CS4330: Combinatorial Methods in Bioinformatic

K-mers counting on disk

Wong Limsoon

s
Acknowledgement: This set of slides were
adapted from Ken Sung’s

© Copyright National University of Singapore. All Rights Reserved.

Disk-based techniques

Memory-based K-mer counting methods cannot handle
big datasets

Disk-based approaches

Split and merge — KAnalyze
Split by hashing — DSK
Split by prefix — KMC
Split by super K-mer — MSPKmerCounter, KMC2, KMC3

Check out this one
on your own

Split and merge - KAnalyze

Split all K-mers into subsets such that each subset can
be stored in memory

For each subset,
Sort K-mers in memory and obtain counts

Store sorted K-mers and counts to a disk file

Merge the files

Audano & Vannberg, “KAnalyze: A fast versatile pipelined
K-mer toolkit”, Bioinformatics 30(14):2070-2072, 2014

Split and sort Merge the

every subset kmer lists
of kmers
S=TAGCAAGCTACC AAG 1
TAG - CTA AGC 1
AGC - AGC EEaE AAG 1
. 2 GoA - ACC 1
o 7 o S AGC 3
ARG > AAG GCA 1
AGC - AGC — CAA 1
GCT 3 AGC ACC 1 e
CTA CTA
TAC = GTA AGC 2 GCA 1
ACC = ACC CTA 1 GTA 1
GTA 1

Wong Limsoon, CS4330, AY2024/2025

Issue with split and merge

K-mers are grouped into subsets in the order they
appear in the reads

Different occurrences of the same K-mer can get into
different files

Can we avoid wasting time in merging them?

One solution is hashing

Split by hashing —the DSK way

. Th | DSK i ‘ intri
For each K-mer W, hash it to e actual DS .|s a bit more |ntr|.cate,
to ensure the files are balanced in

the file h(w) mod n size and can fit into memory

Algorithm DSK(Z, M, D, h)
. Require: Z is a set of N’s k-mers, target memory usage M (bits), target
F Or e aC h fl I e . disk space D (bits) and hash function h(.)
. Ensure: The count of every k-mer appearing in 7
_ 2kN .
L npst = =5t
_ D(2k+32)

2: Nsublist = {7 2K)M

Use Jellyfish to count its K- e it 1)
mers in memory

for each k-mer z in Z do
if h(z) mod nys =i then
3= (h(z)/niise) mod neupiist;
Write z to disk in the sublist d;;
9: end if

Write the K-mers and their 0 end for

for j =0 to neuprise — 1 do

e A

12 Load the jth sublist d; in memory;

CO u nts to an O utp ut fi Ie 13: Run k-mer_counting(d;, 0.7,h) (see Figure 5.9) to output the num-

ber of occurrences of every k-mer in the sublist d;;
14: end for
15: end for

M erge the Output f| IeS Rizk et al., “DSK-k-mer counting with very low memory

usage”, Bioinformatics 29(5):652-653, 2013

Wong Limsoon, CS4330, AY2024/2025

Issue with DSK

/O Is slow

DSK writes a tmp file of 2k 1/O bits per K-mer

This can be expensive

Can we reduce 1I/O cost per K-mer?

“‘Super K-mers”

Split by super K-mers - MSPKmerCounter

Group all K-mers with same
minimizer in same file

For each file:

Use Jellyfish to count its K-
mers in memory

Write the K-mers and their
counts to an output file

Merge the output files

Li & Yan, “MSPKmerCounter: A fast and memory efficient
approach for K-mer counting”, 2015,
https://doi.org/10.48550/arXiv.1505.06550

Use “minimum
substring
partitioning (MSP)”
to distributes K-mers
to files based on
minimizers

Minimizer

The length-p minimizer, min (S), of a string S[1..n] is the
lexicographically smallest p-mer in both S and its reverse
complement

Examples
min,(GCCAAGCGCCAGGCAGCCG) = AAGC @ position 4
min,(GCCAGGCAGCCGCAGTGGG) = ACTG @ position 13

Obviously, two identical K-mers have the same minimizer

Example

LetK=16,p=4

Consider a read, GCCAAGCGCCAGGCAGCCGGCTTGG

The K-mers are grouped Into:

