
Wong Limsoon, CS4330, AY2024/2025

© Copyright National University of Singapore. All Rights Reserved.

CS4330: Combinatorial Methods in Bioinformatics

K-mers counting on disk

Wong Limsoon

Acknowledgement: This set of slides were
adapted from Ken Sung’s

1

Wong Limsoon, CS4330, AY2024/2025

Disk-based techniques

Memory-based K-mer counting methods cannot handle

big datasets

Disk-based approaches

Split and merge – KAnalyze

Split by hashing – DSK

Split by prefix – KMC

Split by super K-mer – MSPKmerCounter, KMC2, KMC3

2

Check out this one
on your own

Wong Limsoon, CS4330, AY2024/2025

Split and merge - KAnalyze

3

Split all K-mers into subsets such that each subset can

be stored in memory

For each subset,

Sort K-mers in memory and obtain counts

Store sorted K-mers and counts to a disk file

Merge the files

Audano & Vannberg, “KAnalyze: A fast versatile pipelined
K-mer toolkit”, Bioinformatics 30(14):2070-2072, 2014

Wong Limsoon, CS4330, AY2024/2025

Example

4

Wong Limsoon, CS4330, AY2024/2025

Issue with split and merge

5

K-mers are grouped into subsets in the order they

appear in the reads

Different occurrences of the same K-mer can get into

different files

Can we avoid wasting time in merging them?

One solution is hashing

Wong Limsoon, CS4330, AY2024/2025

Split by hashing – the DSK way

6

For each K-mer w, hash it to

the file h(w) mod n

For each file:

Use Jellyfish to count its K-

mers in memory

Write the K-mers and their

counts to an output file

Merge the output files

The actual DSK is a bit more intricate,
to ensure the files are balanced in
size and can fit into memory

Rizk et al., “DSK-k-mer counting with very low memory
usage”, Bioinformatics 29(5):652-653, 2013

Wong Limsoon, CS4330, AY2024/2025

Issue with DSK

7

I/O is slow

DSK writes a tmp file of 2k I/O bits per K-mer

This can be expensive

Can we reduce I/O cost per K-mer?

“Super K-mers”

Wong Limsoon, CS4330, AY2024/2025

Split by super K-mers - MSPKmerCounter

8

Li & Yan, “MSPKmerCounter: A fast and memory efficient
approach for K-mer counting”, 2015,
https://doi.org/10.48550/arXiv.1505.06550

Group all K-mers with same

minimizer in same file

For each file:

Use Jellyfish to count its K-

mers in memory

Write the K-mers and their

counts to an output file

Merge the output files

Use “minimum
substring
partitioning (MSP)”
to distributes K-mers
to files based on
minimizers

Wong Limsoon, CS4330, AY2024/2025

Minimizer

9

The length-p minimizer, minp(S), of a string S[1..n] is the

lexicographically smallest p-mer in both S and its reverse

complement

Examples

min4(GCCAAGCGCCAGGCAGCCG) = AAGC @ position 4

min4(GCCAGGCAGCCGCAGTGGG) = ACTG @ position 13

Obviously, two identical K-mers have the same minimizer

Wong Limsoon, CS4330, AY2024/2025

Example

10

Let K = 16, p = 4

Consider a read, GCCAAGCGCCAGGCAGCCGGCTTGG

The K-mers are grouped into:

File AAGC has 7 K-mers

I/O = 7 * 16 nt = 112 nt

File AGCC has 3 K-mers

I/O = 3 * 16 nt = 48 nt

Wong Limsoon, CS4330, AY2024/2025

Observation

11

Many K-mers in the same file are consecutive

In our example,

File AAGC has 7 K-mers:

1st – 4th K-mers

8th – 10th K-mers

File AGCC has 3 K-mers:

5th – 7th K-mers

Wong Limsoon, CS4330, AY2024/2025

Group consecutive K-mers into super K-
mer

12

For consecutive K-mers in the same file, compress them

into a “super K-mer” to minimize I/O

S[i..j] is a super K-mer if all K-mers in S[i..j] share same

length-p minimizer but not those in S[i..j+1] and S[i-1..j]

