
Introduction to Information Retrieval

CS3245

Information Retrieval

Lecture 11: Probabilistic IR and
Language Models for IR

11

CS3245 – Information Retrieval

Last Time
 XML Retrieval
 Lexicalized Subtrees
 Context Resemblance

 XML Evaluation
 Content and Structure
 Partial Relevance

 Relevance Feedback
 Documents

 Query Expansion
 Terms

Information Retrieval 2

CS3245 – Information Retrieval

Today
Chapter 11
1. Probabilistic Approach to Retrieval /

Basic Probability Theory
2. Probability Ranking Principle
3. Binary Independence Model, BestMatch25 (Okapi)

Chapter 12
1. Language Models for IR

Information Retrieval

Ch. 11-12

3

CS3245 – Information Retrieval

Probabilistic IR Models at a Glance

4

1. Classical probabilistic retrieval model
 Probability ranking principle
 Binary Independence Model, BestMatch25 (Okapi)

2. Language model approach to IR
 Important recent work, competitive performance

Probabilistic methods are one of the oldest but also one of
the currently hottest topics in IR

Information Retrieval

Ch. 11

4

CS3245 – Information Retrieval

Probabilistic Approach to Retrieval

5

 Given a user information need (represented as a query) and a
collection of documents (transformed into document
representations), a system must determine how well the
documents satisfy the query

 Boolean or vector space models of IR: query-document
matching done in a formally defined but semantically
imprecise calculus of index terms
 An IR system has an uncertain understanding of the user query, and

makes an uncertain guess of whether a document satisfies the query

 Probability theory provides a principled foundation for such
reasoning under uncertainty
 Probabilistic models exploit this foundation to estimate how likely it is

that a document is relevant to a query
Information Retrieval

Ch. 11

5

CS3245 – Information Retrieval

 For events A and B
 Joint probability P(A, B) of both events occurring.
 Conditional probability P(A|B) of event A occurring given that event B has

occurred.
 Chain rule gives fundamental relationship between joint and conditional

probabilities:

 Similarly for the complement of an event :

 Partition rule: if B can be divided into an exhaustive set of disjoint
subcases, then P(B) is the sum of the probabilities of the subcases.
 The binary form of this rule gives:

Basic Probability Theory

6Information Retrieval

Sec. 11.1

6

CS3245 – Information Retrieval

 Bayes' Rule for inverting conditional probabilities:

 Can be thought of as a way of updating probabilities:
 Start off with prior probability P(A) (initial estimate of how likely event

A is in the absence of any other information
 Derive a posterior probability P(A|B) after having seen the evidence B,

based on the likelihood of B occurring in the two cases that A does or
does not hold

 Odds of an event provide a multiplier for how probabilities
change:

7

Basic Probability Theory

Information Retrieval

Sec. 11.1

7

CS3245 – Information Retrieval

THE PROBABILITY
RANKING PRINCIPLE

8Information Retrieval

Sec. 11.2

CS3245 – Information Retrieval

9

The Document Ranking Problem

Information Retrieval

Sec. 11.2

9

 Ranked retrieval setup: given a collection of
documents, the user issues a query, and an ordered
list of documents is returned

 Assume binary notion of relevance: Rd,q is a random
binary variable, such that
 Rd,q = 1 if document d is relevant to q
 Rd,q = 0 otherwise

 Probabilistic ranking orders documents decreasingly
by their estimated probability of relevance to the
query: P (R = 1 | d, q)

CS3245 – Information Retrieval

10

Probability Ranking Principle (PRP)
 PRP in brief
 If the retrieved documents (w.r.t. a query) are ranked

decreasingly on their probability of relevance, then the
effectiveness of the system will be the best that is obtainable

 PRP in full
 If [the IR] system’s response to each [query] is a ranking of the

documents [...] in order of decreasing probability of relevance to
the [query], where the probabilities are estimated as
accurately as possible on the basis of whatever data have been
made available to the system for this purpose, the overall
effectiveness of the system to its user will be the best that is
obtainable on the basis of those data

Information Retrieval

Sec. 11.2

10

CS3245 – Information Retrieval

11

Binary Independence Model (BIM)

