CS4330: Combinatorial Methods in Bioinformatics # K-mers counting in memory Wong Limsoon Acknowledgement: This set of slides were adapted from Ken Sung's ## K-mer counting Given a set Z of K-mers that appear in a set of reads R Count # of occurrences of each K-mer in Z in R Let N = | Z | ## Reverse complement DNA is double-stranded The double-stranded DNA below can be read as CGT or ACG: 5'-CGT-3' 3'-GCA-5' The lexicographically smaller one is chosen as the canonical form For the example above, the canonical form is ACG ## K-mer counting, considering canonical form Given a set Z of K-mers that appear in a set of reads R Count # of occurrences of canonical K-mers in Z in R Let N = | Z | | count | |-------| | 1 | | 2 | | 3 | | 3 | | 3 | | 2 | | 1 | | | | noncanoni | cal | |------------|-----| | Horicanoni | Cai | | k-mer | count | |-------|-------| | ACG | 3 | | GAC | 3 | | TCA | 3 | | CAA | 3 | | AAG | 2 | | ACT | 1 | | | | canonical ## Exercise For counting canonical K-mers, would it be better to use odd K or even K? Why? ## Counting techniques Hashing (used by Jellyfish) Radix sorting (used by KMC & KMC2) Counting Bloom filter (used by BFCounter) Burst ties (used by KCMBT) Enhanced suffix array (used by Tallymer) 8 ## Hash with count table of size 4k Build hash table Count[] Initialize Count[t] = 0 for every K-mer t For every read and every K-mer t occurrence in the read Count[t] ++ Report t and Count[t] for each Count[t] > 0 Time complexity = $O(4^K + N)$, N = # of K-mer occurrences Space complexity = $O(4^K)$ When K is large, this needs too much space 9 ## Example | i | 3-mer | Count[i] | |----|-------|----------| | 0 | AAA | 0 | | 1 | AAC | 0 | | 2 | AAG | 1 | | | *** | | | 5 | ACC | 1 | | | *** | | | 9 | AGC | 3 | | | *** | | | 16 | CAA | 1 | | | | | | 28 | CTA | 1 | | | | | | 36 | GCA | 1 | | | *** | | | 44 | GTA | 1 | | | | | | 63 | TTT | 0 | ## Jellyfish: Using smaller hash table Build hash table H[1..N/ α] and count table C[1..N/ α], where α = Load factor, C[i] stores count of K-mer H[i] Hash each K-mer into H[] using hash function h() Resolve collision by linear probing When α < 0.7, expected # of collisions is low Expected time complexity = O(N) Space complexity = $$(2K + 32) N / \alpha$$ bits Used by Jellyfish with bells & whistles Check out the Wikipedia entry on hash tables if anyone does not know what a hash table is... https://en.wikipedia.org/wiki/Hash_table ## **Exercise** ## Table size = 11 $h(z) = z \mod 11$ ``` S=TAGCAAGCTACC \rightarrow CTA (28) h(28)=6 TAG \rightarrow AGC (9) h (9) = 9 AGC \rightarrow GCA (36) h (36) = 3 GCA \rightarrow CAA (16) h(16)=5 CAA → AAG (2) h(2) = 2 AAG AGC \rightarrow AGC (9) h(9)=9 \rightarrow AGC (9) h (9) = 9 GCT CTA ``` TAC ACC Fill in these | i | H[i] | Count[i] | |----|------|----------| | 0 | GTA | 1 | | 1 | | | | 2 | AAG | 1 | | 3 | GCA | 1 | | 4 | | | | 5 | CAA | 1 | | 6 | CTA | 1 | | 7 | | | | 8 | | | | 9 | AGC | 1+1+1 | | 10 | | | # Lock-free hash table access in Jellyfish enables high parallelism "Compare and swap" (CAS) assembly instruction in modern multicore CPU ``` currentvalue ← read at location; if currentvalue = oldvalue then | set location to newvalue; end return currentvalue Algorithm 1. CAS(location, oldvalue, newvalue) ``` ``` Data: K the array where the keys are stored Data: V the array where the values are stored // Claim key 1 i \leftarrow 0 2 repeat if i \ge max_reprobe then return False x \leftarrow pos(key, i) i \leftarrow i + 1 current_key \leftarrow CAS(K[x], EMPTY, key) 7 until current_key=EMPTY or current_key=key // Increment value 8 cval \leftarrow V[x] 9 repeat oval \leftarrow cval cval \leftarrow CAS(V[x], oval, oval + value) 12 until cval = oval 13 return True Algorithm 2. Increment(key, value) ``` ## Performance of Jellyfish Computation time & memory usage for various levels of sequencing coverage on reads generated during the Turkey genome project when counting 22-mers. Except for Tallymer which is single-threaded, all programs were ran using 32 threads. ## LSD radix sort Sort K-mers from LSD to MSD Time complexity = O(NK) Slow for big K Used in KMC & KMC2 #### 1. Distribute: - Elements are initially distributed into buckets based on the least significant digit. - The order of elements