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Outline

• Randomized Algorithms

• Greedy Profile Motif Search

• Gibbs Sampler
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The Motif Finding Problem

Motif Finding Problem: Given a list of t

sequences each of length n, find the “best” 

pattern of length l that appears in each of the 

t sequences.
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A New Motif Finding 
Approach

• Previously: we solved the Motif Finding Problem 

using a Branch and Bound or a Greedy technique.

• Now: randomly select possible locations and find a 

way to greedily change those locations until we 

have converged to the hidden motif.
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Randomized Algorithms

• Randomized algorithms make random rather 

than deterministic decisions.

• The main advantage is that no input can 

reliably produce worst-case results because 

the algorithm runs differently each time.

• These algorithms are commonly used in 

situations where no exact and fast algorithm 

is known.
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Profiles Revisited

• Let s=(s1,...,st) be the set of starting positions 
for l-mers in our t sequences.  

• The substrings corresponding to these 
starting positions will form:

- t x l alignment matrix and 

- 4 x l profile matrix* P.

*We make a special note that the profile matrix will be defined in terms of 
the frequency of letters, and not as the count of letters.
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Scoring Strings with a Profile

• Prob(a|P) is defined as the probability that an l-mer 

a was created by the Profile P. 

• If a is very similar to the consensus string of P then 

Prob(a|P)  will be high

• If a is very different, then Prob(a|P) will be low.

n

Prob(a|P) =Π pai 
, i

i=1
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Scoring Strings with a Profile
(cont’d)

Given a profile: P =
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A 1/2 7/8 3/8 0 1/8 0

C 1/8 0 1/2 5/8 3/8 0

T 1/8 1/8 0 0 1/4 7/8

G 1/4 0 1/8 3/8 1/4 1/8

Prob(aaacct|P) = ??? 

The probability of the consensus string:



Scoring Strings with a Profile
(cont’d)

Given a profile: P =
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A 1/2 7/8 3/8 0 1/8 0

C 1/8 0 1/2 5/8 3/8 0

T 1/8 1/8 0 0 1/4 7/8

G 1/4 0 1/8 3/8 1/4 1/8

Prob(aaacct|P) = 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 = .033646

The probability of the consensus string:



Scoring Strings with a Profile
(cont’d)

Given a profile: P =
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A 1/2 7/8 3/8 0 1/8 0

C 1/8 0 1/2 5/8 3/8 0

T 1/8 1/8 0 0 1/4 7/8

G 1/4 0 1/8 3/8 1/4 1/8

Prob(atacag|P) = 1/2 x 1/8 x 3/8 x 5/8 x 1/8 x 1/8 = .001602

Prob(aaacct|P) = 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 = .033646
The probability of the consensus string:

Probability of a different string:



P-Most Probable l-mer

• Define the P-most probable l-mer from a sequence 
as an l-mer in that sequence which has the highest 
probability of being created from the profile P.
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A 1/2 7/8 3/8 0 1/8 0

C 1/8 0 1/2 5/8 3/8 0

T 1/8 1/8 0 0 1/4 7/8

G 1/4 0 1/8 3/8 1/4 1/8

P   =

Given a sequence = ctataaaccttacatc, find the P-most 

probable l-mer



P-Most Probable l-mer (cont’d)
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Third try:  c t a t a a a c c t t a c a t c

Second try:  c t a t a a a c c t t a c a t c

First try:  c t a t a a a c c t t a c a t c

A 1/2 7/8 3/8 0 1/8 0

C 1/8 0 1/2 5/8 3/8 0

T 1/8 1/8 0 0 1/4 7/8

G 1/4 0 1/8 3/8 1/4 1/8

Find the Prob(a|P) of every possible 6-mer:  

-Continue this process to evaluate every possible 6-mer



P-Most Probable l-mer (cont’d)
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String, Highlighted in Red Calculations prob(a|P)

ctataaaccttacat 1/8 x 1/8 x 3/8 x 0 x 1/8 x 0 0

ctataaaccttacat 1/2 x 7/8 x 0 x 0 x 1/8 x 0 0

ctataaaccttacat 1/2 x 1/8 x 3/8 x 0 x 1/8 x 0 0

ctataaaccttacat 1/8 x 7/8 x 3/8 x 0 x 3/8 x 0 0

ctataaaccttacat 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 .0336

ctataaaccttacat 1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8 .0299

ctataaaccttacat 1/2 x 0 x 1/2 x 0 1/4 x 0 0

ctataaaccttacat 1/8 x 0 x 0 x 0 x 0 x 1/8 x 0 0

ctataaaccttacat 1/8 x 1/8 x 0 x 0 x 3/8 x 0 0

ctataaaccttacat 1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8 .0004

Compute prob(a|P) for every possible 6-mer:



P-Most Probable l-mer (cont’d)
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String, Highlighted in Red Calculations Prob(a|P)

ctataaaccttacat 1/8 x 1/8 x 3/8 x 0 x 1/8 x 0 0

ctataaaccttacat 1/2 x 7/8 x 0 x 0 x 1/8 x 0 0

ctataaaccttacat 1/2 x 1/8 x 3/8 x 0 x 1/8 x 0 0

ctataaaccttacat 1/8 x 7/8 x 3/8 x 0 x 3/8 x 0 0

ctataaaccttacat 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 .0336

ctataaaccttacat 1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8 .0299

ctataaaccttacat 1/2 x 0 x 1/2 x 0 1/4 x 0 0

ctataaaccttacat 1/8 x 0 x 0 x 0 x 0 x 1/8 x 0 0

ctataaaccttacat 1/8 x 1/8 x 0 x 0 x 3/8 x 0 0

ctataaaccttacat 1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8 .0004

P-Most Probable 6-mer in the sequence is aaacct:



P-Most Probable l-mer (cont’d)
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ctataaaccttacatc

because Prob(aaacct|P) = .0336  is greater 

than the Prob(a|P) of any other 6-mer in the 

sequence.

aaacct is the P-most probable 6-mer in:



P-Most Probable l-mers in Many Sequences

• Find the P-most 

probable l-mer in each 

of the sequences.

A 1/2 7/8 3/8 0 1/8 0

C 1/8 0 1/2 5/8 3/8 0

T 1/8 1/8 0 0 1/4 7/8

G 1/4 0 1/8 3/8 1/4 1/8
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ctataaacgttacatc

atagcgattcgactg

cagcccagaaccct

cggtataccttacatc

tgcattcaatagctta

tatcctttccactcac

ctccaaatcctttaca

ggtcatcctttatcct

P=



P-Most Probable l-mers in Many 
Sequences (cont’d)
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ctataaacgttacatc

atagcgattcgactg

cagcccagaaccct

cggtgaaccttacatc

tgcattcaatagctta

tgtcctgtccactcac

ctccaaatcctttaca

ggtctacctttatcct

P-Most Probable l-mers form a new profile

1 a a a c g t

2 a t a g c g

3 a a c c c t

4 g a a c c t

5 a t a g c t

6 g a c c t g

7 a t c c t t

8 t a c c t t

A 5/8 5/8 4/8 0 0 0

C 0 0 4/8 6/8 4/8 0

T 1/8 3/8 0 0 3/8 6/8

G 2/8 0 0 2/8 1/8 2/8



Comparing New and Old Profiles

A 1/2 7/8 3/8 0 1/8 0

C 1/8 0 1/2 5/8 3/8 0

T 1/8 1/8 0 0 1/4 7/8

G 1/4 0 1/8 3/8 1/4 1/8
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Red – frequency increased, Blue – frequency descreased

1 a a a c g t

2 a t a g c g

3 a a c c c t

4 g a a c c t

5 a t a g c t

6 g a c c t g

7 a t c c t t

8 t a c c t t

A 5/8 5/8 4/8 0 0 0

C 0 0 4/8 6/8 4/8 0

T 1/8 3/8 0 0 3/8 6/8

G 2/8 0 0 2/8 1/8 2/8



Greedy Profile Motif Search

Use P-Most probable l-mers to adjust start positions until we reach a “best” 
profile; this is the motif.

1) Select random starting positions.

2) Create a profile P from the substrings at these starting 
positions.

3) Find the P-most probable l-mer a in each sequence and 
change the starting position to the starting position of a.

4) Compute a new profile based on the new starting positions 
after each iteration and proceed until we cannot increase 
the score anymore.
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GreedyProfileMotifSearch Algorithm

1. GreedyProfileMotifSearch(DNA, t, n, l )

2. Randomly select starting positions s=(s1,…,st) from 
DNA

3. bestScore  0
4. while Score(s, DNA) > bestScore

5. Form profile P from s

6. bestScore  Score(s, DNA)

7. for i  1 to t
8. Find a P-most probable l-mer a from the ith

sequence

9. si  starting position of a

10. return bestScore
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GreedyProfileMotifSearch Analysis

• Since we choose starting positions randomly, there is 

little chance that our guess will be close to an optimal 

motif, meaning it will take a very long time to find the 

optimal motif.

• It is unlikely that the random starting positions will lead 

us to the correct solution at all.

• In practice, this algorithm is run many times with the 

hope that random starting positions will be close to the 

optimum solution simply by chance.
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Gibbs Sampling

• GreedyProfileMotifSearch is probably not the best 

way to find motifs.

• However, we can improve the algorithm by 

introducing Gibbs Sampling, an iterative 

procedure that discards one l-mer after each 

iteration and replaces it with a new one.

• Gibbs Sampling proceeds more slowly and chooses 

new l-mers at random increasing the odds that it 

will converge to the correct solution.
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How Gibbs Sampling Works

1)  Randomly choose starting positions 

s = (s1,...,st) and form the set of  l-mers associated 

with these starting positions.

2)  Randomly choose one of the t sequences.

3)  Create a profile P from the other t -1 sequences.

4)  For each position in the removed sequence, calculate the probability 

that the l-mer starting at that position was generated by P.

