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Last Time
 XML Retrieval
 Lexicalized Subtrees
 Context Resemblance

 XML Evaluation
 Content and Structure
 Partial Relevance

 Relevance Feedback
 Documents

 Query Expansion
 Terms
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Today
Chapter 11
1. Probabilistic Approach to Retrieval / 

Basic Probability Theory
2. Probability Ranking Principle
3. Binary Independence Model, BestMatch25 (Okapi)

Chapter 12
1. Language Models for IR

Information Retrieval

Ch. 11-12
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Probabilistic IR Models at a Glance

4

1. Classical probabilistic retrieval model 
 Probability ranking principle
 Binary Independence Model, BestMatch25 (Okapi)

2. Language model approach to IR
 Important recent work, competitive performance

Probabilistic methods are one of the oldest but also one of 
the currently hottest topics in IR

Information Retrieval

Ch. 11
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Probabilistic Approach to Retrieval 
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 Given a user information need (represented as a query) and a 
collection of documents (transformed into document 
representations), a system must determine how well the 
documents satisfy the query

 Boolean or vector space models of IR: query-document 
matching done in a formally defined but semantically 
imprecise calculus of index terms
 An IR system has an uncertain understanding of the user query, and 

makes an uncertain guess of whether a document satisfies the query

 Probability theory provides a principled foundation for such 
reasoning under uncertainty
 Probabilistic models exploit this foundation to estimate how likely it is 

that a document is relevant to a query
Information Retrieval

Ch. 11
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 For events A and B
 Joint probability P(A, B) of both events occurring.
 Conditional probability P(A|B) of event A occurring given that event B has 

occurred.
 Chain rule gives fundamental relationship between joint and conditional 

probabilities:

 Similarly for the complement of an event          :

 Partition rule: if B can be divided into an exhaustive set of disjoint 
subcases, then P(B) is the sum of the probabilities of the subcases.
 The binary form of this rule gives: 

Basic Probability Theory

6Information Retrieval

Sec. 11.1
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 Bayes' Rule for inverting conditional probabilities:

 Can be thought of as a way of updating probabilities:
 Start off with prior probability P(A) (initial estimate of how likely event 

A is in the absence of any other information
 Derive a posterior probability P(A|B) after having seen the evidence B, 

based on the likelihood of B occurring in the two cases that A does or 
does not hold

 Odds of an event provide a multiplier for how probabilities 
change:

7

Basic Probability Theory

Information Retrieval

Sec. 11.1
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THE PROBABILITY 
RANKING PRINCIPLE

8Information Retrieval

Sec. 11.2
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The Document Ranking Problem

Information Retrieval

Sec. 11.2
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 Ranked retrieval setup: given a collection of 
documents, the user issues a query, and an ordered 
list of documents is returned

 Assume binary notion of relevance: Rd,q is a random 
binary variable, such that
 Rd,q = 1 if document d is relevant to q
 Rd,q = 0 otherwise

 Probabilistic ranking orders documents decreasingly 
by their estimated probability of relevance to the 
query: P (R = 1 | d, q)
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Probability Ranking Principle (PRP)
 PRP in brief
 If the retrieved documents (w.r.t. a query) are ranked 

decreasingly on their probability of relevance, then the 
effectiveness of the system will be the best that is obtainable

 PRP in full
 If [the IR] system’s response to each [query] is a ranking of the 

documents [...] in order of decreasing probability of relevance to 
the [query], where the probabilities are estimated as 
accurately as possible on the basis of whatever data have been 
made available to the system for this purpose, the overall 
effectiveness of the system to its user will be the best that is 
obtainable on the basis of those data

Information Retrieval

Sec. 11.2
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Binary Independence Model (BIM)

Information Retrieval

Sec. 11.3
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 Traditionally used with the PRP

Assumptions:
 Binary (equivalent to Boolean): documents and 

queries represented as binary term incidence vectors
 E.g., document d represented by vector �⃗�𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 ,

where 𝑥𝑥𝑡𝑡 = 1 if term t occurs in d and 𝑥𝑥𝑡𝑡 = 0 otherwise
 Different documents may have the same vector 

representation

 Independence: no association between terms (not 
true, but works in practice – naïve assumption)
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Binary Independence Model

Information Retrieval

Sec. 11.3
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 To make a probabilistic retrieval strategy precise, we 
need to estimate how terms in documents 
contribute to relevance

