CS4330: Combinatorial Methods in Bioinformatics K-mers counting on disk

Wong Limsoon

Acknowledgement: This set of slides were adapted from Ken Sung's

National University of Singapore

Disk-based techniques

Memory-based K-mer counting methods cannot handle big datasets

Disk-based approaches Split and merge – KAnalyze Split by hashing – DSK Split by prefix – KMC

Split by super K-mer – MSPKmerCounter, KMC2, KMC3

Split and merge - KAnalyze

Split all K-mers into subsets such that each subset can be stored in memory

For each subset,

Sort K-mers in memory and obtain counts Store sorted K-mers and counts to a disk file

Merge the files

Audano & Vannberg, "KAnalyze: A fast versatile pipelined K-mer toolkit", *Bioinformatics* 30(14):2070-2072, 2014

Example

	Split and sort every subset of kmers				rt t		Merge the kmer lists			
S=TAGCAAGCTACC				AAG	1					
TAG	\rightarrow	CTA		AGC	1					
AGC	${\rightarrow}$	AGC		CAA	1		1	AAG	1	
GCA	~	GCA	_	CTA	-			ACC	1	
CAA	~	CAA		CIA	1			AGC	З	
AAG	₹	AAG		GCA	1			7100	5	
AGC	\rightarrow	AGC						CAA	1	
GCT	\rightarrow	AGC		ACC	1			CTA	2	
СТА		CTA	~	AGC	2			GCA	1	
TAC	~	GTA		CT]	UCA	-	
ACC	\rightarrow	ACC		CIA	1			GTA	1	
				GTA	1					

Issue with split and merge

K-mers are grouped into subsets in the order they appear in the reads

Different occurrences of the same K-mer can get into different files

Can we avoid wasting time in merging them? One solution is hashing

Split by hashing – the DSK way

For each K-mer w, hash it to the file h(w) mod n

For each file:

Use Jellyfish to count its Kmers in memory

Write the K-mers and their counts to an output file

Merge the output files

The actual DSK is a bit more intricate, to ensure the files are balanced in size and can fit into memory

Algorithm $\mathbf{DSK}(Z, M, D, h)$							
Require: Z is a set of N's k-mers, target memory usage M (bits), target							
disk space D (bits) and hash function $h(.)$							
Ensure: The count of every k -mer appearing in Z							
1: $n_{list} = \frac{2kN}{D};$							
2: $n_{sublist} = \frac{D(2k+32)}{0.7(2k)M};$							
3: for $i = 0$ to $n_{list} - 1$ do							
4: Initialize a set of empty sublists $\{d_0, \ldots, d_{n_{sublist}-1}\}$ in disk;							
5: for each k-mer z in Z do							
6: if $h(z) \mod n_{list} = i$ then							
7: $j = (h(z)/n_{list}) \mod n_{sublist};$							
8: Write z to disk in the sublist d_j ;							
9: end if							
10: end for							
11: for $j = 0$ to $n_{sublist} - 1$ do							
12: Load the <i>j</i> th sublist d_j in memory;							
13: Run k-mer_counting $(d_j, 0.7, h)$ (see Figure 5.9) to output the num-							
ber of occurrences of every k-mer in the sublist d_j ;							
14: end for							
15: end for							

Rizk et al., "DSK-k-mer counting with very low memory usage", *Bioinformatics* 29(5):652-653, 2013

Issue with DSK

I/O is slow

DSK writes a tmp file of 2k I/O bits per K-mer This can be expensive

Can we reduce I/O cost per K-mer? "Super K-mers"

Split by super K-mers - MSPKmerCounter

Group all K-mers with same minimizer in same file

For each file:

Use Jellyfish to count its Kmers in memory

Write the K-mers and their counts to an output file

Merge the output files

Li & Yan, "MSPKmerCounter: A fast and memory efficient approach for K-mer counting", 2015, https://doi.org/10.48550/arXiv.1505.06550 Use "minimum substring partitioning (MSP)" to distributes K-mers to files based on minimizers

Minimizer

The length-p minimizer, $\min_{p}(S)$, of a string S[1..n] is the lexicographically smallest p-mer in both S and its reverse complement

Examples

 $min_4(GCCAAGCGCCAGGCAGCCG) = AAGC @ position 4$ $min_4(GCCAGGCAGCCGCAGTGGG) = ACTG @ position 13$

Obviously, two identical K-mers have the same minimizer

Example

Let K = 16, p = 4

Consider a read, GCCAAGCGCCAGGCAGCCGGCTTGG

The K-mers are grouped into:

File AAGC has 7 K-mers I/O = 7 * 16 nt = 112 nt

File AGCC has 3 K-mers I/O = 3 * 16 nt = 48 nt

Observation

Many K-mers in the same file are consecutive

In our example,

File AAGC has 7 K-mers:

1st – 4th K-mers

8th – 10th K-mers

File AGCC has 3 K-mers: 5th – 7th K-mers

Group consecutive K-mers into super K-mer

For consecutive K-mers in the same file, compress them into a "super K-mer" to minimize I/O

