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Motivating 

example

If xs and ys are sorted according to 

isBefore, then ov1(xs, ys) = ov2(xs, ys)

ov1(xs,ys) has complexity O(|xs||ys|)

ov2(xs,ys) has complexity O(|xs| + k |ys|), 

where each event in ys overlaps fewer 

than k events in xs
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Can we get the 
simplicity of ov1 at the 

efficiency of ov2?
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Is there an intensional expressiveness gap?
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ov1 is easily expressible using only comprehension syntax 

No obvious efficient implementation w/o using more advanced programming 

language features and/or library functions

Many other functions suffer the same plight …

{ (x, y) | x, y  taxpayers, x earns less but pays more tax than y }

{ (x, y) | x, y  mobile phones, x’s price is similar to y’s price }
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Comprehension 

syntax in a 1st order 

setting
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Call-by-value 

Operational 

semantics

Time complexity of a node

time(eC) = 1 + # branches of the node

Time complexity of an evaluation tree

time(e) = sum of time complexity of all 

nodes in the evaluation tree

Note: time(CC) = 1
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Polynomiality of NRC1(<)
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Let e(X1, …, Xn) be an expression in NRC1(<). Then there is a number k 

such that the time complexity of e(X1, …, Xn) is (nk)

I.e., if the time complexity of e(X1, …, Xn) is sub-quadratic, it must be either 

linear or constant time; and if it is sub-linear, it must be constant time

Furthermore, these properties are retained when NRC1(<) is augmented by 

any additional functions that have polynomial time complexity



Wong Limsoon, Val Fest @ UPenn, May 2024

Limited mixing lemma 
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Let e(X) be an expression in NRC1(<) and e[C/X]C’. 

Suppose e(X) has at most linear-time complexity wrt 

size of X. Then for each (u,v) in Gaifman(C’), either

(u,v) in Gaifman(C), or 

u in atom0(C) and v in atom1(C), or

u in atom1(C) and v in atom0(C)

Proof: See my festschrift paper
atom0(C) = { c1, c2 }; atom1(C) = { c3, c4, c5, c6, c7, c8 }
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There is an intensional expressiveness gap
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Zip(X,Y): { b1  b2 } is an expression in NRC1(<) where X: { b3  b1 } and Y: { 

b3  b2 }, such that Zip(X,Y)  { (u1, v1), …, (un, vn) } for every X == { (o1, u1), 

…, (on, un) } and Y == { (o1, v1), …, (on, vn) } , o1, …, on distinct

Zip is a low-complexity join. But time complexity in NRC1(<) is ( |U|  |V| )

Proof sketch: Gaifman({ (u1, v1), …, (un, vn) }) = { (u1, v1), …, (un, vn) }. 

Suppose Zip has at most linear time complexity. As (ui, vi)  gaifman(U,V) = 

U  V , by Limited Mixing Lemma, either ui or vi is in atom0(U,V). But 

atom0(U) = atom0(V) = { }. A contradiction.
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How to fill the gap?
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What new library function or programming construct fills this intensional 

expressiveness gap?

I.e., how to allow the “missing” efficient algorithms to be expressed w/o 

changing the class of functions that can be expressed
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Monotonicity & 

antimonotonicity
Monotonicity of bf wrt (xs, ys)

If (x « x’ | xs), then y in ys: bf(y, x) 
implies bf(y, x’)

If (y’ « y | ys), then x in xs: bf(y, x) 
implies bf(y’, x)

Antimonotonicity of cs wrt bf

If (x « x’ | xs), then y in ys: bf(y, x) & 
!cs(y, x) implies !cs(y, x’)

If (y « y’ | xs), then x in xs: !bf(y, x) & 
!cs(y, x) implies !cs(y’, x)
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Right-side 
convexity
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Synchrony generator, 
capturing a pattern 
for efficient 
synchronized 
iteration on two 
collections
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for (x <- xs, (_, Y) <- syncGenGrp(isBefore, overlap)(xs, ys), y <- Y) yield (x, y)

When bf/isBefore is monotonic wrt (xs, ys) 

and cs/overlap is antimonotonic wrt bf :

ov1(xs, ys) = ov4(xs, ys)

ov1(xs,ys) has complexity O(|xs|  |ys|)

ov2(xs,ys) has complexity O(|xs| + k |ys|), 

where each event in ys overlaps fewer 

than k events in xs
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syncGenGrp is a conservative extension of NRC1(<)
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The functions definable in NRC1(<) and NRC1(<, syncGenGrp) are exactly 

the same

However, more efficient algorithms for some functions --- e.g., low-selectivity 

(non-equi) joins --- are definable in the latter

Thus, syncGenGrp fills the intensional expressive power gap of 

comprehension syntax in a “1st-order restricted setting”
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A zoo of relational joins
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Defined based on syntactic restrictions on join predicates

Implemented by different algos for efficiency

type form usual implementation properties

equijoin x.a = y.b hash join, merge join convex, reflexive

single 
inequality

x.a ≤ y.b merge join Convex, reflexive

range join x.a – e ≤ y.b ≤ x.a + e range join Convex, reflexive

band join x.a ≤ y.b ≤ x.c band join Convex, reflexive

interval join x.a ≤ y.b && y.c ≤ x.d
where x.a ≤ x.d and y.c ≤ y.b

Union of two band joins, interval 
joins for special data types

Non-convex, 
antimonotonic

Convexity  antimonotonicity

 syncGenGrp implements them simply and efficiently, viz. Synchrony join
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syncGenGrp generalizes relational merge join from 

equijoin to antimonotonic predicates
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groups = merge join algo, implements relational join 
when cs is an equijoin predicate

{ (x, y) | x  xs, (_,Y)  groups(bf, cs)(xs, ys), y  Y }

= { (x, y) | x  xs, y  ys, cs(y, x) }

groups2 = syncGenGrp extensionally & intensionally 

groups2 = “synchrony” join algo, implements relational 
join when cs is an antimonotonic predicate

{ (x, y) | x  xs, (_,Y)  groups2(bf, cs)(xs, ys), y  Y}

= { (x, y) | x  xs, y  ys, cs(y, x) }
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Synchrony iterator

syncGenGrp is somewhat ugly when 

extended to multiple collections

Decompose it into Synchrony iterator

syncGenGrp(bf, cs)(xs, ys) =

{  

    val yi = new Eiterator(ys, bf, cs);

    for (x  xs)

    yield (x, yi.syncedWith(x))

}

15
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Synchrony iterator, 
with simple cache
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Simultaneous 

synchronized 

iteration on 

multiple 

collections

Introduce a new generator pattern into 

comprehension syntax

Compile it as

Eiterator is convenient to add to function 

libraries in any popular programming 

languages, w/o changing any of their 

compilers

But if you can touch the compilers, things 

get even more appealing…
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Example 
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O(|ws||xs||ys||zs|)

O(k3|ws| + k(|xs|+|ys|+|zs|))
which is linear when k is small
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GMQL emulation, a stress test
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GMQL is a genomic query system 

developed by Stefano Ceri

Handles complex non-equijoins on 

genomic regions

~24k lines of codes

Synchrony emulation ~4k lines, 

faster, needs less memory

The GMQL MAP query is emulated using a Synchrony iterator like this:
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Summary 
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There is indeed an intensional expressiveness gap of using comprehension 

syntax as querying bulk data types

Synchrony iterator rescues comprehension syntax from this gap

A programming pattern for synchronized iteration 

A conservative extension of comprehension syntax in a 1st-order setting

Generalization of efficient relational database merge join to antimonotonic 

(non-equijoin) predicates
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