Example: K = 16, p = 4

S = GCCAAGCGCCAGGCAGCCGGCTTGG

The 16-mers S[5..20], S[6..21], S[7..22] share the

same length-4 minimizer AAGC

S[5..22] = AGCGCCAGGCAGCCGGCT is super 16-mer

Wong Limsoon, CS4330, AY2024/2025

Example

13

Consider a read, GCCAAGCGCCAGGCAGCCGGCTTGG

Let K = 16, p = 4. It has two files:

File AAGC has 7 K-mers,

Rep by 2 super K-mers

1..4: GCCAAGCGCCAGGCAGCCG
8..10: GCCAGGCAGCCGGCTTGG
I/O: 19 + 18 = 37 nt (vs 112 nt)

File AGCC has 3 K-mers,

Rep by 1 super K-mer

5..7: AGCGCCAGGCAGCCGGCT
I/O: 18 nt (vs 48 nt)

Wong Limsoon, CS4330, AY2024/2025

For real short read datasets, average # of
super K-mers per read is usually small

14

n = read length

l = mean # of super K-mer per read

Li & Yan, “MSPKmerCounter: A fast and memory
efficient approach for K-mer counting”, 2015,
https://doi.org/10.48550/arXiv.1505.06550

Wong Limsoon, CS4330, AY2024/2025

The MSP algorithm for partitioning a read
into super K-mers

15

Input: S[1 .. n], K, p

mins = length-p minimizer of S[1..K]

minp = position of mins in S

st = 1

for j = 2 to n – K + 1:

if j > minp or the last p-substring of S[j .. j + K – 1] < mins then

Output S[st .. j – 1] as super K-mer

st = j

mins = length-p minimizer of S[j .. j + K – 1]

minp = position of mins in S
Li & Yan, “MSPKmerCounter: A fast and memory
efficient approach for K-mer counting”, 2015,
https://doi.org/10.48550/arXiv.1505.06550

Wong Limsoon, CS4330, AY2024/2025

Issue with MSPKmerCounter

16

When a minizer starts with a

few A’s, it often implies several

new super K-mers spanning a

single K-mer

Example: K = 8, p = 4

Due to AAAA, the first 3 super

K-mers span single K-mer only

Wong Limsoon, CS4330, AY2024/2025

Use signature instead of minimizer

17

KMC2 uses canonical

minimizers as

signatures but

exclude those:

Starting with AAA

Starting with ACA, or

Contain AA anywhere

except at the start
Deorowics et al., “KMC2: Fast and resource-frugal k-mer counting”,
Bioinformatics 31(10):1569-1576, 2015

Wong Limsoon, CS4330, AY2024/2025

Exercise

Given AACCACAGCTTGTTTGTTCTTG

Let K = 10, p = 4

Show super K-mers defined based on minimizer

Show super K-mers defined based on signature

18

Wong Limsoon, CS4330, AY2024/2025

KMC2

19

Break reads into super K-mers using signatures

Distribute super K-mers into files according to signatures

For each file:

Sort K-mers using LSD radix sort

Output K-mers and their counts

Merge the output files

Deorowics et al., “KMC2: Fast and resource-frugal k-mer counting”,
Bioinformatics 31(10):1569-1576, 2015

Wong Limsoon, CS4330, AY2024/2025

Issue with KMC2

20

When K is large, LSD radix sort is slow

In fact, KMC2 is slower than DSK when K is large

Solution: Use MSD radix sort

Wong Limsoon, CS4330, AY2024/2025

KMC3

21

Break reads into super K-mers using signatures

Distribute super K-mers into files according to signatures

For each file:

Sort K-mers using MSD radix sort

Output K-mers and their counts

Merge the output files

Kokot et al., “KMC3: Counting and manipulating k-mer statistics”,
Bioinformatics 33(17):2759-2761, 2017

Wong Limsoon, CS4330, AY2024/2025

Performance of KMC3

22Kokot et al., “KMC3: Counting and manipulating k-mer statistics”, Bioinformatics 33(17):2759-2761, 2017

KMC2 & 3 also
use other tricks

to get good
performance

Uncompressed
/ compressed
FASTA as input

Wong Limsoon, CS4330, AY2024/2025

Observations from typical
sequencing projects

23

50-90% of unique K-mers occur once

in the read set

Call these “error K-mers”

Average # of occurrences of the

other unique K-mers is close to

sequencing coverage

Distribution of 31-mers in dataset
D3 (human chr 14) having value
larger than 2.