 Find measurable statistics that affect judgements about 
document relevance

 Use them to estimate the probability of relevance P(R|d,q)
 Order documents by decreasing probability values

 Assume: Relevance of individual documents are 
independent (not true; duplicate results considered bad).
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Binary Independence Model
is modeled using term incidence vectors as 

 and :        : probability that if a relevant or 
nonrelevant document is retrieved, then that document’s 
representation is 

 Statistics about the actual document collection are used to 
estimate these probabilities

Information Retrieval

Sec. 11.3
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Binary Independence Model

 and : prior probability of retrieving a 
relevant or nonrelevant document for a query q

 Estimate                      and                     from percentage of 
relevant documents in the collection

 Since a document is either relevant or nonrelevant to a query, 
we have:

Information Retrieval

Sec. 11.3
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 Given a query q, ranking documents by                            is modeled 
under BIM as ranking them by  

 Easier: rank documents by their odds of relevance (gives the same 
ranking, plus we can ignore the common denominator)

 is a constant for a given query – can be ignored

15

Deriving a Ranking Function 
for Query Terms

Information Retrieval

Sec. 11.3.1
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 It is at this point that we make the (Naïve Bayes) conditional 
independence assumption that the presence or absence of a 
word in a document is independent of the presence or 
absence of any other word (given the query):

 So:

Deriving a Ranking Function 
for Query Terms

Information Retrieval

Sec. 11.3.1

Dropped 
term

Just focus on this term
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 Since each 𝑥𝑥𝑡𝑡 is either present (1) or absent (0), we can 
separate the terms to give:

 Let                                                       be the probability of a term 
appearing in a relevant document

 Let                                                      be the probability of a term 
appearing in a non-relevant document

 Visualise this as a contingency table:

17

Deriving a Ranking Function 
for Query Terms

Information Retrieval

Sec. 11.3.1
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 Additional simplifying assumption: terms not occurring in the 
query are equally likely to occur in relevant and non relevant 
documents. i.e., 

if 𝑞𝑞𝑡𝑡 = 0, then 𝑝𝑝𝑡𝑡 = 𝑢𝑢𝑡𝑡
 Now we need only to consider terms in the products that 

appear in the query:

 The left product is over query terms found in the document and the 
right product is over query terms not found in the document

18

Deriving a Ranking Function 
for Query Terms

Information Retrieval

Sec. 11.3.1
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 Including the query terms found in the document into the right 
product, but simultaneously dividing through by them in the left 
product, gives:

 The left product is still over query terms found in the document, but 
the right product is now over all query terms, hence constant for a 
particular query and can be ignored. 
The only quantity that needs to be estimated to rank documents w.r.t. 
a query is the LHS product.

 Hence the Retrieval Status Value (RSV) in this model is:

Deriving a Ranking Function 
for Query Terms

Information Retrieval

Sec. 11.3.1

19
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 So it boils down to computing RSV. We can rank documents using the log 
oods ratios for the terms in the query 𝐶𝐶𝑡𝑡 :

 The odds ratio is the ratio of two odds:

(i) the odds of the term appearing if relevant ( 𝑝𝑝𝑡𝑡
1−𝑝𝑝𝑡𝑡

), and

(ii) the odds of the term appearing if nonrelevant ( 𝑢𝑢𝑡𝑡
1−𝑢𝑢𝑡𝑡

)

 𝑐𝑐𝑡𝑡 = 0 if a term has equal odds of appearing in relevant and non-relevant 
documents, and c𝑡𝑡 is positive if it is more likely to appear in relevant 
documents.

 𝑐𝑐𝑡𝑡 functions as a term weight so that 
 Operationally, we sum 𝑐𝑐𝑡𝑡 quantities in accumulators for query terms 

appearing in documents, just like in VSM.

20

Deriving a Ranking Function 
for Query Terms

Information Retrieval

Sec. 11.3.1
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Probability Estimates in Theory
 For each term t in a query, estimate ct in the whole collection using 

a contingency table of counts of documents in the collection, where 
dft is the number of documents that contain term t:

 To avoid zero probabilities (such as if every or no relevant 
document has a particular term), we apply smoothing.

