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Errors in reads greatly increase

complexity of genome assembly
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Fig. 1 An example of NGS data jand its de Bruijn graph. The short stretches of sequences in (a) are the reads generated from an NGS platform, while the long se-
quence is the reference. The reference is often unknown but, for ease of illustration, it is shown here to demonstrate substitutions (coloured in orange), insertions
(green) or deletions (light blue) errors. There is no *-" in the real-life reference and sequenced reads, but it is shown here also for better understanding. (b) The de
Bruijn graph constructed from all the short sequences in (a) with a kmer size of 4. (c) is the simplified error-corrected version of the de Bruijn graph of (b). The
numbers along the edges represent their multiplicities

The error-containing de Bruijn graph (b) is much more
complicated than the error-free graph (c)

L. Zhao et al., “MapReduce for accurate error correction of next-
generation sequencing data”, Bioinformatics 33(23):3844-3851, 2017
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Reads containing low-freqg K-mers are

much more likely to have errors

When a genome is sampled at high
coverage, any K-mer in the genome can
be expected to appear in many reads

For any K-mer t, let freq(t) = # of reads

containing t or Its reverse complement

J P AAGTERR
If freq(t) is small, it is likely that some AGTECAG
error has occurred in the reads GTEAAGT
containing t

TGAAGTG




Exercise

Reads containing low-frequency K-mers are likely to
contain sequencing errors

Reads with errors greatly increases complexity of
genome assembly

We should discard these reads and not use them in
genome assembly, no?

\
f-



Solid K-mers

A K-mer t is said to be solid wrt a set of sequencing
reads 2 if freq(t) > M, where M Is a given threshold

Solid K-mers are considered reliable due to their high
frequency within the set of sequencing reads



Read set, 2
AAGTGAA
AGTGCAG
GTGAAGT
TGAAGTG

K-mer t is solid if freq(t) > M
E.g., M =2, the solid K-mers are:

AAGT, ACTT, AGTG
CACT, TGAA, TTCA

CACT
CTTC
CTGC
GAAG
GCAC
GCAG
GTGA
GTGC
TCAC
TGAA
TGCA
TTCA
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The read error correction problem

Given a set of reads 2

Let 7 = the set of all correct K-mers in the genome
7 Is often approximated by solid K-mers in 2 in practice

Aread R Is a 7-string If every K-merin Risin 7

Objective: Convert every read R € 2to R’ by the
minimum # of mutations such that R’ is a 7-string



Exercise

Read set, 2
AAGTGAA
AGTG AG
GTGAAGT
TGAAGTG

7 = solid K-mers, freg>1
AAGT, ACTT, AGTG
CACT, TGAA, TTCA,

CTTC, GAAG, GTGA,
TCAC, TGCA

Which reads in 2 are 7-
strings?

Can you convert the
non 7-string reads to 7-
strings using min # of
mutations?



Exercise

Read set, 2
AAGTGAA
AGTG AG
GTGAAGT
TGAAGTG

7 = solid K-mers, fregq>2
AAGT, ACTT, AGTG
CACT, TGAA, TTCA

Which reads in 2 are 7-
strings?

Can you convert the
non 7-string reads to 7-
strings using min # of
mutations?
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Recursive spectra alignment

For aread R, find . o :
minimum edit distance betw R[1..i] and

min . ,dist(|R],t) where dist(i,t) = 5y 2-string that ends at K-mer t

Assume no indel error in first k bases of R
Let p(x,y) =0ifx=yand p(x,y) =1ifx=y

b e t[1..K-1])

Base case, | = K: must be solid K-mer
dist(K.t) = {Hammlng(R[l..K],t) ift e 7_
00 otherwise
Recurrence:

[ min . acem dist(i—1,|b e t{1..K-1]) + p(RILUK])  match
dist(i,t) = min 4 dist(i— 1, t) + 1 delete
| MiN e dist,]b e 1. K-1]) + 1 insert

Wong Limsoon, CS4330, AY2023/24 Potential infinite |00p! Chaisson et al., Bioinformatics 20(13):2067-2074, 2004 1



The “dependency graph” is cyclic but

non-negative

R = AGTGCAG

T = { AAGT, AGTG,
GAAG, GTGA,
TGAA, TGCA }

(mis)match = slant edge
delete = vertical edge
insert = horizontal edge

Wong Limsoon, CS4330, AY2023/24

Recurrence:

R[1..4] = AGTG

R[5] =C
R[6] = A
R[7] =G

dist(i—1,t) + 1 delete

MiN o ac.0m disti =1, b e t11.K-1]) + p(RILUKD  match
dist(i,t) = min
min be {A.C,G T} diSt(i, b L] t[1K—1]) ar 1 insert