in each bucket is preserved. #### 2. Collect: • Elements are then collected back from the buckets, and the process is repeated for the next significant digit. #### 3. Repeat: The distribution and collection steps are repeated for each digit, moving from the least significant to the most significant. #### 4. Result: • After processing all digits, the array is sorted. ## **MSD** radix sort #### Sort K-mers from MSD to LSD Time complexity = O(NK), but ideal case is $\Omega(N \log_4 N)$ #### Used in KMC3 #### 1. Distribute: - Elements are initially distributed into buckets based on the most significant digit. - * The order of elements in each bucket is preserved. #### 2. Sort Buckets: - * Each bucket is recursively sorted using MSD radix sort. - * The process continues until all digits are considered. #### 3. Collect: Elements are collected back from the buckets in a way that preserves the order of the digits. #### 4. Repeat: The process is repeated for each digit, moving from the most significant to the least significant. #### 5. Result: • After processing all digits, the array is sorted. ## Performance of KMC3 ## Counting Bloom filter Some applications only interested in K-mers occurring at least q times Can use counting Bloom filters for counting e.g., BFCounter Melsted & Pritchard, "Efficient counting of k-mers in DNA sequences using a bloom filter", *BMC Bioinformatics* 12:333, 2011 ## Bloom filter Consider a set X of elements And we want to support these operations on X: Insert(w, X) – insert element w into X Query(w, X) – check whether X contains an element w When | X | is small, maintain it using hash table When | X | is big, hash table cannot fit into memory; maintain it using Bloom filter # A Bloom filter is a space-efficient probabilistic data structure designed for membership testing Bloom filter consists of Bit array B[0...n-1] Hash functions $h_1, h_2, ..., h_k$ Initialization: B[j] = 0 for $0 \le j < n$ Insert(w, X): $B[h_i(w)] = 1$ for i = 1, 2, ..., k Query(w, x): $\Pi_{i=1,2,...,k} B[h_i(w)]$ Insert/query is O(1) time May give false positive but never give false negative #### Basic Idea: At its core, a Bloom filter consists of an array of bits and multiple hash functions. This combination allows it to represent set membership in a highly efficient manner. #### Multiple Hash Functions: The key innovation of Bloom filters lies in the use of multiple hash functions. Each element is hashed by several independent hash functions, and the corresponding bits in the array are set to 1. #### Purpose of Multiple Hash Functions: The use of multiple hash functions is essential to minimize the risk of false positives. By distributing the bits across the array using different hash functions, Bloom filters achieve a balanced and efficient representation of set membership. ## **Example** Assume k=3, n=13 #### **Initialization:** $$B[j] = 0 \text{ for } 0 \le j < 13$$ #### Hash functions: $$h_1[w] = w \mod 13$$ $$h_2[w] = w^2 \mod 13$$ $$h_3[w] = (w + w^2) \mod 13$$ ## **Example** | X = { 4, 12, 27, 31 } | | | | | | | | | | | | | | | |-----------------------|---|---|---|---|---|---|---|---|---|---|----|----|----|--| | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | | В | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | | #### Query(4, X): $$h_1(4) = 4 \mod 13 = 4$$ $$h_2(4) = 4^2 \mod 13 = 3$$ $$h_3(4) = (4^2 + 4) \mod 13 = 7$$ $$B[4] = B[3] = B[7] = 1 \Rightarrow Yes$$ Correct! #### Query(35, X): $$h_1(35) = 35 \mod 13 = 9$$ $$h_2(35) = 35^2 \mod 13 = 3$$ $$h_3(35) = (35^2 + 35) \mod 13 = 12$$ $$B[9] = 0 \Rightarrow No$$ Correct! #### Query(40, X): $$h_1(40) = 40 \mod 13 = 1$$ $$h_2(40) = 40^2 \mod 13 = 1$$ $$h_3(40) = (40^2 + 40) \mod 13 = 2$$ $$B[1] = B[2] = 1 \Rightarrow Yes$$ Wrong! ## False positive rate #### Useful identity: $$\lim_{m o\infty}\left(1- rac{1}{m} ight)^m= rac{1}{e}$$ ### Assume the hash functions are truly random Prob(B[j] = 0) = $$(1 - 1/n)^{km}$$ Prob(B[j] = 1) = $1 - (1 - 1/n)^{km}$ = $1 - ((1 - 1/n)^n)^{km/n}$ $\approx 1 - e^{-km/n}$, for large n n = size of hash tablek = # of hash functionsm = # of elements inserted 25 False positive exists if $w \notin X$ and $\Pi_{i=1..k}$ B[h_i(w)] = 1 $$Prob(\Pi_{i=1..k} B[h_i(w)] = 1) \approx (1 - e^{-km/n})^k$$ ∴ When km << n, false positive rate is low ## **Exercise** n = size of hash tablek = # of hash functionsm = # of elements inserted False positive rate $\varepsilon = (1 - e^{-km/n})^k$ It is minimized when k = (n/m) (ln 2) What is the optimal number of mutually independent hash functions to achieve a target false positive rate ε ? ## **Exercise** Suppose a Bloom filter stores K-mers from a set of sequencing reads Can you reduce the number of false positives returned by this Bloom filter without using additional data structures or storing extra information? ## Counting Bloom filter Consider a bag X of elements And we want to support these operations on X: Insert(w, X) – insert an element w into X Delete(w, X) – remove an element w from X Count(w, X) – count occurrences of w in X Counting Bloom filter can be used ## **Counting Bloom** filter extends Bloom filter to maintain counters for each element Counting Bloom filter consists of: Hash functions $h_1, h_2, ..., h_k$ Integer array B[0..n - 1] Initialization: B[j] = 0 for $0 \le j < n$ Insert(w, X): $B[h_i(w)] += 1$, i = 1..k Delete(w, X): B[hi(w)] = 1, i = 1..k Query(w, X): $min_{i=1}$ k $B[h_i(w)]$ #### Basic Idea: * The fundamental concept remains similar to a Bloom filter, where elements are hashed using multiple hash functions. However, instead of a binary 'presence or absence,' Counting Bloom Filters maintain a count of how many times each element has been inserted. #### Array of Counters: * The core structure consists of an array of counters. Each counter corresponds to a position in the array, and the hash functions determine which counters are incremented or decremented during insertions and deletions. 32 ## **Example** Assume k=3, n=13 #### **Initialization:** $$B[j] = 0 \text{ for } 0 \le j < 13$$ #### Hash functions: $$h_1[w] = w \mod 13$$ $$h_2[w] = w^2 \mod 13$$ $$h_3[w] = (w + w^2) \mod 13$$ (e) ³³ ## Example | X = { 4, 4, 31 } | | | | | | | | | | | | | | | |------------------|---|---|---|---|---|---|---|---|---|---|----|----|----|--| | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | | В | 0 | 0 | 0 | 2 | 3 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | | #### Count(4, X): $$h_1(4) = 4 \mod 13 = 4$$ $$h_2(4) = 4^2 \mod 13 = 3$$ $$h_3(4) = (4^2 + 4) \mod 13 = 7$$ $$min \{ B[4], B[3], B[7] \} = 2$$ #### Count(31, X): $$h_1(31) = 31 \mod 13 = 5$$ $$h_2(31) = 31^2 \mod 13 = 12$$ $$h_3(31) = (31^2 + 31) \mod 13 = 4$$ $$min \{ B[5], B[12], B[4] \} = 1$$ #### Query(33, X): $$h_1(33) = 33 \mod 13 = 7$$ $$h_2(33) = 33^2 \mod 13 = 10$$ $$h_3(33) = (33^2 + 33) \mod 13 = 0$$ $$min \{ B[7], B[10], B[0] \} = 0$$ ## **BFCounter** BFCounter reports counts of K-mers occurring ≥ q times in a set of reads S Create empty counting Bloom filter X & empty hash table H For every K-mer w occurrence in S: If Count(w, X) < q - 1, then insert(w, X) If Count(w, X) = q - 1, then insert(w, X); H[w] = q If Count(w, X) = q, then H[w]++ Return H Melsted & Pritchard, "Efficient counting of k-mers in DNA sequences using a bloom filter", BMC Bioinformatics 12:333, 2011 ## **Exercise** What is the advantage of BFCounter as opposed to the following codes? Create empty hash tables G and H For each K-mer w occurrence in S: G[w]++ For each entry w in G: if $G[w] \ge q$, then H[w] = G[w] Return H ## **Exercise** Let w = a K-mer, Let X = a counting Bloom filter constructed from reads S Suppose Count(w, X) < q Could w have occurred q or more times in S? Suppose Count(w, X) $\geq q$ Could w have occurred less than q times in S? ## Must read #### **Jellyfish** Marcais & Kingsford, "A fast, lock-free approach for efficient parallel counting of occurrences of k-mers", Bioinformatics 27(6):764-770, 2011. https://doi.org/10.1093/bioinformatics/btr011 #### **BFCounter** Melsted & Pritchard, "Efficient counting of k-mers in DNA sequences using a bloom filter", BMC Bioinformatics 12:333, 2011 https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-333 Wong Limsoon, CS4330, AY2023/24 38 ## Good to read #### Radix sort according to Wikipedia https://en.wikipedia.org/wiki/Radix_sort #### Bloom filter according to Wikipedia https://en.wikipedia.org/wiki/Bloom filter Wong Limsoon, CS4330, AY2023/24 39 ## Happy Lunar New Year 龍行 龍 前 程 別 別