
Wong Limsoon, CS4330, AY2023/24

© Copyright National University of Singapore. All Rights Reserved.

CS4330: Combinatorial Methods in Bioinformatics

K-mers counting in

memory

CS4330: Combinatorial Methods in Bioinformatics

K-mers counting in

memory

Wong Limsoon

Acknowledgement: This set of slides were
adapted from Ken Sung’s

1

Wong Limsoon, CS4330, AY2023/24

K-mer counting

2

Given a set Z of K-mers that appear in a set of reads R

Count # of occurrences of each K-mer in Z in R

Let N = | Z |

R, a set of 5 reads

count

Wong Limsoon, CS4330, AY2023/24

Reverse complement

3

DNA is double-stranded

The double-stranded DNA below can be read as CGT or

ACG:

The lexicographically smaller one is chosen as the

canonical form

For the example above, the canonical form is ACG

Wong Limsoon, CS4330, AY2023/24

K-mer counting, considering canonical form

4

Given a set Z of K-mers that appear in a set of reads R

Count # of occurrences of canonical K-mers in Z in R

Let N = | Z |

R, a set of 5 reads

count

canonicalnoncanonical

GAC

ACT

Wong Limsoon, CS4330, AY2023/24

Exercise

For counting canonical K-mers, would it be better to use

odd K or even K? Why?

5

Wong Limsoon, CS4330, AY2023/24

Counting techniques

8

Hashing (used by Jellyfish)

Radix sorting (used by KMC & KMC2)

Counting Bloom filter (used by BFCounter)

Burst ties (used by KCMBT)

Enhanced suffix array (used by Tallymer)

Wong Limsoon, CS4330, AY2023/24

Hash with count table of size 4k

9

Build hash table Count[]

Initialize Count[t] = 0 for every K-mer t

For every read and every K-mer t occurrence in the read

Count[t] ++

Report t and Count[t] for each Count[t] > 0

Time complexity = O(4K + N), N = # of K-mer occurrences

Space complexity = O(4K)

When K is large, this needs too much space

Wong Limsoon, CS4330, AY2023/24

Example

10

canonical hash value

Exercise
☺

Wong Limsoon, CS4330, AY2023/24

Jellyfish: Using smaller hash table

11

Build hash table H[1..N/] and count table C[1..N/], where 
= Load factor, C[i] stores count of K-mer H[i]

Hash each K-mer into H[] using hash function h()

Resolve collision by linear probing

When  < 0.7, expected # of collisions is low

Expected time complexity = O(N)

Space complexity = (2K + 32) N /  bits

Used by Jellyfish with bells & whistles

H[] C[]

Wong Limsoon, CS4330, AY2023/24
12

Check out the Wikipedia entry on hash tables if anyone

does not know what a hash table is…

https://en.wikipedia.org/wiki/Hash_table

https://en.wikipedia.org/wiki/Hash_table

Wong Limsoon, CS4330, AY2023/24

Exercise

Table size = 11

h(z) = z mod 11

13

Fill in these

Wong Limsoon, CS4330, AY2023/24

Lock-free hash table access in Jellyfish

enables high parallelism

15

“Compare and swap”

(CAS) assembly

instruction in modern

multicore CPU

Marcais & Kingsford, “A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers”, Bioinformatics 27(6):764-770, 2011

Wong Limsoon, CS4330, AY2023/24

Performance of Jellyfish

16Marcais & Kingsford, “A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers”, Bioinformatics 27(6):764-770, 2011

Computation time & memory usage for various levels of sequencing coverage on
reads generated during the Turkey genome project when counting 22-mers. Except
for Tallymer which is single-threaded, all programs were ran using 32 threads.

Jelyfish benefits from
smaller hash table

Jelyfish benefits from lock-
free hash table access

Wong Limsoon, CS4330, AY2023/24

LSD radix sort

17

Sort K-mers from LSD to MSD

Time complexity = O(NK)

Slow for big K

Used in KMC & KMC2

Deorowicz et al., “Disk-based k-mer counting on a PC”, BMC Bioinformatics 14:160, 2013

Wong Limsoon, CS4330, AY2023/24

MSD radix sort

18

Sort K-mers from MSD to LSD

Time complexity = O(NK), but

ideal case is (N log4 N)

