement

Input:

t = 5 sequences, motif length l = 8

- 1. GTAAACAATATTTATAGC
- 2. AAAATTTACCTCGCAAGG
- 3. CCGTACTGTCAAGCGTGG
- 4. TGAGTAAACGACGTCCCA
- 5. TACTTAACACCCTGTCAA

1) Randomly choose starting positions, $s = (s_1, s_2, s_3, s_4, s_5)$ in the 5 sequences:

$s_1 = 7$	GTAAACAATATTTATAGC
<i>s</i> ₂ =11	AAAATTTACCTTAGAAGG
<i>s</i> ₃ =9	CCGTACTGTCAAGCGTGG
<i>s</i> ₄ =4	TGAGTAAACGACGTCCCA
$s_5 = 1$	TACTTAACACCCTGTCAA

2) Choose one of the sequences at random: Sequence 2: AAAATTTACCTTAGAAGG

 $s_1 = 7$ GTAAACAATATTTATAGC $s_2 = 11$ AAAATTTACCTTAGAAGG $s_3 = 9$ CCGTACTGTCAAGCGTGG $s_4 = 4$ TGAGTAAACGACGTCCCA $s_5 = 1$ TACTTAACACCCTGTCAA

2) Choose one of the sequences at random: Sequence 2: AAAATTTACCTTAGAAGG

- $s_1 = 7$ **GTAAACAATATTTATAGC**
- $s_3=9$ CCGTACTGTCAAGCGTGG $s_4=4$ TGAGTAAACGACGTCCCA $s_5=1$ TACTTAACACCCTGTCAA

3) Create profile *P* from *l*-mers in remaining 4 sequences:

1	А	А	Т	А	Т	Т	Т	А
3	Т	С	A	A	G	С	G	Т
4	G	Т	A	A	А	С	G	А
5	Т	А	С	Т	Т	А	А	С
Α	1/4	2/4	2/4	3/4	1/4	1/4	1/4	2/4
С	0	1/4	1/4	0	0	2/4	0	1/4
Т	2/4	1/4	1/4	1/4	2/4	1/4	1/4	1/4
G	1/4	0	0	0	1/4	0	3/4	0
Consensus String	Т	А	А	А	Т	С	G	А

Introduction to Computational Biology

Somayyeh Koohi

4) Calculate the prob(a/P) for every possible 8-mer in the removed sequence:

Strings Highlighted in Red

 $prob(\mathbf{a}|\mathbf{P})$

AAAATTTACCTTAGAAGG	.000732
AAAATTTACCTTAGAAGG	.000122
AAAATTTACCTTAGAAGG	0
AAAATTTACCTTAGAAGG	.000183
AAAATTTACCTTAGAAGG	0
AAAATTTACCTTAGAAGG	0
AAAATTTACCTTAGAAGG	0

Introduction to Computational Biology

5) Create a distribution of probabilities of *I*-mers prob(a|P), and randomly select a new starting position based on this distribution.

a) To create this distribution, divide each probability prob(a|P) by the lowest probability:

Starting Position 1: *prob*(AAAATTTA | P) = .000732 / .000122 = 6 Starting Position 2: *prob*(AAATTTAC | P) = .000122 / .000122 = 1 Starting Position 8: *prob*(ACCTTAGA | P) = .000183 / .000122 = 1.5

Ratio = 6 : 1 : 1.5

Somayyeh Koohi

Turning Ratios into Probabilities

b) Define probabilities of starting positions according to computed ratios

Probability (Selecting Starting Position 1): 6/(6+1+1.5)=0.706Probability (Selecting Starting Position 2): 1/(6+1+1.5)=0.118Probability (Selecting Starting Position 8): 1.5/(6+1+1.5)=0.176

c) Select the start position according to computed ratios:

P(selecting starting position 1): .706

- P(selecting starting position 2): .118
- P(selecting starting position 8): .176

Assume we select the substring with the highest probability – then we are left with the following new substrings and starting positions.

$s_1 = 7$	GTAAACAATATTTATAGC
<i>s</i> ₂ =1	AAAATTTACCTCGCAAGG
<i>s</i> ₃ =9	CCGTACTGTCAAGCGTGG
<i>s</i> ₄ =5	TGAGTAATCGACGTCCCA
<i>s</i> ₅ =1	TACTTCACACCCTGTCAA

6) We iterate the procedure again with the above starting positions until we cannot improve the score any more.

Gibbs Sampler in Practice

- Gibbs sampling needs to be modified when applied to samples with unequal distributions of nucleotides (*relative entropy* approach).
- Gibbs sampling often converges to locally optimal motifs rather than globally optimal motifs.
- Needs to be run with many randomly chosen seeds to achieve good results.