Information Retrieval

Sec. 11.3.1

 Term present in relevant document

 Term absent in relevant document

21
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Probability Estimates in Practice

Information Retrieval

Sec. 11.3.3
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 Assuming that relevant documents are a very small 
percentage of the collection, we approximate statistics for 
non-relevant documents by statistics from the whole 
collection

 Hence, 𝑢𝑢𝑡𝑡 (the probability of term occurrence in non-relevant 
documents for a query) is 𝑑𝑑𝑑𝑑𝑡𝑡/𝑁𝑁 and 

log 1−𝑢𝑢𝑡𝑡
𝑢𝑢𝑡𝑡

= log 𝑁𝑁−𝑑𝑑𝑑𝑑𝑡𝑡
𝑑𝑑𝑑𝑑𝑡𝑡

≅ log[ 𝑁𝑁
𝑑𝑑𝑑𝑑𝑡𝑡

]

 But note that the above approximation cannot easily be 
extended to relevant documents.
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Probability Estimates in Practice

Information Retrieval

Sec. 11.3.3
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 Statistics of relevant documents (𝑝𝑝𝑡𝑡) can be estimated in 
various ways:
1. Use the frequency of term occurrence in known relevant documents 

(if any).
2. Set as a constant, e.g., assume that 𝑝𝑝𝑡𝑡 is constant over all terms 𝑥𝑥𝑡𝑡 in 

the query and that 𝑝𝑝𝑡𝑡 = 0.5
 Each term is equally likely to occur in a relevant document, and so the 𝑝𝑝𝑡𝑡

and (1 - 𝑝𝑝𝑡𝑡) factors cancel out in the expression for RSV
 Weak estimate, but does not disagree violently with expectation that 

query terms appear in many but not all relevant documents
 Combing this method with the earlier approximation for 𝑢𝑢𝑡𝑡, the 

document ranking is determined simply by which query terms occur in 
documents scaled by their idf weighting

 For short documents (titles or abstracts) in one-pass retrieval situations, 
this estimate can be quite satisfactory.
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AN APPRAISAL OF
PROBABILISTIC MODELS

24

Sec. 11.4

Information Retrieval



CS3245 – Information Retrieval

An Appraisal of Probabilistic Models
 Among the oldest formal models in IR
 (Maron and Kuhns, 1960) Since an IR system cannot 

predict with certainty which document is relevant, we 
should deal with probabilities

 Assumptions for getting reasonable approximations 
of the needed probabilities (in the BIM):
 Boolean representation of documents/queries/relevance
 Term independence
 Out-of-query terms do not affect retrieval
 Document relevance values are independent

Information Retrieval 25



CS3245 – Information Retrieval

An Appraisal of Probabilistic Models

Information Retrieval

Sec. 11.4.1
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 The difference between Vector Space and 
Probabilistic IR is not that great
 In either case you build an information retrieval scheme in 

the exact same way.
 Difference: for probabilistic IR, in the end, your score 

queries not by cosine similarity and tf.idf in a vector space, 
but by a slightly different formula motivated by probability 
theory
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Okapi BM25: A Nonbinary Model
 The BIM was originally designed for short catalog 

records of fairly consistent length, and it works 
reasonably in these contexts

 For modern full-text search collections, a model 
should pay attention to term frequency and 
document length

 BestMatch25 (i.e., BM25 or Okapi) is sensitive to 
these quantities

 BM25 is one of the most widely used and robust 
retrieval models

Information Retrieval

Sec. 11.4.3
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Okapi BM25: A Nonbinary Model

Information Retrieval

Sec. 11.4.3
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The simplest score for document d is just idf weighting of the query terms 
present in the document:

Improve this formula by factoring in the term frequency and document 
length:

 𝑡𝑡𝑑𝑑𝑡𝑡𝑑𝑑: term frequency in the document d
 𝐿𝐿𝑑𝑑(𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎): length of document d (average document length in the whole 

collection)
 𝑘𝑘1: tuning parameter controlling the document term frequency scaling
 𝑏𝑏: tuning parameter controlling the scaling by document length
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Okapi BM25: A Nonbinary Model

Information Retrieval

Sec. 11.4.3
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 If the query is long, we might also use similar weighting for 
query terms

 𝑡𝑡𝑑𝑑𝑡𝑡𝑞𝑞: term frequency in the query q
 𝑘𝑘3: tuning parameter controlling the query term frequency scaling
 No length normalization of queries

