
Wong Limsoon, Val Fest @ UPenn, May 2024
© Copyright National University of Singapore. All Rights Reserved.

From comprehension syntax to

efficient non-equijoins:

A journey with Val Tannen

From comprehension syntax to

efficient non-equijoins:

A journey with Val Tannen

Limsoon Wong

1

Wong Limsoon, Val Fest @ UPenn, May 2024

Motivating

example

If xs and ys are sorted according to

isBefore, then ov1(xs, ys) = ov2(xs, ys)

ov1(xs,ys) has complexity O(|xs||ys|)

ov2(xs,ys) has complexity O(|xs| + k |ys|),

where each event in ys overlaps fewer

than k events in xs

2

Can we get the
simplicity of ov1 at the

efficiency of ov2?

Wong Limsoon, Val Fest @ UPenn, May 2024

Is there an intensional expressiveness gap?

3

ov1 is easily expressible using only comprehension syntax

No obvious efficient implementation w/o using more advanced programming

language features and/or library functions

Many other functions suffer the same plight …

{ (x, y) | x, y  taxpayers, x earns less but pays more tax than y }

{ (x, y) | x, y  mobile phones, x’s price is similar to y’s price }

Wong Limsoon, Val Fest @ UPenn, May 2024

Comprehension

syntax in a 1st order

setting

4

Wong Limsoon, Val Fest @ UPenn, May 2024

Call-by-value

Operational

semantics

Time complexity of a node

time(eC) = 1 + # branches of the node

Time complexity of an evaluation tree

time(e) = sum of time complexity of all

nodes in the evaluation tree

Note: time(CC) = 1

5

Wong Limsoon, Val Fest @ UPenn, May 2024

Polynomiality of NRC1(<)

6

Let e(X1, …, Xn) be an expression in NRC1(<). Then there is a number k

such that the time complexity of e(X1, …, Xn) is (nk)

I.e., if the time complexity of e(X1, …, Xn) is sub-quadratic, it must be either

linear or constant time; and if it is sub-linear, it must be constant time

Furthermore, these properties are retained when NRC1(<) is augmented by

any additional functions that have polynomial time complexity

Wong Limsoon, Val Fest @ UPenn, May 2024

Limited mixing lemma

7

Let e(X) be an expression in NRC1(<) and e[C/X]C’.

Suppose e(X) has at most linear-time complexity wrt

size of X. Then for each (u,v) in Gaifman(C’), either

(u,v) in Gaifman(C), or

u in atom0(C) and v in atom1(C), or

u in atom1(C) and v in atom0(C)

Proof: See my festschrift paper
atom0(C) = { c1, c2 }; atom1(C) = { c3, c4, c5, c6, c7, c8 }

Wong Limsoon, Val Fest @ UPenn, May 2024

There is an intensional expressiveness gap

8

Zip(X,Y): { b1  b2 } is an expression in NRC1(<) where X: { b3  b1 } and Y: {

b3  b2 }, such that Zip(X,Y)  { (u1, v1), …, (un, vn) } for every X == { (o1, u1),

…, (on, un) } and Y == { (o1, v1), …, (on, vn) } , o1, …, on distinct

Zip is a low-complexity join. But time complexity in NRC1(<) is (|U|  |V|)

Proof sketch: Gaifman({ (u1, v1), …, (un, vn) }) = { (u1, v1), …, (un, vn) }.

Suppose Zip has at most linear time complexity. As (ui, vi)  gaifman(U,V) =

U  V , by Limited Mixing Lemma, either ui or vi is in atom0(U,V). But

atom0(U) = atom0(V) = { }. A contradiction.

Wong Limsoon, Val Fest @ UPenn, May 2024

How to fill the gap?

9

What new library function or programming construct fills this intensional

expressiveness gap?

I.e., how to allow the “missing” efficient algorithms to be expressed w/o

changing the class of functions that can be expressed

Wong Limsoon, Val Fest @ UPenn, May 2024

Monotonicity &

antimonotonicity
Monotonicity of bf wrt (xs, ys)

If (x « x’ | xs), then y in ys: bf(y, x)
implies bf(y, x’)

If (y’ « y | ys), then x in xs: bf(y, x)
implies bf(y’, x)

Antimonotonicity of cs wrt bf

If (x « x’ | xs), then y in ys: bf(y, x) &
!cs(y, x) implies !cs(y, x’)

If (y « y’ | xs), then x in xs: !bf(y, x) &
!cs(y, x) implies !cs(y’, x)

10

Right-side
convexity

Wong Limsoon, Val Fest @ UPenn, May 2024

Synchrony generator,
capturing a pattern
for efficient
synchronized
iteration on two
collections

11

for (x <- xs, (_, Y) <- syncGenGrp(isBefore, overlap)(xs, ys), y <- Y) yield (x, y)

When bf/isBefore is monotonic wrt (xs, ys)

and cs/overlap is antimonotonic wrt bf :

ov1(xs, ys) = ov4(xs, ys)

ov1(xs,ys) has complexity O(|xs|  |ys|)

ov2(xs,ys) has complexity O(|xs| + k |ys|),

where each event in ys overlaps fewer

than k events in xs

Wong Limsoon, Val Fest @ UPenn, May 2024

syncGenGrp is a conservative extension of NRC1(<)

