CS4330: Combinatorial Methods in Bioinformatic

K-mers counting In
memory

Wong Limsoon

s
Acknowledgement: This set of slides were
adapted from Ken Sung’s

© Copyright National University of Singapore. All Rights Reserved.

K-mer counting

Given a set Z of K-mers that appear in a set of reads 2

Count # of occurrences of each K-merinZin 2
LetN =| Z|

ACGTC ACG 1
CGTCA CGT 2
GTCAA — |-
TCAAG ——
CALAGT CAA 3
AAG 2

Z, a set of 5 reads
AGT 1

Reverse complement

DNA Is double-stranded

The double-stranded DNA below can be read as CGT or
ACG: 51 _CET_3
37 —GCA-5'

The lexicographically smaller one is chosen as the
canonical form

For the example above, the canonical form is ACG

K-mer counting, considering canonical form

Given a set Z of K-mers that appear in a set of reads 2

Count # of occurrences of canonical K-mersin Zin R
LetN =| Z|

ACGTC ACG 1 mm
CGTCLA cGT 2 ACG 3
GTCAD GTC 3 GAC 3
TCARAG TCA 3 TCA 3
CAAGT CAA 3 CAA 3
AAG '] AAG 2
Z, a set of 5 reads e ACT 1

noncanonical ~ canonical

Exercise

For counting canonical K-mers, would it be better to use
odd K or even K? Why?

N

Counting techniques

Hashing (used by Jellyfish)

Radix sorting (used by KMC & KMC2)
Counting Bloom filter (used by BFCounter)
Burst ties (used by KCMBT)

Enhanced suffix array (used by Tallymer)

Check out the Wikipedia entry on hash tables, linear
probing, etc. if anyone does not know these mean ...

https://en.wikipedia.org/wiki/Hash_table

Hash with count table of size 4k

Build hash table Count|]
Initialize Count[t] = O for every K-mer t
For every read and every K-mer t occurrence in the read

Count[t] ++

Report t and Count|[t] for each Count[t] >0

Time complexity = O(4X + N), N = # of K-mer occurrences
Space complexity = O(4%)

When K is large, this needs too much space

10

i [3-mer | Count(i] |

0 0
AAC
2 AAG 1

5 ACC 1
S=AGCAAGCTACC
AGC 2 AGC (9) 9 AGC 3
GCA - GCA (36)
CAA - CAA (16) |
AAG -2 DAG (2)
AGC -2 AGC (9)
GCT > AGC (9) SR I
CTA 2 CTA (28 Exercise
TAC -> 36 GCA 1
ACC =2
44 GTA 1

63 TTT 0

11

Wong Limsoon, CS4330, AY2024/2025

Jellyfish: Using smaller hash table

Build hash table H[1..N/a] and count table C[1..N/a], where o
= Load factor, C[i] stores count of K-mer H[i]

Hash each K-mer into H[] using hash function h()

Resolve collision by linear probing

When a < 0.7, expected # of collisions is low
Expected time complexity = O(N)

Space complexity = (2K + 32) N / a bits

Used by Jellyfish with bells & whistles

12

Exercise

i | Hiil | Countli]

0 GTA 1
Table size = 11 1
h(Z) =z mod 11 p) AAG 1
3 GCA 1
S=TAGCAAGCTACC 4
TAG -2 CTA (28) h(28)=6
AGC - AGC (9) h(9)=9 5 CAA 1
GCA - GCA (36) h(36)=3
CAA - CAA (16) h(l6)=5 6 CTA 1
DAAG - AAG (2) h(2)=2 7
AGC - AGC (9) h(9)=9 3
GCT - AGC (9) h(9)=9
CTA 9 AGC 1+1+1
TAC Fill in these -

ACC

Wong Limsoon, CS4330, AY2024/2025

‘ {
4
o

Lock-free hash table access in Jellyfish

enables high parallelism

-~

“Compare and swap”
(CAS) assembly
Instruction In modern
multicore CPU

1 currentvalue <— read at location;
2 if currentvalue =oldvalue then
3 | set location to newvalue;

4 end

5 return currentvalue

_

~

Algorithm 1. CAS(location, oldvalue,newvalue)

/

Wong Limsoon, CS4330, AY2024/2025

Marcais & Kingsford, “A fast, lock-free approach for efficient parallel

N SN AW -

e oL

10
11
12
13

Data: K the array where the keys are stored
Data: V the array where the values are stored
// Claim key
i <0
repeat
if i > max_reprobe then return False
X < pos(key,i)
[<—i+1
current_key < CAS(K|[x],EMPTY, key)
until current_key=EMPTY or current_key=key
// Increment value
cval < V[x]
repeat
oval < cval
cval < CAS(V|x],oval,oval 4 value)
until cval=oval
return True
Algorithm 2. Increment(key, value)