(because retrieval is being done with respect to a single fixed query)
 The above tuning parameters should be set by optimization on a 

development test collection. Experiments have shown reasonable values 
for 𝑘𝑘1 and 𝑘𝑘3 as values between 1.2 and 2 and 𝑏𝑏 = 0.75
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LANGUAGE MODELS
FOR IR

30

Ch. 12
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LM generative models

Information Retrieval

Ch. 12

31

 We want to classify a query q
 Each document in the collection is a different class

 Assume that q was generated by a generative model.
 Key question: Which document (= class) is most likely 

to have generated the query q?
 Or: For which document (as the source of the query) do 

we have the most evidence?
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Using language models (LMs) for IR
 View the document as a model that generates the 

query

What we need to do:
1. Define the precise generative model we want to use
2. Estimate parameters (different parameters for each 

document’s model)
3. Smooth to avoid zeros
4. Apply to query and find document most likely to have 

generated the query
5. Present most likely document(s) to user

Information Retrieval

Sec. 12.2
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What is a language model?
 We can view a finite state automaton as a 

deterministic language model.

 “I wish I wish I wish I wish…” 
Cannot generate: “wish I wish” or “I wish I”

 Our basic model: each document was generated by a 
different automaton like this except that these 
automata are probabilistic

Information Retrieval

Sec. 12.1

33
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A probabilistic language model

This is a one-state probabilistic finite-state automaton – a unigram language 
model – and the state emission distribution for its one state q1. STOP is not 
a word, but a special symbol indicating that the automaton stops.  

 E.g. string = frog said that toad likes frog STOP

P(string) = 0.01 · 0.03 · 0.04 · 0.01 · 0.02 · 0.01 · 0.02
= 0.0000000000048

Information Retrieval 34

Sec. 12.1
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A different language model 
for each document

Information Retrieval 35

Sec. 12.2

.02

 frog said that toad likes frog STOP
P(string | Md1) = 0.01 * 0.03 * 0.04 * 0.01 * 0.02 * 0.01 * 0.02 = 4.8e-12

P(string | Md2) = 0.01 * 0.03 * 0.05 * 0.02 * 0.02 * 0.01 * 0.02 = 12e-12

P(string | Md1) < P(string | Md2)
 Thus, document d2 is more relevant to the string "frog said that toad likes 

frog STOP" than d1 is.
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 Each document is treated as (the basis for) a language model. 
 Give a query q, rank documents based on P(d|q)

 P(q) is the same for all documents, so ignore
 P(d) is the prior – often treated as the same for all d

 But we can give a prior to "high-quality" documents, e.g., those with 
high static quality score g(d) (cf. Section 7.14).

 P(q|d) is the probability of q given d.
 So to rank documents according to relevance to q, ranking 

according to P(q|d) and P(d|q) is equivalent.

Using language models in IR 

Information Retrieval 36

Sec. 12.2
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How to compute P(q|d) 

Information Retrieval 37

Sec. 12.2

 In the LM approach to IR, we attempt to model the 
query generation process.

 As such, P(q|d) is the probability that a query would 
be observed as a random sample from the respective 
document model.
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How to compute P(q|d) 

Information Retrieval 38

Sec. 12.2

 We make a conditional independence assumption.

(|q|: length q; 𝑡𝑡𝑘𝑘: the toke occurring at position k in q)

 This is equivalent to:

𝑡𝑡𝑑𝑑𝑡𝑡,𝑞𝑞: term frequency (# occurrences) of t in q
 Multinomial model (omitting constant factor) 
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 Missing piece: Where do the parameters P(t|Md) come from?
 Start with maximum likelihood estimates:

(|d|: length of d; tft,d : # occurrences of t in d)
 But a single t with P(t|Md) =  0 will make 𝑃𝑃 𝑞𝑞 𝑀𝑀𝑑𝑑 =

∏𝑃𝑃(𝑡𝑡|𝑀𝑀𝑑𝑑) zero. Essentially, we have given a single term 
"veto power".

 For example, for query "Michael Jackson top hits] a document 
about "top songs" (not using the word "hits") would have 
𝑃𝑃 𝑡𝑡 𝑀𝑀𝑑𝑑 = 0. That's bad. 

 We need to smooth the estimates to avoid zeros.

Parameter Estimation

Information Retrieval 39

Sec. 12.2.2
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 Key intuition: A non-occurring term is possible (even though it 
didn't occur), …

… but no more likely than would be expected by   
chance in the collection.