Information Retrieval

Sec. 11.3

11

 Traditionally used with the PRP

Assumptions:
 Binary (equivalent to Boolean): documents and

queries represented as binary term incidence vectors
 E.g., document d represented by vector �⃗�𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 ,

where 𝑥𝑥𝑡𝑡 = 1 if term t occurs in d and 𝑥𝑥𝑡𝑡 = 0 otherwise
 Different documents may have the same vector

representation

 Independence: no association between terms (not
true, but works in practice – naïve assumption)

CS3245 – Information Retrieval

12

Binary Independence Model

Information Retrieval

Sec. 11.3

12

 To make a probabilistic retrieval strategy precise, we
need to estimate how terms in documents
contribute to relevance

 Find measurable statistics that affect judgements about
document relevance

 Use them to estimate the probability of relevance P(R|d,q)
 Order documents by decreasing probability values

 Assume: Relevance of individual documents are
independent (not true; duplicate results considered bad).

CS3245 – Information Retrieval

13

Binary Independence Model
is modeled using term incidence vectors as

 and : : probability that if a relevant or
nonrelevant document is retrieved, then that document’s
representation is

 Statistics about the actual document collection are used to
estimate these probabilities

Information Retrieval

Sec. 11.3

13

CS3245 – Information Retrieval

14

Binary Independence Model

 and : prior probability of retrieving a
relevant or nonrelevant document for a query q

 Estimate and from percentage of
relevant documents in the collection

 Since a document is either relevant or nonrelevant to a query,
we have:

Information Retrieval

Sec. 11.3

Sam
e eq

u
atio

n
 as

o
n
 p

revio
u
s slid

e

14

CS3245 – Information Retrieval

 Given a query q, ranking documents by is modeled
under BIM as ranking them by

 Easier: rank documents by their odds of relevance (gives the same
ranking, plus we can ignore the common denominator)

 is a constant for a given query – can be ignored

15

Deriving a Ranking Function
for Query Terms

Information Retrieval

Sec. 11.3.1

D
ro

p
 th

is
term

15

CS3245 – Information Retrieval

16

 It is at this point that we make the (Naïve Bayes) conditional
independence assumption that the presence or absence of a
word in a document is independent of the presence or
absence of any other word (given the query):

 So:

Deriving a Ranking Function
for Query Terms

Information Retrieval

Sec. 11.3.1

Dropped
term

Just focus on this term

16

CS3245 – Information Retrieval

 Since each 𝑥𝑥𝑡𝑡 is either present (1) or absent (0), we can
separate the terms to give:

 Let be the probability of a term
appearing in a relevant document

 Let be the probability of a term
appearing in a non-relevant document

 Visualise this as a contingency table:

17

Deriving a Ranking Function
for Query Terms

Information Retrieval

Sec. 11.3.1

17

CS3245 – Information Retrieval

 Additional simplifying assumption: terms not occurring in the
query are equally likely to occur in relevant and non relevant
documents. i.e.,

if 𝑞𝑞𝑡𝑡 = 0, then 𝑝𝑝𝑡𝑡 = 𝑢𝑢𝑡𝑡
 Now we need only to consider terms in the products that

appear in the query:

 The left product is over query terms found in the document and the
right product is over query terms not found in the document

18

Deriving a Ranking Function
for Query Terms

Information Retrieval

Sec. 11.3.1

18

CS3245 – Information Retrieval

19

 Including the query terms found in the document into the right
product, but simultaneously dividing through by them in the left
product, gives:

 The left product is still over query terms found in the document, but
the right product is now over all query terms, hence constant for a
particular query and can be ignored.
The only quantity that needs to be estimated to rank documents w.r.t.
a query is the LHS product.

 Hence the Retrieval Status Value (RSV) in this model is:

Deriving a Ranking Function
for Query Terms

Information Retrieval

Sec. 11.3.1

19

CS3245 – Information Retrieval

 So it boils down to computing RSV. We can rank documents using the log
oods ratios for the terms in the query 𝐶𝐶𝑡𝑡 :

 The odds ratio is the ratio of two odds:

(i) the odds of the term appearing if relevant (𝑝𝑝𝑡𝑡
1−𝑝𝑝𝑡𝑡

), and

(ii) the odds of the term appearing if nonrelevant (𝑢𝑢𝑡𝑡
1−𝑢𝑢𝑡𝑡

)

 𝑐𝑐𝑡𝑡 = 0 if a term has equal odds of appearing in relevant and non-relevant
documents, and c𝑡𝑡 is positive if it is more likely to appear in relevant
documents.