Jiang et al., “kmcEx: memory frugal and
retrieval efficient encoding of counted
k-mers”, Bioinformatics 35(23):4871-
4878, 2019

Wong Limsoon, CS4330, AY2024/2025

Exercise

Suppose coverage is

30 and 60% of unique

K-mers are error K-

mers

What is the ratio of

error : non-error K-mer

occurrences?

24

Wong Limsoon, CS4330, AY2024/2025

Split by hashing – “database hashjoin” style

26

Let unprocessed = input file

Create a new tmp file for writing & a new in-memory hash table H

Repeat until unprocessed is empty:

Remove K-mer w from unprocessed

If H is not full or w H then H[w]++ else write w to tmp

Close unprocessed & tmp

Sort H by its keys (i.e. K-mers)

Write the sorted K-mers and count to new output file

If tmp is not empty, then repeat the above using tmp as the new input file

Merge all output files Or, switch to KAnalyze if counts
in H are all small numbers

If K-mers from consecutive
positions in a read are to be

written to tmp, merge these K-
mers & write the merged string

Wong Limsoon, CS4330, AY2024/2025

Exercise

Do you think the

“database hashjoin”

idea is reasonable?

27

Wong Limsoon, CS4330, AY2024/2025

Summary for K-mer counting

Counting techniques

Hashing,

Sorting,

Counting Bloom filter,

Burst ties, Suffix array

29

Disk-based techniques

Split and merge,

Split by hashing,

Hash by super K-mers,

Hash by prefix

Wong Limsoon, CS4330, AY2024/2025

Good to read

KMC1 & 2

Deorowicz et al., “Disk-based k-mer counting on a PC”, BMC Bioinformatics 14:160,
2013. https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-160

Deorowics et al., “KMC2: Fast and resource-frugal k-mer counting”, Bioinformatics
31(10):1569-1576, 2015 https://doi.org/10.1093/bioinformatics/btv022

30

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-160
https://doi.org/10.1093/bioinformatics/btv022

Wong Limsoon, CS4330, AY2024/2025

Good to read

KAnalyze

Audano & Vannberg, “KAnalyze: A fast versatile pipelined K-mer toolkit”,
Bioinformatics 30(14):2070-2072, 2014 https://doi.org/10.1093/bioinformatics/btu152

DSK

Rizk et al., “DSK: k-mer counting with very low memory usage”, Bioinformatics
29(5):652-653, 2013 https://doi.org/10.1093/bioinformatics/btt020

MSPKmerCounter

Li & Yan, “MSPKmerCounter: A fast and memory efficient approach for K-mer
counting”, 2015 https://doi.org/10.48550/arXiv.1505.06550

31

https://doi.org/10.1093/bioinformatics/btu152
https://doi.org/10.1093/bioinformatics/btt020
https://doi.org/10.48550/arXiv.1505.06550

Wong Limsoon, CS4330, AY2024/2025

Encoding of counted K-mers

32

K-mers are useful in many genomic applications:

genome assembly, error correction, repeat detection, ...

K-mers and their counts sometimes cannot fit into

memory directly; e.g., the 31-mers with frequency 2 in

HapMap sample NA12878 is 90GB

How to encode K-mers and their counts so that they can

be used in memory at will?

Wong Limsoon, CS4330, AY2024/2025

Good to read, for counted K-mer encoding

K-mer sparsification

Pellow et al., “Improving Bloom filter performance on sequence data using k-mer
Bloom filters”, JCB 24(6):547-557, 2017
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467106/

kmcEx

Jiang et al., “kmcEx: Memory-frugal and retrieval efficient encoding of counted k-
mers”, Bioinformatics 35(23):4871-4878, 2019
https://doi.org/10.1093/bioinformatics/btz299

33

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467106/
https://doi.org/10.1093/bioinformatics/btz299