I (4,AAGT) I I (4,AGTG) | I (4,6TGA) I (4,TGAA) I I (4,GAAG) I I (4,TGCA) I

(5,AAGT) (5,AGTG) (5,6TGA) (5,TGAA) (5,GAAG) I I (5,TGCA) I

(6,AAGT) (6,AGTG) (6,6TGA) (6,TGAA) (6,GAAG) I (6,TGCA) I

(7,5AGT) (7,AGTG) {?,Gmm;;:m} (7,GAAG) | I (7,7GCA) |

\
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Spectra alignment via “shortest path” of

dependency graph

Key lemma
dist(i,t) = length of shortest path from v, to (i,t)

.Construct dependency graph; find shortest path from
v, to (|R]|,t) for somet e 7

The dependency graph has O(|R| |7]) hodes and edges
-.Complexity of graph construction = O(|R| |7])
-.Complexity of shortest path finding = O(|R]| |7])
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Dijkstra’s shortest path algorithm

1 function Dijkstra(Graph, source):

2

3 for each vertex v in Graph.Vertices:

4 dist[v] « INFINITY T -

5 prev[v] <« UNDEFINED o 5

6 add v to @ Y

7 dist[source] « © /

8 r y o

9 while Q is not empty: gL

10 u « vertex in Q with min dist[u] Pl M Lk
11 remove u from Q A-m—" "*ﬁ P ' "
12 ] o -,

13 for each neighbor v of u still in Q: o o 1
14 alt « dist[u] + Graph.Edges(u, v) ; 4 £k
15 if alt < dist[v]: 4 ! ' -

16 dist[v] « alt 1yl L

17 prev[v] « u e - %

18
19 return dist[], prev[] Source: Wikipedia
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Example

Recurrence: ) e :
min . ac o dist(i—1, b e t[1..K-1]) + p(RILUK])  match
dist(i,t) = min 4 dist(i—1, t) + 1 delete
R = AGTGCAG TN o .0 st b o 1.K-A]) + 1 insert

T = { AAGT, AGTG,
GAAG, GTGA,
TGAA, TGCA }

R[14] = AGTG I (4,AAGT) I I (4,AGTG) I (4,6TGA) I (4,TGAA) I I (4,GAAG) I I (4,TGCA) I

Mln path Iength — 1 R[5] =C (5,AAGT) (5,AGTG) (5,6TGA) (5,7GAA) fS,GAAi}I IﬂGi’I
Corrected read =
R[6] =] A {G,AAGT] [G,AGTG} {G,GTGA} {6, AA} tG,GAAG} I?GQTI

AGTGAAG
R[7] =G (7,5AGT) (7,AGTG) (7,6TGA) 7.76an) B (7.6aa0) | I (7,7GCA) |
\
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Exercise

Discuss the good,
the bad, & the
ugly of read error
correction by
spectra alignment

n, CS4330, AY2023/24

Recurrence:

R[1..4] = AGTG

R[5] =C

R[6] =A

R[7] =G

MiN o ac.0.n distli— 1, b o t{1.K-1]) + p(RILIKD  match
dist(i,t) = min 4 dist(i—1,t) + 1 delete
min be {A.C.G.T} d|St(|, be t[1 K'1]) + 1 insert

I {A,GT] I I (4,AGTG) I (4,GTGA) I I (4,TGAA) I I (4,GAAG) I I (4,TGCA) I

(5,AAGT) (5,AGTG) (5,GTGA) (5, TGAA) (5,GAAG) I I (5,TGCA) I
(6,AAGT) (6,AGTG) (6,GTGA) (6,%GAA) (6,GAAG) {S,TGCAJI
(7.AAGT) [7,,&(?%?56,&) %:AA) (7,GAAG) | | (7,7GCA) |

o/
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n =size of Bloom filter

# of solid K-mers In m = # of elements inserted

human genome ¢ =false positive rate

~4.2 billion K-mers have freq = 1; assumed error K-mers

~2.8 billion K-mers have freq > 1; assumed solid K-mers

OptimaNhsize of Bloom filter is n = -2.08 m (In €) bits

N =-2.08 (28x10% (In ) .
~ 40 x 10° bits 5 GB at € = 0.01% i:'::'(';:";f;
~ 54 x 10° bits ~ 6.7 GB at & = 0.001% o Krmers

Can use Bloom filter to keep solid K-mers for correcting
read errors for human genome

18



Many modern
& popular read
error
correction

tools rely on
K-mer
counting &
Bloom filter

Wong Limsoon, CS4330, AY2023/24

=

[}

(o ]1T- (-3 https://pubmed.ncbi.nlm.nih.gov/21114842
* Description: Quake is a k-mer based error correction tool that
uses a combination of read overlapping and k-mer counting to
correct sequencing errors.
. Musket: ://pubmed.ncbi.nIlm.nih.gov/23202746

* Description: Musket is a k-mer based error correction tool that
uses a probabilistic model to correct sequencing errors in
short-read data.