S[i..j] is a **super K-mer** if all K-mers in S[i..j] share *same* length-p minimizer but not those in S[i..j+1] and S[i-1..j]

Example: K = 16, p = 4

S = GCCAAGCGCCAGGCAGCCGGCTTGG

The 16-mers S[5..20], S[6..21], S[7..22] share the same length-4 minimizer AAGC

S[5..22] = AGCGCCAGGCAGCCGGCT is super 16-mer

111111111222222 1234567890123456789012345 GCCAAGCGCCAGGCAGCCGGCTTGG AAGCGCCAGGCAGCCGG AGCGCCAGGCAGCCGG GCGCCAGGCAGCCGGC CGCCAGGCAGCCGGCT

GCCAGGCAGCCG**GCTT**

Example

Consider a read, GCCAAGCGCCAGGCAGCCGGCTTGG

Let K = 16, p = 4. It has two files:

File AAGC has 7 K-mers, Rep by 2 super K-mers 1..4: GCCAAGCGCCAGGCAGCCG 8..10: GCCAGGCAGCCGGCTTGG I/O: 19 + 18 = 37 nt (vs 112 nt)

File AGCC has 3 K-mers, Rep by 1 super K-mer 5..7: AGCGCCAGGCAGCCGGCT I/O: 18 nt (vs 48 nt)

For real short read datasets, average # of super K-mers per read is usually small

Data Set	n	k	p	Average Breakdown (l)
Budgerigar	150	59	10	5.22
Red tailed boa constrictor	121	59	10	3.89
Lake Malawi cichlid	101	59	10	2.77
Soybean	75	59	10	1.69

n = read length

l = mean # of super K-mer per read

Li & Yan, "MSPKmerCounter: A fast and memory efficient approach for K-mer counting", 2015, https://doi.org/10.48550/arXiv.1505.06550

The MSP algorithm for partitioning a read into super K-mers

Input: S[1 .. n], K, p

 $min_s = length-p minimizer of S[1..K]$

 $min_p = position of min_s in S$

st = 1

```
for j = 2 to n - K + 1:
```

if j > min_p or the last p-substring of S[j .. j + K – 1] < min_s then Output S[st .. j – 1] as super K-mer st = j min_s = length-p minimizer of S[j .. j + K – 1] min_p = position of min_s in S

> Li & Yan, "MSPKmerCounter: A fast and memory efficient approach for K-mer counting", 2015, https://doi.org/10.48550/arXiv.1505.06550

Issue with MSPKmerCounter

When a minizer starts with a few A's, it often implies several new super K-mers spanning a single K-mer

Example: K = 8, p = 4

Due to AAAA, the first 3 super K-mers span single K-mer only S=AAAATGATAGTAC AAAATGAT AAATGATA AATGATAG ATGATAGTAC

Use signature instead of minimizer

KMC2 uses canonical minimizers as **signatures** but exclude those: *Starting with AAA*

Starting with ACA, or

Contain AA anywhere except at the start

CGTTGATCAATTTG CGTTGATC GT**TGAT**CAAT GATC**AATT** ATCA**ATTT**G

Minimizers

Read

Minimizer: rev_comp(CGTT) = AACG Minimizer: rev_comp(TGAT) = ATCA Minimizer: AATT Minimizer: rev_comp(ATTT) = AAAT

Signatures

CGTTGATCAATTTGReadCGTTGATCSignature: rev_comp(CGTT) = AACGGTTGATCAATSignature: rev_comp(TGAT) = ATCAGATCAATTTGSignature: AATT

Deorowics et al., "KMC2: Fast and resource-frugal k-mer counting", *Bioinformatics* 31(10):1569-1576, 2015

Given AACCACAGCTTGTTTGTTCTTG

Let K = 10, p = 4

Show super K-mers defined based on minimizer

Show super K-mers defined based on signature

Break reads into super K-mers using signatures

Distribute super K-mers into files according to signatures

For each file:

Sort K-mers using LSD radix sort

Output K-mers and their counts

Merge the output files

Deorowics et al., "KMC2: Fast and resource-frugal k-mer counting", *Bioinformatics* 31(10):1569-1576, 2015

Issue with KMC2

When K is large, LSD radix sort is slow

In fact, KMC2 is slower than DSK when K is large

Solution: Use MSD radix sort

Break reads into super K-mers using signatures

Distribute super K-mers into files according to signatures

For each file:

Sort K-mers using MSD radix sort

Output K-mers and their counts

Merge the output files

Kokot et al., "KMC3: Counting and manipulating k-mer statistics", *Bioinformatics* 33(17):2759-2761, 2017

Performance of KMC3

Algorithm	Rec <u>k</u> = 28			k = 55			Uncompressed / compressed FASTA as input
	RAM	Disk	Time/gz- Time	RAM	Disk	Time/gz- Time	
<i>H. sapiens</i> 3 (729 Gbases in total)	5						
Gerbil	28	523	11994/12 730	62	364	11968/12 469	KMC2 & 3 also use other tricks
Jellyfish 2	84	251	38338/20 284	104	636	31783/31 345	to get good performance
KMC 2	64	551	10777/9036	72	381	13774/11 804	
KMC 3	33	596	9631/5985	34	389	8750/5331	

Observations from typical sequencing projects

50-90% of unique K-mers occur once in the read set

Call these "error K-mers"

Average # of occurrences of the other unique K-mers is close to sequencing coverage

Distribution of *31*-mers in dataset D3 (human chr 14) having value larger than 2.