15

counting of occurrences of k-mers”, Bioinformatics 27(6):764-770, 2011

Performance of Jellyfish

Jelyfish benefits from lock- Jelyfish benefits from
free hash table access smaller hash table
j\ ' . ! 200 T T T
Il | -
. tallymer (serial) 180 | X |
g edl| fe— meryl 6. ‘
£ jellyfish (serial) = 140} Lok -
S 3:00 - .
- G 120 | ; .
§ I 1\’) g 100 | ,” i
@ 2:00 - e ey 54 .) 2 - /', tallymer (serial)
E A £ i jellyfish |
= L .)/ meryl 6.1 jellyfish 60 -
> k B ;
c 1:00p 7 .- " 40 meryl 5.4 .
L ’:-",’::‘_‘___)(-"" l | 20 .;,—"’/ A
1‘— 44} 5. % I lI 0
1 5 10 15 20 1 5 10 15 20
Coverage Coverage

Computation time & memory usage for various levels of sequencing coverage on
reads generated during the Turkey genome project when counting 22-mers. Except
for Tallymer which is single-threaded, all programs were ran using 32 threads.

Wong Limsoon, CS4330, AY2024/2025 Marcais & Kingsford, “A fast, lock-free approach for efficient parallel 16
counting of occurrences of k-mers”, Bioinformatics 27(6):764-770, 2011

Check out the Wikipedia entry on radix sort, if anyone
does not know what this is ...

17

https://en.wikipedia.org/wiki/Hash_table

LSD radix sort " Distroute

* Elements are initially distributed into buckets based on the

least significant digit.
* The order of elements in each bucket is preserved.
2. Collect:

Sort K_merS from LSD tO MSD * Elements are then collected back from the buckets, and

the process is repeated for the next significant digit.
Time complexity = O(NK) ? Repeat
* The distribution and collection steps are repeated for each
. digit, moving from the least significant to the most
Slow for big K

significant.

4. Result:

Used In KMC & KMCZ * After processing all digits, the array is sorted.

S=AGCAAGCTACC
G|c C
AGC > AGC 3-mer |count

GCA > GCA clA A Alalc| 1
CAA > CAA Sl G Alclcl 1
AAG > AAG GIT A Alc|c| 3
AGC > AGC » AlG » A clalal 1
GCT > AGC AlG A SEINER!
CTA > CTA AlG A Glclal 1
TAC - GTA AlC ¢ GITIAl 1

ACC = ACC AlA G

Wong Limsoon, CS4330, AY2024/2025 Deorowicz et al., “Disk-based k-mer counting on a PC”, BMC Bioinformatics 14:160, 2013 18

. Distribute:

* Elements are initially distributed into buckets based on the

M S D rad | X SO rt most significant digit.

* The order of elements in each bucket is preserved.

. Sort Buckets:

* Each bucket is recursively sorted using MSD radix sort.

* The process continues until all digits are considered.

Sort K-mers from MSD to LSD = cotect
* Elements are collected back from the buckets in a way that
TI me CompIeXIty — O(N K), bUt . Re:er::erves the order of the digits.

|dea| Case IS Q(N Iog4 N) * The process is repeated for each digit, moving from the

most significant to the least significant.

Used in KMCS3 5. Result:

* After processing all digits, the array is sorted.

S=AGCAAGCTACC
AGC > AGC oTe
GCA - GCA Alg 3-mer |count
CAA > CAA Glc AlATG] 1
ARG 3 BAG o o
AGC > AGC » » »
ClAA]l 1
GCT > AGC IA A A
CTA S CTA TIA GlclAl 1
TAC > GTa B ol Al
ACC > AcC -

Wong Limsoon, CS4330, AY2024/2025 Kokot et al., “KMC3: Counting and manipulating k-mer statistics”, Bioinformatics 33(17):2759-2761, 2017 19

Performance of KMC3

Uncompressed
Algorithm k: k =55 / Compressed
28 FASTA as input
RAM Disk Time/gz- RAM Disk Time/gz-
Time Time
H. sapiens 3 (729 Gbases
in total)
Gerbil 28 523 11994/12 62 364 11968/12 KMC2 & 3 also
730 469 use other tricks
. to get good
Jellyfish 2 84 251 38338/20 104 636 31783/31 ‘
784 345 performance
KMC 2 64 551 10777/9036 72 381 13774/11
804
KMC 3 a3 596 9631/5985 34 389 8750/5331

Wong Limsoon, CS4330, AY2024/2025 Kokot et al., “KMC3: Counting and manipulating k-mer statistics”, Bioinformatics 33(17):2759-2761, 2017 20