. Bless:

* Description: Bless is a k-mer based error correction tool that
employs a Bloom filter to correct errors in lllumina sequencing
reads.

. Lighter:

* Description: Lighter is a k-mer based error correction tool

designed for large-scale sequencing data. [t uses a

lightweight algorithm for fast error correction.

Check out Lighter

especially. It does not
do K-mer counting.
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A simple approach to Bloom filter-based

read error correction

Keep solid K-mers in a Bloom filter H

For a read R, mark all positions RJi.. I + K— 1] as solid if
R[i..1+K-=1]isfoundin H

If a position R[i] is not solid, replace R[i] by b € {A,C,G,T}
provided some of the following is found in H:

beR[I+1. 1+K-1]

Rli—-K..i—1]eb
Ri—j..i1—1]ebeR[i+1..1+K—-j—1], where 1<j<K

If more non-solid positions, repeat the last step

20



Found in 7,

solid
R = AGTGCAG —
AGTG C AG
7 ={AAGT, ACTT, TG A A | Foundin7

AGTG, CACT, ' Replace C by A
TGAA, TTCA }

AGTGAA
This last G not solid.
J Leave it alone?
Found in 7, Use a 7 at lower threshold?
solid

21



Exercise

A simple approach to Bloom filter-based

Sometimes different read error correction
“b” can be SUbS“tUtGd, Keep solid K-mers in a Bloom filter H
and h|tS fou nd |n H For a read R, mark all positions RJi.. i + K- 1] as solid if

R[i..i+ K—=1]is foundin H

If a position R]i] is not solid, replace R][i] by b € {A,C,G,T}
provided some of the following is found in H:

beR[i+1. i+K-1]
How do you select RI-K..i-1]eb

the more I|ke|y one? Rli—j..i—1]ebeR[i+1.i+K-j—1], where 1<j<K

If more non-solid positions, repeat the last step

Waong Limsoon, CS4330, AY202%24
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Reminder:
Low-frequency

K-mers may
not be errors

Wong Limsoon, CS4330, AY2023/24
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Fig. 3 A relation between k-mer frequency and GC-content. The bottom left panel shows the smoothed scatter plot between k-mer frequency and
GC-content, the top left is the distribution of k-mer frequency, and the bottom right is the distribution of GC-content. It is clear that GC-content
k-mers have relatively low frequency. The data shown in this example is obtained from the H. chromosome 14 with k-mer size of 25

Density
|

K-mer frequency

Fig. 1 Frequency distribution of both error-free and error-containing k-mers for a NGS data set. The frequency distribution of erroneous k-mers is
represented by the dash orange line, while the distribution of the correct ones is shown as the dash sky-blue line. The solid black line is the
distribution of all the k-mers. The a-labeled area is the propertion of correct k-mers having frequency less than fo, while the B-labeled area is the
proportion of erroneous k-mers having frequency greater than f;

Zhao et al., Mining statistically-solid k-mers for accurate
NGS error correction, BMC Genomics 19(510):912, 2018
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Exercise

At freqg>1
Error K-mer TGCA € 7

At freq > 2
Valid K-mer GAAG ¢ 7

How to make 7 contain
less error K-mers and
Include more valid K-
mers?

Read set, 2
AAGTGAA
AGTG AG
GTGAAGT
TGAAGTG

7 = solid K-mers, freq>1
AAGT, ACTT, AGTG
CACT, TGAA, TTCA,

CTTC, GAAG, GTGA,
TCAC, TGCA

7 = solid K-mers, freq>2
AAGT, ACTT, AGTG
CACT, TGAA, TTCA

AAGT
ACTT
AGTG
CACT
CTTC
CTGC
GAAG
GCAC
GCAG
GTGA
GTGC
TCAC
TGAA
TGCA
TTCA

w N W RN R RN R, NWW W W




State of the art
INn read error

correction,
ZEC

Btw,

Tabde 1 The data sets that are used for evaluating the perffiormance of emor comection models