 𝑐𝑐𝑡𝑡 functions as a term weight so that
 Operationally, we sum 𝑐𝑐𝑡𝑡 quantities in accumulators for query terms

appearing in documents, just like in VSM.

20

Deriving a Ranking Function
for Query Terms

Information Retrieval

Sec. 11.3.1

20

CS3245 – Information Retrieval

21

Probability Estimates in Theory
 For each term t in a query, estimate ct in the whole collection using

a contingency table of counts of documents in the collection, where
dft is the number of documents that contain term t:

 To avoid zero probabilities (such as if every or no relevant
document has a particular term), we apply smoothing.

Information Retrieval

Sec. 11.3.1

 Term present in relevant document

 Term absent in relevant document

21

CS3245 – Information Retrieval

22

Probability Estimates in Practice

Information Retrieval

Sec. 11.3.3

22

 Assuming that relevant documents are a very small
percentage of the collection, we approximate statistics for
non-relevant documents by statistics from the whole
collection

 Hence, 𝑢𝑢𝑡𝑡 (the probability of term occurrence in non-relevant
documents for a query) is 𝑑𝑑𝑑𝑑𝑡𝑡/𝑁𝑁 and

log 1−𝑢𝑢𝑡𝑡
𝑢𝑢𝑡𝑡

= log 𝑁𝑁−𝑑𝑑𝑑𝑑𝑡𝑡
𝑑𝑑𝑑𝑑𝑡𝑡

≅ log[𝑁𝑁
𝑑𝑑𝑑𝑑𝑡𝑡

]

 But note that the above approximation cannot easily be
extended to relevant documents.

CS3245 – Information Retrieval

Probability Estimates in Practice

Information Retrieval

Sec. 11.3.3

23

 Statistics of relevant documents (𝑝𝑝𝑡𝑡) can be estimated in
various ways:
1. Use the frequency of term occurrence in known relevant documents

(if any).
2. Set as a constant, e.g., assume that 𝑝𝑝𝑡𝑡 is constant over all terms 𝑥𝑥𝑡𝑡 in

the query and that 𝑝𝑝𝑡𝑡 = 0.5
 Each term is equally likely to occur in a relevant document, and so the 𝑝𝑝𝑡𝑡

and (1 - 𝑝𝑝𝑡𝑡) factors cancel out in the expression for RSV
 Weak estimate, but does not disagree violently with expectation that

query terms appear in many but not all relevant documents
 Combing this method with the earlier approximation for 𝑢𝑢𝑡𝑡, the

document ranking is determined simply by which query terms occur in
documents scaled by their idf weighting

 For short documents (titles or abstracts) in one-pass retrieval situations,
this estimate can be quite satisfactory.

CS3245 – Information Retrieval

AN APPRAISAL OF
PROBABILISTIC MODELS

24

Sec. 11.4

Information Retrieval

CS3245 – Information Retrieval

An Appraisal of Probabilistic Models
 Among the oldest formal models in IR
 (Maron and Kuhns, 1960) Since an IR system cannot

predict with certainty which document is relevant, we
should deal with probabilities

 Assumptions for getting reasonable approximations
of the needed probabilities (in the BIM):
 Boolean representation of documents/queries/relevance
 Term independence
 Out-of-query terms do not affect retrieval
 Document relevance values are independent

Information Retrieval 25

CS3245 – Information Retrieval

An Appraisal of Probabilistic Models

Information Retrieval

Sec. 11.4.1

26

 The difference between Vector Space and
Probabilistic IR is not that great
 In either case you build an information retrieval scheme in

the exact same way.
 Difference: for probabilistic IR, in the end, your score

queries not by cosine similarity and tf.idf in a vector space,
but by a slightly different formula motivated by probability
theory