12

The functions definable in NRC1(<) and NRC1(<, syncGenGrp) are exactly

the same

However, more efficient algorithms for some functions --- e.g., low-selectivity

(non-equi) joins --- are definable in the latter

Thus, syncGenGrp fills the intensional expressive power gap of

comprehension syntax in a “1st-order restricted setting”

Wong Limsoon, Val Fest @ UPenn, May 2024

A zoo of relational joins

13

Defined based on syntactic restrictions on join predicates

Implemented by different algos for efficiency

type form usual implementation properties

equijoin x.a = y.b hash join, merge join convex, reflexive

single
inequality

x.a ≤ y.b merge join Convex, reflexive

range join x.a – e ≤ y.b ≤ x.a + e range join Convex, reflexive

band join x.a ≤ y.b ≤ x.c band join Convex, reflexive

interval join x.a ≤ y.b && y.c ≤ x.d
where x.a ≤ x.d and y.c ≤ y.b

Union of two band joins, interval
joins for special data types

Non-convex,
antimonotonic

Convexity  antimonotonicity

 syncGenGrp implements them simply and efficiently, viz. Synchrony join

Wong Limsoon, Val Fest @ UPenn, May 2024

syncGenGrp generalizes relational merge join from

equijoin to antimonotonic predicates

14

groups = merge join algo, implements relational join
when cs is an equijoin predicate

{ (x, y) | x  xs, (_,Y)  groups(bf, cs)(xs, ys), y  Y }

= { (x, y) | x  xs, y  ys, cs(y, x) }

groups2 = syncGenGrp extensionally & intensionally

groups2 = “synchrony” join algo, implements relational
join when cs is an antimonotonic predicate

{ (x, y) | x  xs, (_,Y)  groups2(bf, cs)(xs, ys), y  Y}

= { (x, y) | x  xs, y  ys, cs(y, x) }

Wong Limsoon, Val Fest @ UPenn, May 2024

Synchrony iterator

syncGenGrp is somewhat ugly when

extended to multiple collections

Decompose it into Synchrony iterator

syncGenGrp(bf, cs)(xs, ys) =

{

 val yi = new Eiterator(ys, bf, cs);

 for (x  xs)

 yield (x, yi.syncedWith(x))

}

15

Wong Limsoon, Val Fest @ UPenn, May 2024

Synchrony iterator,
with simple cache

16

Wong Limsoon, Val Fest @ UPenn, May 2024

Simultaneous

synchronized

iteration on

multiple

collections

Introduce a new generator pattern into

comprehension syntax

Compile it as

Eiterator is convenient to add to function

libraries in any popular programming

languages, w/o changing any of their

compilers

But if you can touch the compilers, things

get even more appealing…

17

Wong Limsoon, Val Fest @ UPenn, May 2024

Example

18

O(|ws||xs||ys||zs|)

O(k3|ws| + k(|xs|+|ys|+|zs|))
which is linear when k is small

Wong Limsoon, Val Fest @ UPenn, May 2024

GMQL emulation, a stress test

19

GMQL is a genomic query system

developed by Stefano Ceri

Handles complex non-equijoins on

genomic regions

~24k lines of codes

Synchrony emulation ~4k lines,

faster, needs less memory

The GMQL MAP query is emulated using a Synchrony iterator like this:

Wong Limsoon, Val Fest @ UPenn, May 2024

Summary

20

There is indeed an intensional expressiveness gap of using comprehension

syntax as querying bulk data types

Synchrony iterator rescues comprehension syntax from this gap

A programming pattern for synchronized iteration

A conservative extension of comprehension syntax in a 1st-order setting

Generalization of efficient relational database merge join to antimonotonic

(non-equijoin) predicates

Wong Limsoon, Val Fest @ UPenn, May 2024

References

21

Limsoon Wong, “An intensional expressiveness gap of comprehension

syntax”, OASIcs 119:???. Tannen’s Festschrift. In press.

Stefano Perna, Val Tannen, Limsoon Wong, “Iterating on multiple collections

in synchrony”, JFP 32:e9, 2022. doi:10.1017/S0956796822000041

	Slide 1: From comprehension syntax to efficient non-equijoins: A journey with Val Tannen
	Slide 2: Motivating example
	Slide 3: Is there an intensional expressiveness gap?
	Slide 4: Comprehension syntax in a 1st order setting
	Slide 5: Call-by-value Operational semantics
	Slide 6: Polynomiality of NRC1(<)
	Slide 7: Limited mixing lemma
	Slide 8: There is an intensional expressiveness gap
	Slide 9: How to fill the gap?
	Slide 10: Monotonicity & antimonotonicity
	Slide 11: Synchrony generator, capturing a pattern for efficient synchronized iteration on two collections
	Slide 12: syncGenGrp is a conservative extension of NRC1(<)
	Slide 13: A zoo of relational joins
	Slide 14: syncGenGrp generalizes relational merge join from equijoin to antimonotonic predicates
	Slide 15: Synchrony iterator
	Slide 16: Synchrony iterator, with simple cache
	Slide 17: Simultaneous synchronized iteration on multiple collections
	Slide 18: Example
	Slide 19: GMQL emulation, a stress test
	Slide 20: Summary
	Slide 21: References