Jiang et al., "kmcEx: memory frugal and retrieval efficient encoding of counted k-mers", *Bioinformatics* 35(23):4871-4878, 2019

Exercise

Suppose coverage is 30 and 60% of unique K-mers are error Kmers

What is the ratio of error : non-error K-mer occurrences? Observations from typical sequencing projects

50-90% of unique K-mers occur once *Call these "error K-mers"*

Average # of occurrences of the other unique K-mers is close to sequencing coverage

Wong Limsoon, CS4330, AY2023/24

Distribution of 31-mers in dataset D3 (human chr 14) having value larger than 2.

Jiang et al., "kmcEx: memory frugal and retrieval efficient encoding of counted k-mers", *Bioinformatics* 35(23):4871-4878, 2019

85

Split by hashing – "database hashjoin" style

Let unprocessed = input file

Create a new tmp file for writing & a new in-memory hash table H

Repeat until unprocessed is empty:

Remove K-mer w from unprocessed

If H is not full or $w \in H$ then H[w]++ else write w to tmp

Close unprocessed & tmp

Sort H by its keys (i.e. K-mers)

Write the sorted K-mers and count to new output file

If tmp is not empty, then repeat the above using tmp as the new input file

Merge all output files

If K-mers from consecutive positions in a read are to be written to tmp, merge these Kmers & write the merged string

Or, switch to KAnalyze if counts in H are all small numbers

Exercise

Do you think the "database hashjoin" idea is reasonable?

Split by hashing – "database hashjoin" style

Let unprocessed = input file

Create a new tmp file for writing & a new in-memory hash table H

Repeat until unprocessed is empty:

Remove K-mer w from unprocessed

If H is not full or $w \in H$ then H[w]++ else write w to tmp

Close unprocessed & tmp

Sort H by its keys (i.e. K-mers)

Write the sorted K-mers and count to new output file

If tmp is not empty, then repeat the above using tmp as the new input file Merge all output files

in H are all small numbers

Wong Limsoon, CS4330, AY2023/24

Summary for K-mer counting

Counting techniques *Hashing*,

Sorting,

Counting Bloom filter,

Burst ties, Suffix array

Disk-based techniques Split and merge, Split by hashing, Hash by super K-mers, Hash by prefix

	Hashing	Sorting	Counting Bloom Filter	Burst ties	Enhanced suffix array
In memory	Jellyfish	Turtle	BFCounter, Squeakr	KCMBT	Tallymer
Split and merge		KAnalyze			
Split by hashing	DSK				
Split by prefix		КМС			
Split by super k-mers	Gerbil, MSPKmerCounter	КМС2, КМСЗ			

Good to read

KMC1 & 2

Deorowicz et al., "Disk-based k-mer counting on a PC", *BMC Bioinformatics* 14:160, 2013. <u>https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-160</u>

Deorowics et al., "KMC2: Fast and resource-frugal k-mer counting", Bioinformatics 31(10):1569-1576, 2015 https://doi.org/10.1093/bioinformatics/btv022

Good to read

KAnalyze

Audano & Vannberg, "KAnalyze: A fast versatile pipelined K-mer toolkit", *Bioinformatics* 30(14):2070-2072, 2014 <u>https://doi.org/10.1093/bioinformatics/btu152</u>

DSK

Rizk et al., "DSK: k-mer counting with very low memory usage", *Bioinformatics* 29(5):652-653, 2013 <u>https://doi.org/10.1093/bioinformatics/btt020</u>

MSPKmerCounter

Li & Yan, "MSPKmerCounter: A fast and memory efficient approach for K-mer counting", 2015 https://doi.org/10.48550/arXiv.1505.06550

Encoding of counted K-mers

K-mers are useful in many genomic applications: genome assembly, error correction, repeat detection, ...

K-mers and their counts sometimes cannot fit into memory directly; e.g., the 31-mers with frequency \geq 2 in HapMap sample NA12878 is 90GB

How to encode K-mers and their counts so that they can be used in memory at will?

Good to read, for counted K-mer encoding

K-mer sparsification

Pellow et al., "Improving Bloom filter performance on sequence data using k-mer Bloom filters", JCB 24(6):547-557, 2017 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467106/

kmcEx

Jiang et al., "kmcEx: Memory-frugal and retrieval efficient encoding of counted kmers", *Bioinformatics* 35(23):4871-4878, 2019 <u>https://doi.org/10.1093/bioinformatics/btz299</u>