CS3245 – Information Retrieval

Okapi BM25: A Nonbinary Model
 The BIM was originally designed for short catalog

records of fairly consistent length, and it works
reasonably in these contexts

 For modern full-text search collections, a model
should pay attention to term frequency and
document length

 BestMatch25 (i.e., BM25 or Okapi) is sensitive to
these quantities

 BM25 is one of the most widely used and robust
retrieval models

Information Retrieval

Sec. 11.4.3

27

CS3245 – Information Retrieval

Okapi BM25: A Nonbinary Model

Information Retrieval

Sec. 11.4.3

28

The simplest score for document d is just idf weighting of the query terms
present in the document:

Improve this formula by factoring in the term frequency and document
length:

 𝑡𝑡𝑑𝑑𝑡𝑡𝑑𝑑: term frequency in the document d
 𝐿𝐿𝑑𝑑(𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎): length of document d (average document length in the whole

collection)
 𝑘𝑘1: tuning parameter controlling the document term frequency scaling
 𝑏𝑏: tuning parameter controlling the scaling by document length

CS3245 – Information Retrieval

Okapi BM25: A Nonbinary Model

Information Retrieval

Sec. 11.4.3

29

 If the query is long, we might also use similar weighting for
query terms

 𝑡𝑡𝑑𝑑𝑡𝑡𝑞𝑞: term frequency in the query q
 𝑘𝑘3: tuning parameter controlling the query term frequency scaling
 No length normalization of queries

(because retrieval is being done with respect to a single fixed query)
 The above tuning parameters should be set by optimization on a

development test collection. Experiments have shown reasonable values
for 𝑘𝑘1 and 𝑘𝑘3 as values between 1.2 and 2 and 𝑏𝑏 = 0.75

CS3245 – Information Retrieval

LANGUAGE MODELS
FOR IR

30

Ch. 12

Information Retrieval

CS3245 – Information Retrieval

31

LM generative models

Information Retrieval

Ch. 12

31

 We want to classify a query q
 Each document in the collection is a different class

 Assume that q was generated by a generative model.
 Key question: Which document (= class) is most likely

to have generated the query q?
 Or: For which document (as the source of the query) do

we have the most evidence?

CS3245 – Information Retrieval

Using language models (LMs) for IR
 View the document as a model that generates the

query

What we need to do:
1. Define the precise generative model we want to use
2. Estimate parameters (different parameters for each

document’s model)
3. Smooth to avoid zeros
4. Apply to query and find document most likely to have

generated the query
5. Present most likely document(s) to user

Information Retrieval

Sec. 12.2

32

CS3245 – Information Retrieval

33

What is a language model?
 We can view a finite state automaton as a

deterministic language model.

 “I wish I wish I wish I wish…”
Cannot generate: “wish I wish” or “I wish I”

 Our basic model: each document was generated by a
different automaton like this except that these
automata are probabilistic

Information Retrieval

Sec. 12.1

33

CS3245 – Information Retrieval

A probabilistic language model

This is a one-state probabilistic finite-state automaton – a unigram language
model – and the state emission distribution for its one state q1. STOP is not
a word, but a special symbol indicating that the automaton stops.

 E.g. string = frog said that toad likes frog STOP

P(string) = 0.01 · 0.03 · 0.04 · 0.01 · 0.02 · 0.01 · 0.02
= 0.0000000000048

Information Retrieval 34

Sec. 12.1

0.02

CS3245 – Information Retrieval

A different language model
for each document

Information Retrieval 35

Sec. 12.2

.02

 frog said that toad likes frog STOP
P(string | Md1) = 0.01 * 0.03 * 0.04 * 0.01 * 0.02 * 0.01 * 0.02 = 4.8e-12

P(string | Md2) = 0.01 * 0.03 * 0.05 * 0.02 * 0.02 * 0.01 * 0.02 = 12e-12

P(string | Md1) < P(string | Md2)
 Thus, document d2 is more relevant to the string "frog said that toad likes

frog STOP" than d1 is.

CS3245 – Information Retrieval

 Each document is treated as (the basis for) a language model.
 Give a query q, rank documents based on P(d|q)

 P(q) is the same for all documents, so ignore
 P(d) is the prior – often treated as the same for all d

 But we can give a prior to "high-quality" documents, e.g., those with
high static quality score g(d) (cf. Section 7.14).