Used in KMC3

Kokot et al., “KMC3: Counting and manipulating k-mer statistics”, Bioinformatics 33(17):2759-2761, 2017

Wong Limsoon, CS4330, AY2023/24

Performance of KMC3

19Kokot et al., “KMC3: Counting and manipulating k-mer statistics”, Bioinformatics 33(17):2759-2761, 2017

KMC2 & 3 also
use other tricks

to get good
performance

Uncompressed
/ compressed
FASTA as input

Wong Limsoon, CS4330, AY2023/24

Counting Bloom filter

20

Some applications only interested in K-mers occurring at

least q times

Can use counting Bloom filters for counting

e.g., BFCounter

Melsted & Pritchard, “Efficient counting of k-mers in DNA

sequences using a bloom filter”, BMC Bioinformatics 12:333, 2011

Wong Limsoon, CS4330, AY2023/24

Bloom filter

21

Consider a set X of elements

And we want to support these operations on X:

Insert(w, X) – insert element w into X

Query(w, X) – check whether X contains an element w

When | X | is small, maintain it using hash table

When | X | is big, hash table cannot fit into memory;

maintain it using Bloom filter

Wong Limsoon, CS4330, AY2023/24

A Bloom filter is a

space-efficient

probabilistic data

structure designed

for membership

testing

Insert/query is O(1) time

May give false positive but never

give false negative

22

Wong Limsoon, CS4330, AY2023/24

Example

23

Assume k=3, n=13

Initialization:

B[j] = 0 for 0 ≤ j < 13

Hash functions:

h1[w] = w mod 13

h2[w] = w2 mod 13

h3[w] = (w + w2) mod 13

Wong Limsoon, CS4330, AY2023/24

Example

24

Query(4, X):

h1(4) = 4 mod 13 = 4

h2(4) = 42 mod 13 = 3

h3(4) = (42 + 4) mod 13 = 7

B[4] = B[3] = B[7] = 1  Yes

Query(35, X):

h1(35) = 35 mod 13 = 9

h2(35) = 352 mod 13 = 3

h3(35) = (352 + 35) mod 13 = 12

B[9] = 0  No

X = { 4, 12, 27, 31 }

Correct!

Correct!

Query(40, X):

h1(40) = 40 mod 13 = 1

h2(40) = 402 mod 13 = 1

h3(40) = (402 + 40) mod 13 = 2

B[1] = B[2] = 1  Yes

Wrong!

Wong Limsoon, CS4330, AY2023/24

False positive rate

25

Assume the hash functions are truly random

Prob(B[j] = 0) = (1 – 1/n)km

Prob(B[j] = 1) = 1 – (1 – 1/n)km

= 1 – ((1 – 1/n)n)km/n

 1 − e –km/n , for large n

False positive exists if w  X and i = 1..k B[hi(w)] = 1

Prob(i = 1..k B[hi(w)] = 1)  (1 − e −km/n)k

 When km << n, false positive rate is low

n = size of hash table
k = # of hash functions
m = # of elements inserted

Useful identity:

Wong Limsoon, CS4330, AY2023/24

Exercise

26

False positive rate  = (1 − e −km/n)k

It is minimized when k = (n/m) (ln 2)

What is the optimal number of mutually

independent hash functions to achieve

a target false positive rate  ?

n = size of hash table
k = # of hash functions
m = # of elements inserted

Wong Limsoon, CS4330, AY2023/24

Exercise

28

Suppose a Bloom filter stores K-mers from a set of

sequencing reads

Can you reduce the number of false positives returned

by this Bloom filter without using additional data

structures or storing extra information?

Wong Limsoon, CS4330, AY2023/24

Counting Bloom filter

31

Consider a bag X of elements

And we want to support these operations on X:

Insert(w, X) – insert an element w into X

Delete(w, X) – remove an element w from X

Count(w, X) – count occurrences of w in X

Counting Bloom filter can be used

Wong Limsoon, CS4330, AY2023/24

Counting Bloom

filter extends

Bloom filter to

maintain counters

for each element

32

Wong Limsoon, CS4330, AY2023/24

Example

33

Assume k=3, n=13

Initialization:

B[j] = 0 for 0 ≤ j < 13

Hash functions:

h1[w] = w mod 13

h2[w] = w2 mod 13

h3[w] = (w + w2) mod 13

Wong Limsoon, CS4330, AY2023/24

Example

34

Count(4, X):

h1(4) = 4 mod 13 = 4

h2(4) = 42 mod 13 = 3

h3(4) = (42 + 4) mod 13 = 7

min { B[4], B[3], B[7] } = 2

Count(31, X):

h1(31) = 31 mod 13 = 5

h2(31) = 312 mod 13 = 12

h3(31) = (312 + 31) mod 13 = 4

min { B[5], B[12], B[4] } = 1

X = { 4, 4, 31 }

Query(33, X):

h1(33) = 33 mod 13 = 7

h2(33) = 332 mod 13 = 10

h3(33) = (332 + 33) mod 13 = 0

min { B[7], B[10], B[0] } = 0

Wong Limsoon, CS4330, AY2023/24

BFCounter

35

BFCounter reports counts of K-mers occurring  q times in

a set of reads S

Create empty counting Bloom filter X & empty hash table H

For every K-mer w occurrence in S:

If Count(w, X) < q – 1, then insert(w, X)

If Count(w, X) = q – 1, then insert(w, X); H[w] = q

If Count(w, X) = q, then H[w]++

Return H
Melsted & Pritchard, “Efficient counting of k-mers in DNA
sequences using a bloom filter”, BMC Bioinformatics 12:333, 2011

Wong Limsoon, CS4330, AY2023/24

Exercise

36

What is the advantage of BFCounter as opposed to the

following codes?

Create empty hash tables G and H

For each K-mer w occurrence in S: G[w]++

For each entry w in G: if G[w]  q, then H[w] = G[w]

Return H

Wong Limsoon, CS4330, AY2023/24

Exercise

37

Let w = a K-mer,

Let X = a counting Bloom filter constructed from reads S

Suppose Count(w, X) < q

Could w have occurred q or more times in S?

Suppose Count(w, X)  q

Could w have occurred less than q times in S?

Wong Limsoon, CS4330, AY2023/24

Must read

Jellyfish

Marcais & Kingsford, “A fast, lock-free approach for efficient parallel counting of
occurrences of k-mers”, Bioinformatics 27(6):764-770, 2011.
https://doi.org/10.1093/bioinformatics/btr011

BFCounter

Melsted & Pritchard, “Efficient counting of k-mers in DNA sequences using a bloom
filter”, BMC Bioinformatics 12:333, 2011
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-333

38

https://doi.org/10.1093/bioinformatics/btr011
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-333

Wong Limsoon, CS4330, AY2023/24

Good to read

Radix sort according to Wikipedia

https://en.wikipedia.org/wiki/Radix_sort

Bloom filter according to Wikipedia

https://en.wikipedia.org/wiki/Bloom_filter

39

https://en.wikipedia.org/wiki/Radix_sort
https://en.wikipedia.org/wiki/Bloom_filter

Wong Limsoon, CS4330, AY2023/24

Happy Lunar
New Year

龍行龘龘
前程朤朤

40

	Slide 1: CS4330: Combinatorial Methods in Bioinformatics K-mers counting in memory
	Slide 2: K-mer counting
	Slide 3: Reverse complement
	Slide 4: K-mer counting, considering canonical form
	Slide 5: Exercise
	Slide 8: Counting techniques
	Slide 9: Hash with count table of size 4k
	Slide 10: Example
	Slide 11: Jellyfish: Using smaller hash table
	Slide 12
	Slide 13: Exercise
	Slide 15: Lock-free hash table access in Jellyfish enables high parallelism
	Slide 16: Performance of Jellyfish
	Slide 17: LSD radix sort
	Slide 18: MSD radix sort
	Slide 19: Performance of KMC3
	Slide 20: Counting Bloom filter
	Slide 21: Bloom filter
	Slide 22: A Bloom filter is a space-efficient probabilistic data structure designed for membership testing
	Slide 23: Example
	Slide 24: Example
	Slide 25: False positive rate
	Slide 26: Exercise
	Slide 28: Exercise
	Slide 31: Counting Bloom filter
	Slide 32: Counting Bloom filter extends Bloom filter to maintain counters for each element
	Slide 33: Example
	Slide 34: Example
	Slide 35: BFCounter
	Slide 36: Exercise
	Slide 37: Exercise
	Slide 38: Must read
	Slide 39: Good to read
	Slide 40: Happy Lunar New Year 龍行龘龘 前程朤朤