Counting Bloom filter

Some applications only interested in K-mers occurring at
least g times

Can use counting Bloom filters for counting

e.g., BFCounter

Melsted & Pritchard, “Efficient counting of k-mers in DNA
sequences using a bloom filter”, BMC Bioinformatics 12:333, 2011

21

Bloom filter

Consider a set X of elements
And we want to support these operations on X:
Insert(w, X) — insert element w into X

Query(w, X) — check whether X contains an element w

When | X | is small, maintain it using hash table

When | X | is big, hash table cannot fit into memory;
maintain it using Bloom filter

22

A Bloom filter is a * Basicldes:

* Atits core, a Bloom filter consists of an array of bits and multiple hash functions. This

S p acC e—eff | C | en t combination allows it to represent set membership in a highly efficient manner.
.. . * Multiple Hash Functions:

probabilistic data

Structure d@Slgﬂ@d inthe array are set to 1.

fo r m e m b erS h | p * Purpose of Multiple Hash Functions:

. * The use of multiple hash functions is essential to minimize the risk of false positives.
t eS t I n g By distributing the bits across the array using different hash functions, Bloom filters

achieve a balanced and efficient representation of set membership.

* The key innovation of Bloom filters lies in the use of multiple hash functions. Each

element is hashed by several independent hash functions, and the corresponding bits

Bloom filter consists of hash = independert hash Punctions /
Bit array B[0...n —1] / 4 5'#- emdesign.one
Hash functions hy, hy, ..., h, red blue

M / “‘ /// \
Initialization: B[j]=0forO0<j<n 75»\‘ hosh e
Insert(w, X): Blh(w)]=1fori=1,2, ..., //
Query(w, x): IT;- 4 5 B[hy(w)] i/

0 1 0 1 1 1 0 o || o || 1

S

Insert/query is O(1) time

— VT e -
May give false positive but never i | @ J [L } I :j J \ji . }
3 H ! U\ ___J J

give false negative et X

Wong Limsoon, CS4330, AY2024/2025

Example

ﬂﬂﬂﬂﬂﬂﬂlﬂﬂﬂ

Assume k=3, n=13 BO O O O OO O OO OO

(a)
I e, IO AOOEIEES
Nitialization: nse 81 1000000000
B[j]=0for0<j<13 (b)

EIIEEIIIBHIEIEI

Insert4 5, 7 9110010 0 0
(c)

hy[w] = w mod 13 nlnnm:nlnnmmm

Insert 31

Hash functions:

hZ[W] = w2 mod 13 B1 1 0 1 1 1 0 1 O O O
ha[w] = (w + w?) mod 13 (d)
3 N EIIEEIIIHHIEIEI

B1 1 1 1 1 1 0 1 0 O O

Wong Limsoon, CS4330, AY2024/2025 (e) 2

X={4,12,27,31}

ﬂﬂﬂﬂﬂﬂﬂ.ﬂﬂmﬂ
Example B1 11 1 1101000

Query(4, X):

h,(4) =4 mod 13 = 4

h,(4) = 42 mod 13 = 3
hy(4) = (42 + 4) mod 13 =7

B[4] = B[3] = B[7] = Query(40, X):

h,(40) =40 mod 13 =1
h,(40) =402 mod 13 =1

h;(40) = (402 + 40) mod 13 =2
B[1] = B[2] =1 = Yes

1 = Yes

Query(35, X):
h,(35) =35mod 13 =9
h,(35) = 352 mod 13 = 3
h,(35) = (352 + 35) mod 13 = 12
B[9] =0 = No

Useful identity:

1

False positive rate tm (1) =4

Assume the hash functions are truly random

Prob(B[j] = 0) = (1 — 1/n)km n = size of hash table

Prob(B[j] = 1) =1 — (1 — 1/n)km
=1 —((1 = 1/n)")km/

~1—e kM for large n

k = # of hash functions
m = # of elements inserted

False positive exists if w ¢ X and IT,_, , B[h(w)] =1
Prob(IT,_ , , B[h,(w)] = 1) = (1 — e ~km/n)k

. When km << n, false positive rate Is low

26

n = size of hash table

k = # of hash functions

EXGFC ISe m = # of elements inserted

Graph for (1 — e™)*

False positive rate ¢ = (1 — e ~km/mk

It is minimized when k = (n/m) (In 2)

What is the optimal number of mutually
iIndependent hash functions to achieve
a target false positive rate ¢ ?