 P(q|d) is the probability of q given d.
 So to rank documents according to relevance to q, ranking

according to P(q|d) and P(d|q) is equivalent.

Using language models in IR

Information Retrieval 36

Sec. 12.2

CS3245 – Information Retrieval

How to compute P(q|d)

Information Retrieval 37

Sec. 12.2

 In the LM approach to IR, we attempt to model the
query generation process.

 As such, P(q|d) is the probability that a query would
be observed as a random sample from the respective
document model.

CS3245 – Information Retrieval

How to compute P(q|d)

Information Retrieval 38

Sec. 12.2

 We make a conditional independence assumption.

(|q|: length q; 𝑡𝑡𝑘𝑘: the toke occurring at position k in q)

 This is equivalent to:

𝑡𝑡𝑑𝑑𝑡𝑡,𝑞𝑞: term frequency (# occurrences) of t in q
 Multinomial model (omitting constant factor)

CS3245 – Information Retrieval

 Missing piece: Where do the parameters P(t|Md) come from?
 Start with maximum likelihood estimates:

(|d|: length of d; tft,d : # occurrences of t in d)
 But a single t with P(t|Md) = 0 will make 𝑃𝑃 𝑞𝑞 𝑀𝑀𝑑𝑑 =

∏𝑃𝑃(𝑡𝑡|𝑀𝑀𝑑𝑑) zero. Essentially, we have given a single term
"veto power".

 For example, for query "Michael Jackson top hits] a document
about "top songs" (not using the word "hits") would have
𝑃𝑃 𝑡𝑡 𝑀𝑀𝑑𝑑 = 0. That's bad.

 We need to smooth the estimates to avoid zeros.

Parameter Estimation

Information Retrieval 39

Sec. 12.2.2

CS3245 – Information Retrieval

 Key intuition: A non-occurring term is possible (even though it
didn't occur), …

… but no more likely than would be expected by
chance in the collection.

 Notation: 𝑀𝑀𝑐𝑐: the collection model; 𝑐𝑐𝑑𝑑𝑡𝑡: the number of
occurrences of t in the collection; 𝑇𝑇 = ∑𝑡𝑡 𝑐𝑐𝑑𝑑𝑡𝑡: the total
number token in the collection.

 We will use �𝑃𝑃 𝑡𝑡 𝑀𝑀𝑐𝑐 to "smooth" 𝑃𝑃(𝑡𝑡|𝑑𝑑) away from zero.

Smoothing, revisited

Information Retrieval 40

Sec. 12.2.2

CS3245 – Information Retrieval

Mixture model

Information Retrieval 41

Sec. 12.2.2

 𝑃𝑃 𝑡𝑡 𝑑𝑑 = λ𝑃𝑃 𝑡𝑡 𝑀𝑀𝑑𝑑 + 1 − λ P 𝑡𝑡 𝑀𝑀𝑐𝑐

 Mixes the probability from the document with the general
collection frequency of the word.

 High value of λ: "conjuctive-like" search – tends to retrieve
documents containing all query words.

 Low value of λ: more disjunctive, suitable for long queries
 Correctly setting λ is very important for good performance

CS3245 – Information Retrieval

Mixture model: Summary

 What we model: The user has a document in mind
and generates the query from this document.

 The equation represents the probability that the
document that the user had in mind was in fact this
one.

Information Retrieval 42

Sec. 12.2.2

CS3245 – Information Retrieval

Collection: d1 and d2
 d1: Jackson was one of the most talented entertainers of all

time
 d2: Michael Jackson anointed himself King of Pop

Query q: Michael Jackson

Use mixture model with λ = 1/2
 P(q|d1) = [(0/11 + 1/18)/2] * [(1/11 + 2/18)/2] ≈ 0.003
 P(q|d2) = [(1/7 + 1/18)/2] * [(1/7 + 2/18)/2] ≈ 0.013
 Ranking: d2 > d1

Exercise 1

Information Retrieval 43

Blanks on slides, you may want to fill in

CS3245 – Information Retrieval

Collection: d1 and d2
 d1: Xerox reports a profit but revenue is down
 d2: Lucent narrows quarter loss but decreases further