Daraser  Genome name Gemome size (bp)  Emorrate ) Read length bp)  Cowerage  Numberofreads  Insem length  |s syrhesic
Fa S aueus 28213461 128 1M 463 x 1254104 180 Mo
Rz H.sphae'nides 4603110 108 1M 450 % 2050868 180 Mo
R3 H. dwomosome 14 BE 218286 52 1M 41 8% 34,504,500 155 Mo
] B. impatiens 245,185 056 086 124 150Ex 303118554 400 Mo
51 H. dwomosome 14 BE 218286 oy 1M 41 8% 34,504,500 180 Yas
B. impatiens 245,185 056 058 124 1508 303118554 400 Yas

Metrics that are considered include gain, recall, precision
and per base error rate (pber). Gain is defined as (TP —
EFmATP + FN), recall is TR/(TP + FN), precision is
TP/(TP + FF) and pber is N°/N, where TP stands for
the number of corrected bases that are truly erroneous
bases, FP represents the number of corrected bases that
are not sequencing errors intrinsically, FN is the number
of erroneous bases that remain untouched, N© is the num-
ber of erroneous bases and N is the total number of bases.
Among these metrics, gain is the most informative.

Wong Limsoon, CS4330, AY2023/24

All experiments are carried out on a cluster having eight
Intel Xeon E7 CPUs and 1Th RAM. Each CPU has eight
£Ores.,

Regarding the running speed, this algorithm is linearly
sealed. Since locating each k-mer in a bit vector is O(1)
pertaining to time complexity by using hash, this algo-
rithm is pretty fast. For instance, based on our computing
power, it only takes 387 s to construct the bit vectors and

caleulate the z-scores of all the k-mers of R4—the largest
data set.

Table 2 Errcrcorrection performance comparison between ZEC,
Lighter, Racer, BLES52, Musket, BFC, 5GA and MEC

MECisme © = =

Data Comecon Gain Reca Priac Pheste)
R1 TEC 0908 0912 D536 ooz
Lighiter 0E39 0845 D534 0163
Racar D760 0822 0529 0150
BLESS2 089 0409 DESO
Muske 0499 0628 D.E30
SGA 0746 0815 0522
BFC 0753 0817 0537
—> ML 0.209 0811 0598
0.584 0563 DESS
Lighiter 0226 0328 07&E2
Racar 0354 0450 DE39
BLESS2 0318 0405 DEI6
Muske D265 0364 D786
SGA 0331 0423 DE22
BFC 0306 0400 DE1T
MEC 0570 0531 0512
3 TEC 0.802 0523 DEA4
Lighiter 0445 0764 0706
Racar 0562 0814 DFE4
BLESS2 030 0541 D556
Muske 0533 08032 0749
SGA 0567 0818 D7ES
BFC D603 0833 0783
MEC 0788 0852 0,530
R4 TEC 0.746 0833 0505
Lighiter 026 0408 0591
Racar 0313 0541 0703
BLESS2 0517 0B 0003
Muske 0502 066D D.E07
SGA 0542 0590 DE23
BFC 0195 0457 DEI6
MEC 0705 0805 D.EA9
51 TEC 0918 0935 0582
Lighiter o7 0851 0534
Racar 0832 0916 D564
BLESS2 DA34 0740 DE?S
Muske 0819 0871 D544
SGA 0E10 0865 0,540
BFC DBSE 0503 0561
MEC 0839 0916 0582
52 TEC 0.853 0894 DE56
Lighiter D058 0328 D548
Racar D168 A0 0630
BLESS2 0311 0509 0719
Musker 0232 0453 DE72
SGA 0075 0342 0.562
BFC 0751 0822 0,520
MEC 0849 Q887 0559

The numbers in bold face are the: best gain achieved for each data set




Must read

Spectra alignment

M. Chaisson et al, “Fragment assembly with short reads”, Bioinformatics
20(13):2067-2074, 2004. https://pubmed.ncbi.nlm.nih.gov/15059830/

ZEC

L. Zhao et al., “Mining statistically-solid k-mers for accurate NGS error correction”,
BMC Genomics 19(510):912, 2018. https://doi.org/10.1186/s12864-018-5272-y

Lighter

L. Song et al., “Lighter: Fast and memory-efficient sequencing error correction
without counting”, Genome Biology 15(11):509, 2014.
https://pubmed.ncbi.nlm.nih.gov/25398208/
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Good to read

Musket

Y. Liu et al., “Musket: A multistage k-mer spectrum-based error corrector for
lllumina sequence data”, Bioinformatics 29(3):308-315, 2013.
https://pubmed.ncbi.nlm.nih.gov/23202746/

MEC

L. Zhao et al., “MapReduce for accurate error correction of next-generation
sequencing data”, Bioinformatics 33(23):3844-3851, 2017.
https://pubmed.ncbi.nlm.nih.gov/28205674/
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