5)  Choose a new starting position for the removed sequence at 

random based on the probabilities calculated in step 4.

6)  Repeat steps 2-5 until there is no improvement

Introduction to Computational Biology Somayyeh Koohi 23



Gibbs Sampling: an Example

Input: 

t = 5 sequences, motif length  l = 8

1.  GTAAACAATATTTATAGC

2.  AAAATTTACCTCGCAAGG

3.  CCGTACTGTCAAGCGTGG

4.  TGAGTAAACGACGTCCCA

5.  TACTTAACACCCTGTCAA
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Gibbs Sampling: an Example

1)  Randomly choose starting positions, 

s=(s1,s2,s3,s4,s5) in the 5 sequences: 

s1=7 GTAAACAATATTTATAGC

s2=11 AAAATTTACCTTAGAAGG

s3=9 CCGTACTGTCAAGCGTGG

s4=4 TGAGTAAACGACGTCCCA

s5=1 TACTTAACACCCTGTCAA
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Gibbs Sampling: an Example

2) Choose one of the sequences at random:

Sequence 2: AAAATTTACCTTAGAAGG 

s1=7 GTAAACAATATTTATAGC

s2=11 AAAATTTACCTTAGAAGG

s3=9 CCGTACTGTCAAGCGTGG

s4=4 TGAGTAAACGACGTCCCA

s5=1 TACTTAACACCCTGTCAA
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Gibbs Sampling: an Example

2) Choose one of the sequences at random:

Sequence 2: AAAATTTACCTTAGAAGG 

s1=7 GTAAACAATATTTATAGC

s3=9 CCGTACTGTCAAGCGTGG

s4=4 TGAGTAAACGACGTCCCA

s5=1 TACTTAACACCCTGTCAA
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Gibbs Sampling: an Example

3) Create profile P from l-mers in remaining 4 sequences:
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1 A A T A T T T A

3 T C A A G C G T

4 G T A A A C G A

5 T A C T T A A C

A 1/4 2/4 2/4 3/4 1/4 1/4 1/4 2/4

C 0 1/4 1/4 0 0 2/4 0 1/4

T 2/4 1/4 1/4 1/4 2/4 1/4 1/4 1/4

G 1/4 0 0 0 1/4 0 3/4 0
Consensus

String
T A A A T C G A



Gibbs Sampling: an Example

4) Calculate the prob(a|P) for every possible 8-mer in the 

removed sequence:

Strings Highlighted in Red prob(a|P) 
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AAAATTTACCTTAGAAGG .000732

AAAATTTACCTTAGAAGG .000122

AAAATTTACCTTAGAAGG 0

AAAATTTACCTTAGAAGG 0

AAAATTTACCTTAGAAGG 0

AAAATTTACCTTAGAAGG 0

AAAATTTACCTTAGAAGG 0

AAAATTTACCTTAGAAGG .000183

AAAATTTACCTTAGAAGG 0

AAAATTTACCTTAGAAGG 0

AAAATTTACCTTAGAAGG 0



Gibbs Sampling: an Example
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5)  Create a distribution of probabilities of l-mers 

prob(a|P), and randomly select a new starting 

position based on this distribution. 

Starting Position 1:  prob( AAAATTTA | P ) =  .000732   / .000122  =   6

Starting Position 2:  prob( AAATTTAC | P ) =  .000122   /  .000122  =  1

Starting Position 8:  prob( ACCTTAGA | P ) = .000183   /  .000122  =  1.5

a) To create this distribution, divide each 

probability  prob(a|P) by the lowest probability:

Ratio = 6 : 1 : 1.5



Turning Ratios into 
Probabilities
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Probability (Selecting Starting Position 1):   6/(6+1+1.5)=  0.706

Probability (Selecting Starting Position 2):   1/(6+1+1.5)=  0.118 

Probability (Selecting Starting Position 8):   1.5/(6+1+1.5)=0.176

b) Define probabilities of starting positions 

according to computed ratios



Gibbs Sampling: an Example
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c) Select the start position according to 

computed ratios:

P(selecting starting position 1):     .706

P(selecting starting position 2):     .118

P(selecting starting position 8):     .176



Gibbs Sampling: an Example

Assume we select the substring with the 
highest probability – then we are left with the 
following new substrings and starting 
positions.

s1=7 GTAAACAATATTTATAGC

s2=1 AAAATTTACCTCGCAAGG

s3=9 CCGTACTGTCAAGCGTGG

s4=5 TGAGTAATCGACGTCCCA

s5=1 TACTTCACACCCTGTCAA
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Gibbs Sampling: an Example

6) We iterate the procedure again with the 

above starting positions until we cannot 

improve the score any more.
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Gibbs Sampler in Practice

• Gibbs sampling needs to be modified when 
applied to samples with unequal distributions 
of nucleotides (relative entropy approach). 

• Gibbs sampling often converges to locally  
optimal motifs rather than globally optimal 
motifs.

• Needs to be run with many randomly chosen 
seeds to achieve good results. 
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