Query q: revenue down

Use mixture model with λ = 1/2
 P(q|d1) = [(1/8 + 1/15)/2] * [(1/8 + 1/15)/2] ≈
 P(q|d2) = [(0/7 + 1/15)/2] * [(0/7 + 1/15)/2] ≈
 Ranking: d1 > d2

Exercise 2

Information Retrieval 44

Blanks on slides, you may want to fill in

CS3245 – Information Retrieval

 The language modeling approach always does better in
these experiments . . . but note that where the approach
shows significant gains is at higher levels of recall.

Information Retrieval 45

Sec. 12.3

CS3245 – Information Retrieval

LMs vs. vector space model (1)
LMs have some things in common with vector space models.

 Term frequency is directly used in the model.
 But it is not scaled in LMs.

 Probabilities are inherently “length-normalized”.
 Cosine normalization does something similar for vector

space.
Mixing document and collection frequencies has an effect
similar to idf.

 Terms rare in the general collection, but common in some
documents will have a greater influence on the ranking.

Information Retrieval 46

Sec. 12.3

CS3245 – Information Retrieval

LMs vs. vector space model (2)
Differences
 LMs: based on probability theory
 Vector space: based on similarity, a geometric/ linear
algebra notion
 Collection frequency vs. document frequency
 Details of term frequency, length normalization etc.

Information Retrieval 47

Sec. 12.3

CS3245 – Information Retrieval

Language models for IR: Assumptions
 Simplifying assumption: Queries and documents are

objects of same type. Not true!
 There are other LMs for IR that do not make this

assumption, but the vector space model also makes the
same assumption.

 Simplifying assumption: Terms are conditionally
independent.
 VSM also makes the same assumption.

 Cleaner statement of assumptions than vector space
 Thus, better theoretical foundation than vector space

 … but “pure” LMs perform much worse than “tuned”
LMs.

Information Retrieval 48

Sec. 12.3

CS3245 – Information Retrieval

49

Summary
 Probabilistically grounded approach to IR
 Probability Ranking Principle
 Models: BIM, OKAPI BM25

 Language Models for IR

Resources:
 Chapters 11 and 12 of IIR
 Ponte and Croft’s 1998 SIGIR paper

(one of the first on LMs in IR)
 Lemur toolkit (good support for LMs in IR,

http://www.lemurproject.org/)
Information Retrieval 49

http://www.lemurproject.org/

	Slide Number 1
	Last Time
	Today
	Probabilistic IR Models at a Glance
	Probabilistic Approach to Retrieval
	Basic Probability Theory
	Basic Probability Theory
	THE PROBABILITY �RANKING PRINCIPLE
	The Document Ranking Problem
	Probability Ranking Principle (PRP)
	Binary Independence Model (BIM)
	Binary Independence Model
	Binary Independence Model
	Binary Independence Model
	Deriving a Ranking Function �for Query Terms
	Deriving a Ranking Function �for Query Terms
	Deriving a Ranking Function �for Query Terms
	Deriving a Ranking Function �for Query Terms
	Deriving a Ranking Function �for Query Terms
	Deriving a Ranking Function �for Query Terms
	Probability Estimates in Theory
	Probability Estimates in Practice
	Probability Estimates in Practice
	AN APPRAISAL OF�PROBABILISTIC MODELS
	An Appraisal of Probabilistic Models
	An Appraisal of Probabilistic Models
	Okapi BM25: A Nonbinary Model
	Okapi BM25: A Nonbinary Model
	Okapi BM25: A Nonbinary Model
	LANGUAGE MODELS�FOR IR
	LM generative models
	Using language models (LMs) for IR
	What is a language model?
	A probabilistic language model
	A different language model �for each document
	Using language models in IR
	How to compute P(q|d)
	How to compute P(q|d)
	Parameter Estimation
	Smoothing, revisited
	Mixture model
	Mixture model: Summary
	Exercise 1
	Exercise 2
	
	LMs vs. vector space model (1)
	LMs vs. vector space model (2)
	Language models for IR: Assumptions
	Summary