File AAGC has 7 K-mers
/IO=7*16nt=112nt

File AGCC has 3 K-mers
/O=3*16 nt =48 nt

1111111111222222
1234567890123456789012345

GCCAAGCGCCAGGCAGCCGGCTTGG
"GCCAAGCGCCAGGCAG
CCAAGCGCCAGGCAGC

CAAGCGCCAGGCAGCC
AAGCGCCAGGCAGCCG

' AGCGCCAGGCAGCCGC
GCGCCAGGCAGCCGGC

CGCCAGGCAGCCGGCT

GCCAGGCAGCCGGCTT
CCAGGCAGCCGGCTTG
CAGGCAGCCGGCTTGG

AGCC

10

Observation

Many K-mers in the same file are consecutive

In our example,

File AAGC has 7 K-mers:

1st — 4th K-mers

gth — 10t K-mers

File AGCC has 3 K-mers:

5t — 7t K-mers

1111111111222222
1234567890123456789012345
y GCCRAGCGCCAGGCAGCCGGCTTGG
“GCCAAGCGCCAGGCAG
AAGC CCAAGCGCCAGGCAGC
CAAGCGCCAGGCAGCC
AAGCGCCAGGCAGCCE

' AGCGCCAGGCAGCCGC
GCGCCAGGCAGCCGGC
CGCCAGGCAGCCGGCT
GCCAGGCAGCCGGCTT
CCAGGCAGCCGGCTTG
CAGGCAGCCGGCTTGG

AGCC

11

Group consecutive K-mers into super K-

mer

For consecutive K-mers in the same file, compress them
into a “super K-mer” to minimize 1/0O

S[i..J]] is a super K-mer if all K-mers in SJi..]] share same
length-p minimizer but not those in S[i..J+1] and S[i-1..]]

Example: K= 16, p = 4 ! 1111111111222022

S = GCCAAGCGCCAGGCAGCCGGCTTGG 12345 6789012345678 9012:34 5
GCCRAGCGCCAGGCAGCCGGCTIGG

The 16-mers S[5..20], S[6..21], S[7..22] share the AAGCGLCAGGLAGLLG 1
IAGCGCCAGGCAGCCGG |

same length-4 minimizer AAGC | cocooncaeaceocae |1
CGCCAGGCAGCCGGC#

S[5..22] = AGCGCCAGGCAGCCGGCT Is super 16-mer CCCAGECAGCCCEETT

12

Example

Consider a read, GCCAAGCGCCAGGCAGCCGGCTTGG

Let K =16, p = 4. It has two files:

File AAGC has 7 K-mers,

Rep by 2 super K-mers

1..4: GCCAAGCGCCAGGCAGCCG
8..10: GCCAGGCAGCCGGCTTGG
1/O: 19 + 18 = 37 nt (vs 112 nt)

File AGCC has 3 K-mers,
Rep by 1 super K-mer

9..7: AGCGCCAGGCAGCCGGCT
1/O: 18 nt (vs 48 nt)

1111111111222222

1234567890123456789012345

GCCAAGCGCCAGGCAGCCGGCTTGG
"GCCAAGCGCCAGGCAG
CCAAGCGCCAGGCAGC

CAAGCGCCAGGCAGCC
AAGCGCCAGGCAGCCG

' AGCGCCAGGCAGCCGC
GCGCCAGGCAGCCGGC

CGCCAGGCAGCCGGCT

GCCAGGCAGCCGGCTT
CCAGGCAGCCGGCTTG
CAGGCAGCCGGCTTGG

AAGC

AGCC

13

For real short read datasets, average # of

super K-mers per read is usually small

Data Set i k p Average Breakdown (I)
Budgerigar 150 59 10 5.22
Red tailed boa constrictor 121 59 10 3.89
Lake Malawi cichlid 101 59 10 2.77
Soybean 75 59 10 1.69

n = read length
[= mean # of super K-mer per read

Li & Yan, “MSPKmerCounter: A fast and memory
efficient approach for K-mer counting”, 2015,
https://doi.org/10.48550/arXiv.1505.06550

14

The MSP algorithm for partitioning a read

Into super K-mers

Input: S[1..n], K, p
ming = length-p minimizer of S[1..K]
min, = position of ming in S
st=1
forj=2ton-K+ 1:
if] > min, or the last p-substring of S[j ..] + K- 1] < ming then
Output S[st .. j — 1] as super K-mer
St =
ming = length-p minimizer of S[j .. j + K — 1]
min, = position of ming in S
Li & Yan, “MSPKmerCounter: A fast and memory

efficient approach for K-mer counting”, 2015,
https://doi.org/10.48550/arXiv.1505.06550

