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Last Time: Postings lists and Choosing terms
 Faster merging of posting lists
 Skip pointers

 Handling of phrase and proximity queries
 Biword indexes for phrase queries
 Positional indexes for phrase/proximity queries

 Steps in choosing terms for the dictionary
 Text extraction
 Granularity of indexing
 Tokenization
 Stop word removal
 Normalization
 Lemmatization and stemming

Information Retrieval 2
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Today: the dictionary and 
tolerant retrieval

 Dictionary data structures

 “Tolerant” retrieval
 Wild-card queries
 Spelling correction
 Soundex

Information Retrieval 3

Ch. 3
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Dictionary data structures for 
inverted indexes
 The dictionary data structure stores the term 

vocabulary, document frequency, pointers to each 
postings list … in what data structure?

Information Retrieval 4

Sec. 3.1
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A naïve dictionary
 An array of struct:

char[20]   int        Postings Pointer

20 bytes   4/8 bytes   4/8 bytes  

Information Retrieval 5

Sec. 3.1

Quick Q: What’s wrong with using 
this data structure?
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A naïve dictionary

char[20]   int Postings Pointer

20 bytes   4/8 bytes   4/8 bytes 

Words can only be 20 chars long.  Waste of space for some words, not enough 
for others.

 How do we store a dictionary in memory efficiently?

Most important: Slow to access, linear scan needed!
 How do we quickly look up elements at query time?

Information Retrieval 6

Sec. 3.1
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Dictionary data structures
 Two main choices:
 Hash table
 Tree

 Some IR systems use hashes, some trees

Information Retrieval 7

Sec. 3.1

To think about: what issues influence the choice 
between these two data structures? (Hint: see IIR)



CS3245 – Information Retrieval

Hash Table
Each vocabulary term is hashed to an integer
 Pros:
 Lookup is faster than for a tree: O(1)

 Cons:
 No easy way to find minor variants:

 judgment/judgement

 No prefix search
 If vocabulary keeps growing, need to occasionally do the 

expensive operation of rehashing everything

Information Retrieval 8

Sec. 3.1

Not very tolerant!
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Root
a-m n-z

a-hu hy-m n-sh si-z

Tree: binary tree

Information Retrieval 9

Sec. 3.1
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Tree: B-tree

 Definition: Every internal nodel has a number of children 
in the interval [a,b] where a, b are appropriate natural 
numbers, e.g., [2,4].

Information Retrieval 10

a-hu

hy-m

n-z

Sec. 3.1
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Trees
 Simplest: binary tree
 More common: B-trees
 Trees require a standard ordering of characters and hence 

strings … but we have one: lexicographical ordering
 Pros:
 Solves the prefix problem (e.g., terms starting with “hyp”)

 Cons:
 Slower: O(log M)  [and this requires a balanced tree]
 Rebalancing binary trees is expensive

 B-trees mitigate the rebalancing problem

Information Retrieval 11

Sec. 3.1
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WILDCARD QUERIES

Information Retrieval 12
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Wildcard queries: *

 mon*: find all docs containing any word beginning 
“mon”.

 Easy with binary tree (or B-tree) lexicon: retrieve all 
words in range: mon ≤ w < moo

 *mon: find words ending in “mon”: need help!
 Maintain an additional B-tree for terms reversed
Can retrieve all words in range: nom ≤ w < non.

Information Retrieval 13

Quick Q2: from this, how can we enumerate all terms
meeting the wildcard query pro*cent ?

Sec. 3.2

Quick Q1: why would someone use this feature?
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Intersection, redux
Answer: Use the forward part for “pro*”, and the 

backward part for “*cent”, then intersect them.