7.
\,,
N
~

Exercise

Suppose a Bloom filter stores K-mers from a set of
sequencing reads

Can you reduce the number of false positives returned
by this Bloom filter without using additional data
structures or storing extra information?

e

Counting Bloom filter

Consider a bag X of elements

And we want to support these operations on X:
Insert(w, X) — insert an element w into X
Delete(w, X) — remove an element w from X
Count(w, X) — count occurrences of w in X

Counting Bloom filter can be used

32

Countlng Bloom * Basicldea:

* The fundamental concept remains similar to a Bloom filter, where elements are

f I I t e r eXt e n d S hashed using multiple hash functions. However, instead of a binary 'presence or
absence, Counting Bloom Filters maintain a count of how many times each element

Bloom fllter tO has been inserted.

0 = * Array of Counters:
m al n t al n C O u n te r S * The core structure consists of an array of counters. Each counter correspondsto a
fo r e a.C h e | e m e n t position in the array, and the hash functions determine which counters are

incremented or decremented during insertions and deletions.

1 f------ 11
Counting Bloom filter consists of: o I ——— 10
Hash functions h,, hy, .., by 1 | e i 0
Integer array B[0..n — 1] 1 k------ 12
0 g=------ 1 0
Initialization: B[j] =0for0<j<n 1 p-—-—--- 1 1
Insert(w, X): Blh(w)] +=1,i=1.k 1 f------ 11
Delete(w, X): Blhiw)] =1,i=1.k 0 k-—---- 1 0
Query(w, X): min; . ;_ Blh(w)] =5 s
Bloom Filter Counter

Wong Limsoon, CS4330, AY2024/2025 33

Example

EIIEEIIIEEIEIEIEI

Assume k=3, n=13 BO O OO OO OGOTO OO0 O

(a)
Initialization: Insertd _ ?E???é‘?,??m
B[] = 0 for0<j<13 (b)

ﬂ.ﬂﬂﬂﬂﬂ.ﬂﬂ
Insert31 3, g o012 101 00 0
(c)

Y ST e ﬂlﬂﬂﬂﬂﬂlﬂﬂm

h,[w] = w2 mod 13 Insert4 565 0023102000

(d)

EIIEEIEBEIEIEI

BO O O 2 2 0 O 2 0 0 O
(e) 34

Hash functions:

hs[w] = (w + w?) mod 13
Delete 31

X={4,4,31}

ﬂﬂlﬂlﬂﬂlﬂﬂ

eBO 0O 0 2 3 1 0 2 0000

Count(4, X):

h,(4) =4 mod 13 =4

h,(4) =42 mod 13 =3
hy(4) =(4°+4) mod 13 =7

min{ B4, B3], BI7]} = 2 Query(33, X):

h,(33) =33 mod 13 =7
h,(33) =332 mod 13 = 10
h;(33) = (332 + 33) mod 13 =0

Count(31, X): min { B[7], B[10], B[0O] } = 0O

hy(31)=31mod 13=5

h,(31) = 31> mod 13 =12
h,;(31) = (312 + 31) mod 13 = 4
min { B[5], B[12], B[4] } = 1

BFCounter

BFCounter reports counts of K-mers occurring > g times in
a set of reads S

Create empty counting Bloom filter X & empty hash table H

For every K-mer w occurrence in S:

If Count(w, X) < g -1, then insert(w, X)

If Count(w, X) =g -1, then insert(w, X); H{w] = ¢
If Count(w, X) = q, then H[w]++

Melsted & Pritchard, “Efficient counting of k-mers in DNA
Retu rn H sequences using a bloom filter”, BMC Bioinformatics 12:333, 2011

36

Exercise

What is the advantage of BFCounter as opposed to the
following codes?

Create empty hash tables G and H

For each K-mer w occurrence in S: G[w]++

For each entry w in G: if G[w] > g, then H[w] = G[w]
Return H

37

Exercise

Let w = a K-mer,
Let X = a counting Bloom filter constructed from reads S

Suppose Count(w, X) <q

Could w have occurred q or more times in S?

Suppose Count(w, X) > ¢

Could w have occurred less than g times in S?

38

Good to read

Jellyfish

Marcais & Kingsford, “A fast, lock-free approach for efficient parallel counting of

occurrences of k-mers”, Bioinformatics 27(6):764-770, 2011.
https://doi.org/10.1093/bioinformatics/btr011

BFCounter

Melsted & Pritchard, “Efficient counting of k-mers in DNA sequences using a bloom

filter”, BMC Bioinformatics 12:333, 2011
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-333

Wong Limsoon, CS4330, AY2024/2025

https://doi.org/10.1093/bioinformatics/btr011
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-333

Good to read

Radix sort according to Wikipedia

https://en.wikipedia.org/wiki/Radix sort

Bloom filter according to Wikipedia

https://en.wikipedia.org/wiki/Bloom filter

Wong Limsoon, CS4330, AY2024/2025

https://en.wikipedia.org/wiki/Radix_sort
https://en.wikipedia.org/wiki/Bloom_filter

