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Percentage of Overlapping Genes 

• Low % of overlapping 

genes from diff expt in 

general 

 

– Prostate cancer 

• Lapointe et al, 2004 

• Singh et al, 2002 

– Lung cancer 

• Garber et al, 2001 

• Bhattacharjee et al, 

2001 

– DMD 

• Haslett et al, 2002 

• Pescatori et al, 2007 

Datasets DEG POG 

Prostate 

Cancer 

Top 10 0.30 

Top 50 0.14 

Top100 0.15 

Lung 

Cancer 

Top 10 0.00 

Top 50 0.20 

Top100 0.31 

DMD 
Top 10 0.20 

Top 50 0.42 

Top100 0.54 
Zhang et al, Bioinformatics, 2009 
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“Most random gene 

expression 

signatures are 

significantly 

associated with 

breast cancer 

outcome” 

Venet et al., PLoS Comput Biol, 7(10):e1002240, 2011.  
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Individual Genes 

• Suppose  

– Each gene has 50% 

chance to be high 

– You have 3 disease and 

3 normal samples 

 

• How many genes on a 

microarray are expected to 

perfectly correlate to these 

samples? 

• Prob(a gene is correlated) 

= 1/26 

• # of genes on array = 

30,000 

 E(# of correlated genes) = 

468 

 

 Many false positives 

• These cannot be 

eliminated based on pure 

statistics! 
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Gene Regulatory Circuits 

• Each disease phenotype 

has some underlying 

cause 

 

• There is some unifying 

biological theme for genes 

that are truly associated 

with a disease subtype 

 

• Uncertainty  in selected 

genes can be reduced by 

considering biological 

processes of the genes 
 

• The unifying biological 

theme is basis for inferring 

the underlying cause of 

disease subtype 
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GO Class 1 

GO Class 2 

GO Class N 

…
 

Significant Class 1 

Non Significant Class 2 

…
 

Significant Class N 

Binomial 

estimation 

S Draghici et al. “Global functional profiling of gene expression”. Genomics, 81(2):98-104, 2003. 

Threshold 

Overlap Analysis: ORA 

ORA tests whether a pathway is significant by intersecting the 

genes in the pathway with a pre-determined list of DE genes 

(we use all genes whose t-statistic meets the 5% significance 

threshold), and checking the significance of the size of the 

intersection using  the hypergeometric test 
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Disappointing Performance 

DMD gene expression data 

• Pescatori et al., 2007 

• Haslett et al., 2002 

 

Pathway data 

• PathwayAPI, Soh et al., 2010 
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Issue #1 with ORA 

• Its null hypothesis 

basically says “Genes in 

the given pathway 

behaves no differently 

from randomly chosen 

gene sets of the same 

size” 

 

• This null hypothesis is 

obviously false 

 Lots of false positives 

 

• A biological pathway is a series of actions 

among molecules in a cell that leads to a certain 

product or a change in a cell. Thus necessarily 

the behavour of genes in a pathway is more 

coordinated than random ones 
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Issue #2 with ORA 

• It relies on a pre-

determined list of DE 

genes 

 

• This list is sensitive to the 

test statistic used and to 

the significance threshold 

used 

 

• This list is unstable 

regardless of the threshold 

used when sample size is 

small 
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Issue #3 with ORA 

• It tests whether the entire 

pathway is significantly 

differentially expressed 

 

• If only a branch of the 

pathway is relevant to the 

phenotypes, the noise 

from the large irrelevant 

part of the pathways can 

dilute the signal from that 

branch 
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GSEA in Gene Permutation Mode 

• Issue #2 is mostly solved 

– Does not need pre-determined list of DE genes 

– But gene ranking (based on t-test p-value) is still unstable when sample 

size is small 

• Issues #1 and  #3 are unsolved 

Note: Class label 

permutation mode 

cannot be used when 

sample size is small 
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Better Performance 

GSEA 

ORA 
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ORA-Paired: Paired Test and New 

Null Hypothesis 

 

• Let gi be genes in a 

given pathway P 

• Let pj be patients 

• Let qk be normals 

 

• Let i,j,k = Expr(gi,pj) – 

Expr(gi,qk) 

 

• Test whether i,j,k is a 

distribution with mean 0 

• Issue #1 is solved 

– The null hypothesis is now “If a 

pathway P is irrelevant to the 

difference between patients and 

normals, then the genes in P are 

expected to behave similarly in 

patients and normals” 

 

• Issue #2 is solved 

– No longer need a pre-determined 

list of DE genes 
 

• Issue #3 is unsolved 

 

• Is sample size now larger? 

– |patients| * |normals| * |genes in P| 
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Array Rotation 

• QR decomposition  
 

 X = XQ . XR 

 

Where 

– X is gene expression 

array of n samples * m 

genes 

– XQ is n * r orientation 

matrix, r is rank of X 

– XR is sufficient statistics 

of covariance between 

the m genes 

• Rotation 
 

 X’ = RQ . XQ. XR 

 

Where 

– RQ is an n * n rotation 

operation 

 

 X’ is rotation of X 

preserving gene-gene 

correlations  

 i.e., preserving constraints 

induced by pathways 



15 

22 September 2014, GXU Copyright 2014 © Limsoon Wong, 

Much Better Performance 

ORA-Paired 

PFSNet 

GSEA 

ORA 
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NEA-Paired: Paired Test on Subnetworks 

 

• Given a pathway P 

 

• Let each node and its 

immediate neighbourhood 

in P be a subnetwork 

 

• Apply ORA-Paired on each 

subnetwork individually 

• Issues #1 & #2 are solved 

as per ORA-Paired 

 

• Issue #3 is partly solved 

– Testing subnetworks instead of 

whole pathways 

– But subnetworks derived in 

fragmented way 
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Even Better Performance 

ORA-Paired 

PFSNet 

GSEA 

ORA 

NEA-Paired 
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ESSNet: Larger Subnetworks 

 

• Compute the average rank 

of a gene based on its 

expression level in 

patients 

 

• Use the top % to extract 

large connected 

components in pathways 

 

• Test each component 

using ORA-Paired 

 

• Gene rank is very stable 

• Issues #1 - #3 solved 
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Fantastic Performance 

ORA-Paired 

PFSNet 

GSEA 

ORA 

NEA-Paired 

ESSNet 
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More Datasets Tested 
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ESSNet chooses a comparable # of 

pathways as other methods, but 

much more reproducibly 
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ESSNet’s excellent reproducibility is 

not due to restricting analysis to the 

top 10% of highly expressed genes  
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Do ESSNet results agree on small 

datasets vs big datasets? 

• The table above uses ESSNet’s results on entire datasets as the 

benchmark to evaluate ESSNet’s results on small subsets of the 

datasets 

• The precision (i.e., agreement) is superb, though some 

subnetworks are missed when smaller datasets are analysed 
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Indeed, ESSNet 

produces very 

few false 

positives 
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Leukemias: IL-4 Signaling 

in ALL  
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Concluding Remarks 

• Consistent successful gene expression profile 

analysis needs deep integration of background 

knowledge 

 

• Most gene expression profile analysis methods 

fail to give reproducible results when sample size 

is small (and some even fail when sample size is 

quite large) 

 

• Logical analysis to identify key issues and simple 

logical solution to the issues can give fantastic 

results 
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