15

Issue with MSPKmerCounter

When a minizer starts with a
few A's, it often implies several
new super K-mers spanning a
single K-mer

Example: K=8,p =4

Due to AAAA, the first 3 super
K-mers span single K-mer only

S=AAAATGATAGTAC
AAAATGAT
AAATGATA
AATGATAG
ATGATAGTAC

16

Use signature instead of minimizer

KMC2 uses canonical Minimizers
. . . CGTTGATCAATTTE Read
MINIMIZETIS as CGTTGATC Minimizer: rev_comp(CGTT) = AACG
. GTTGATCAAT Minimizer: TGAT) = ATCA
S I g n at U reS bUt GATCAATT M:::mE:; E-Tc']?mp{

exclude those: ATCAATTTG Minimizer: rev_comp(ATTT) = AAAT

Starting with AAA Signatures
CGTTGATCAATTTG Read
" ; CGTTGATC Signature: -
Starting with ACA, o “Grrearcaar Slgnaturs: rev-comp(TGAT) = ATCA

GATCAATTIG Signature: AATT

Contal n AA anyWhere Deorowics et al., “KMC2: Fast and resource-frugal k-mer counting”,
exce pt at the start Bioinformatics 31(10):1569-1576, 2015

17

Exercise

Given AACCACAGCTTGTTTGTTCTTG

LetK =10, p =4

Show super K-mers defined based on minimizer

Show super K-mers defined based on signature

18

KMC2

Break reads into super K-mers using signatures
Distribute super K-mers into files according to signatures

For each file:
Sort K-mers using LSD radix sort

Output K-mers and their counts

Merge the output files

Deorowics et al., “KMC2: Fast and resource-frugal k-mer counting”,
Bioinformatics 31(10):1569-1576, 2015

19

Issue with KMC2

When K is large, LSD radix sort is slow

In fact, KMC2 is slower than DSK when K is large

Solution: Use MSD radix sort

20

KMC3

Break reads into super K-mers using signatures
Distribute super K-mers into files according to signatures

For each file:
Sort K-mers using MSD radix sort

Output K-mers and their counts

Merge the output files

Kokot et al., “KMC3: Counting and manipulating k-mer statistics”,
Bioinformatics 33(17):2759-2761, 2017

21

Performance of KMC3

Uncompressed
Algorithm k: k =55 / Compressed
28 FASTA as input
RAM Disk Time/gz- RAM Disk Time/gz-
Time Time
H. sapiens 3 (729 Gbases
in total)
Gerbil 28 523 11994/12 62 364 11968/12 KMC2 & 3 also
730 469 use other tricks
. to get good
Jellyfish 2 84 251 38338/20 104 636 31783/31 ‘
784 345 performance
KMC 2 64 551 10777/9036 72 381 13774/11
804
KMC 3 a3 596 9631/5985 34 389 8750/5331

Wong Limsoon, CS4330, AY2024/2025 Kokot et al., “KMC3: Counting and manipulating k-mer statistics”, Bioinformatics 33(17):2759-2761, 2017 22

Observations from typical o

sequencing projects .

D3

D4

D5

50-90% of unique K-mers occur once .

In the read set

Call these “error K-mers” j

0.00-

Average # of occurrences of the
other unique K-mers is close to

|k-mer, |(m)
35.67

54.13
372.08
4643.11

4171.45

32

SequenCing Coverage larger than 2.

Jiang et al., “kmcEx: memory frugal and
retrieval efficient encoding of counted
k-mers”, Bioinformatics 35(23):4871-
4878, 2019

|k-mer;_; 0| (m)
3.49

5.91

99.92

543.89

2T48.5

k-mer frequency

Distribution of 31-mers in dataset
D3 (human chr 14) having value

23

Exercise

a |k-mer,|(m) |k-mer,_;,|(m)

Suppose coverage IS Observations from typical

sequencing projects

30 and 60% of unique " e

K-mers are error K- |
50-90% of unique K-mers occur once °** | »
mers Call these “error K-mers” -

What |S th e rat| o) Of Average # of occurrences of the S o

Other unique K-mers is Close tO Distribution of 31-mers in dataset

D3 (human chr 14) having value

error : non-error K-mer sequencing coverage

Jiang et al., “kmcEx: memory frugal and
retrieval efficient encoding of counted

occurrences?