 Notation: 𝑀𝑀𝑐𝑐: the collection model; 𝑐𝑐𝑑𝑑𝑡𝑡: the number of 
occurrences of t in the collection; 𝑇𝑇 = ∑𝑡𝑡 𝑐𝑐𝑑𝑑𝑡𝑡: the total 
number token in the collection.

 We will use �𝑃𝑃 𝑡𝑡 𝑀𝑀𝑐𝑐 to "smooth" 𝑃𝑃(𝑡𝑡|𝑑𝑑) away from zero.

Smoothing, revisited

Information Retrieval 40

Sec. 12.2.2



CS3245 – Information Retrieval

Mixture model

Information Retrieval 41

Sec. 12.2.2

 𝑃𝑃 𝑡𝑡 𝑑𝑑 = λ𝑃𝑃 𝑡𝑡 𝑀𝑀𝑑𝑑 + 1 − λ P 𝑡𝑡 𝑀𝑀𝑐𝑐

 Mixes the probability from the document with the general 
collection frequency of the word.

 High value of λ: "conjuctive-like" search – tends to retrieve 
documents containing all query words.

 Low value of λ: more disjunctive, suitable for long queries
 Correctly setting λ is very important for good performance
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Mixture model: Summary

 What we model: The user has a document in mind 
and generates the query from this document.

 The equation represents the probability that the 
document that the user had in mind was in fact this 
one. 

Information Retrieval 42
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Collection: d1 and d2
 d1: Jackson was one of the most talented entertainers of all 

time
 d2: Michael Jackson anointed himself King of Pop

Query q: Michael Jackson

Use mixture model with λ = 1/2
 P(q|d1) = [(0/11 + 1/18)/2] * [(1/11 + 2/18)/2] ≈ 0.003 
 P(q|d2) = [(1/7 + 1/18)/2] * [(1/7 + 2/18)/2] ≈ 0.013
 Ranking: d2 > d1

Exercise 1

Information Retrieval 43

Blanks on slides, you may want to fill in
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Collection: d1 and d2
 d1: Xerox reports a profit but revenue is down
 d2: Lucent narrows quarter loss but decreases further 

Query q: revenue down

Use mixture model with λ = 1/2
 P(q|d1) = [(1/8 + 1/15)/2] * [(1/8 + 1/15)/2] ≈
 P(q|d2) = [(0/7 + 1/15)/2] * [(0/7 + 1/15)/2] ≈ 
 Ranking: d1 > d2

Exercise 2

Information Retrieval 44

Blanks on slides, you may want to fill in
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 The language modeling approach always does better in 
these experiments . . .  but note that where the approach 
shows significant gains is at higher levels of recall.

Information Retrieval 45

Sec. 12.3
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LMs vs. vector space model (1) 
LMs have some things in common with vector space models.

 Term frequency is directly used in the model.
 But it is not scaled in LMs.

 Probabilities are inherently “length-normalized”.
 Cosine normalization does something similar for vector 

space.
Mixing document and collection frequencies has an effect 
similar to idf. 

 Terms rare in the general collection, but common in some 
documents will have a greater influence on the ranking.

Information Retrieval 46
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LMs vs. vector space model (2) 
Differences
 LMs: based on probability theory
 Vector space: based on similarity, a geometric/ linear 
algebra notion
 Collection frequency vs. document frequency
 Details of term frequency, length normalization etc. 

Information Retrieval 47

Sec. 12.3
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Language models for IR: Assumptions 
 Simplifying assumption: Queries and documents are 

objects of same type. Not true!
 There are other LMs for IR that do not make this 

assumption, but the vector space model also makes the 
same assumption.

 Simplifying assumption: Terms are conditionally 
independent.
 VSM also makes the same assumption.

 Cleaner statement of assumptions than vector space
 Thus, better theoretical foundation than vector space

 … but “pure” LMs perform much worse than “tuned”
LMs.  

Information Retrieval 48
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Summary
 Probabilistically grounded approach to IR
 Probability Ranking Principle
 Models: BIM, OKAPI BM25

 Language Models for IR

Resources:
 Chapters 11 and 12 of IIR
 Ponte and Croft’s 1998 SIGIR paper

(one of the first on LMs in IR) 
 Lemur toolkit (good support for LMs in IR, 

http://www.lemurproject.org/)
Information Retrieval 49

http://www.lemurproject.org/
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