Wiong Limsoon, CS4330. AY202324

&N
A

Wong Limsoon, CS4330, AY2024/2025

Split by hashing — “database hashjoin” style

Let unprocessed = input file
Create a new tmp file for writing & a new in-memory hash table H
Repeat until unprocessed is empty:

Remove K-mer w from unprocessed

If H is not full or w € H then H[w]++ else write w to tmp

ClOSG unprocessed & tmp If K-mers from consecutive
.) positions in a read are to be
Sort H by Its keys (|.e. K-mers) written to tmp, merge these K-

mers & write the merged string

Write the sorted K-mers and count to new output file

If tmp is not empty, then repeat the above using tmp as the new input file

Merge all OUtpUt files Or, switch to KAnalyze if counts
in H are all small numbers

Wong Limsoon, CS4330, AY2024/2025

26

Exercise

Do you think the
“database hashjoin’
Idea IS reasonable?

J

Wong Limsoon, CS4330, AY2024/2025

Split by hashing - “database hashjoin” style

Let unprocessed = input file
Create a new tmp file for writing & a new in-memory hash table H
Repeat until unprocessed is empty:

Remove K-mer w from unprocessed

If H is not full or w € H then H[w]++ else write w to tmp

CIOSE un prOCESSEd & tmp If K-mers from consecutive
i . positions in a read are to be
Sort H by its keys (i.e. K-mers) written to tmp, merge these K-

mers & write the merged sring

Write the sorted K-mers and count to new output file
If tmp is not empty, then repeat the above using tmp as the new input file

Mel’ge all Output files Or, switch to KAnalyze if counts

in H are all small numbers

Wiong Limsoon, CS4330, AY202324

Summary for K-mer counting

Counting techniques Disk-based techniques
Hashing, Split and merge,
Sorting, Split by hashing,
Counting Bloom filter, Hash by super K-mers,

Counting Bloom Enhanced
Filter suffix array

In memory Jellyfish Turtle BFCounter, Squeakr KCMBT Tallymer
Split and merge KAnalyze

Split by hashing DSK

Split by prefix KMC

Split by super k-mers Gerbil, KMC2, KMC3

MSPKmerCounter

29

Good to read

KMC1 & 2

Deorowicz et al., “Disk-based k-mer counting on a PC”, BMC Bioinformatics 14:160,
2013. https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-160

Deorowics et al., “KMC2: Fast and resource-frugal k-mer counting”, Bioinformatics
31(10):1569-1576, 2015 https://doiorg/10.1093/bivinformatics/btv022

Wong Limsoon, CS4330, AY2024/2025

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-160
https://doi.org/10.1093/bioinformatics/btv022

Good to read

KAnalyze

Audano & Vannberg, “KAnalyze: A fast versatile pipelined K-mer toolkit”,
Bioinformatics 30(14):2070-2072, 2014 nttps://doi.org/10.1093/bioinformatics/btul52

DSK

Rizk et al., “DSK: k-mer counting with very low memory usage”, Bioinformatics
29(5)652-653, 2013 nhttps://doi.org/10.1093/bicinformatics/btt020

MSPKmerCounter

Li & Yan, “MSPKmerCounter: A fast and memory efficient approach for K-mer
counting”, 2015 https://doi.org/10.48550/arXiv.1505.06550

Wong Limsoon, CS4330, AY2024/2025

https://doi.org/10.1093/bioinformatics/btu152
https://doi.org/10.1093/bioinformatics/btt020
https://doi.org/10.48550/arXiv.1505.06550

Encoding of counted K-mers

K-mers are useful in many genomic applications:
genome assembly, error correction, repeat detection, ...

K-mers and their counts sometimes cannot fit into
memory directly; e.g., the 31-mers with frequency > 2 in
HapMap sample NA12878 is 90GB

How to encode K-mers and their counts so that they can
be used in memory at will?

32

Good to read, for counted K-mer encoding

K-mer sparsification

Pellow et al., “Improving Bloom filter performance on sequence data using k-mer
Bloom filters”, JCB 24(6):547-557, 2017
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467106/

kmcEx

Jiang et al., “kmcEx: Memory-frugal and retrieval efficient encoding of counted k-
mers”, Bioinformatics 35(23):4871-4878, 2019
https://doi.org/10.1093/bioinformatics/btz299

Wong Limsoon, CS4330, AY2024/2025

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467106/
https://doi.org/10.1093/bioinformatics/btz299