Information Retrieval 14
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Handling general wildcard queries
 General wildcard queries: X*Y

 Look up X* in a normal B-tree AND *Y in a reverse B-
tree, and then intersect the two term sets
 Expensive

 The solution: transform wild-card queries so that the 
*’s always occur at the end

 This gives rise to the Permuterm Index.
Information Retrieval 15

Sec. 3.2
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Permuterm index
 For term hello, index under:
 hello$, ello$h, llo$he, lo$hel, o$hell and $hello
where $ is a special symbol.

 Queries:
 X lookup on X$ X*   lookup on   $X*
 *X   lookup on X$* *X* lookup on   X*
 X*Y lookup on Y$X*

Information Retrieval 16

Sec. 3.2.1

Query = hel*o
X=hel, Y=o

Lookup o$hel*

Not so quick Q: 
What about X*Y*Z?
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Permuterm query processing
 Rotate query wild-card to the right
 Now use B-tree lookup as before

 Permuterm problem: lexicon size blows up,  
proportional to average word length

Information Retrieval 17

Sec. 3.2.1

Is there any other solution?
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Bigram (k-gram) index
 Enumerate all k-grams (sequence of k chars) 

occurring in any term
 e.g., from text “April is the cruelest month” we get 

the 2-grams (bigrams)

 As before “$” is a special word boundary symbol

 Maintain a second inverted index from bigrams to
dictionary terms that match each bigram.

Information Retrieval 18

$a,ap,pr,ri,il,l$,$i,is,s$,$t,th,he,e$,$c,cr,ru,
ue,el,le,es,st,t$,$m,mo,on,nt,h$

Sec. 3.2.2
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Bigram index example
 The k-gram index finds terms based on a query 

consisting of k-grams (here k=2).

Information Retrieval 19

mo

on

among

$m mace

among

amortize

madden

axon

Sec. 3.2.2
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Bigram query processing
 Query mon* can now be run as
 $m AND mo AND on

 Gets terms that match AND version of our wildcard 
query.

 Oops! We also included moon, a false positive!
 Must post-filter these terms against query.
 Surviving enumerated terms are then looked up in 

the term-document inverted index.
 Fast, space efficient (compared to permuterm).

Information Retrieval 20

Sec. 3.2.2
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Processing wildcard queries
 After getting the possible terms, we still need to 

execute a Boolean query for each possible term.
 Wildcards can result in expensive query execution 

(very large disjunctions…)
 pyth* AND prog*

 If you encourage laziness, people will respond!

Which web search engines allow wildcard queries?
Information Retrieval 21

Search
Type your search terms, use ‘*’ if you need to.
E.g., Alex* will match Alexander.

Sec. 3.2.2
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SPELLING 
CORRECTION

Information Retrieval 22
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Spellling corektion
 Two principal uses:

1. Correcting document(s) being indexed
2. Correcting user queries to retrieve “right” answers

 Two main flavors:
 Isolated word

 Check each word on its own for misspelling
 Will not catch typos resulting in correctly spelled words

e.g., from → form

 Context-sensitive
 Look at surrounding words 

e.g., I flew form Heathrow to Narita.
Information Retrieval 23

Sec. 3.3
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Document correction
 Especially needed for OCR’ed documents
 Correction algorithms are tuned for common errors: rn/m
 Can use domain-specific knowledge

 E.g., OCR can confuse O and D more often than it would confuse O 
and I (adjacent on the QWERTY keyboard, so more likely 
interchanged in typing).

 But also: web pages and even printed material have 
typos

 Goal: the dictionary contains fewer misspellings
 But often we don’t change the documents but aim to 

fix the query-document mapping
Information Retrieval 24

Sec. 3.3



CS3245 – Information Retrieval

Query misspellings
 Our principal focus here
 E.g., the query Britiny Speares

 We can
 Return several suggested alternative queries with the 

correct spelling
 “Did you mean … ?”

 Retrieve documents indexed by the correct spelling

Information Retrieval 25

Sec. 3.3
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Isolated word correction
 Fundamental premise – there is a lexicon from which 

the correct spellings come
 Two basic choices for this
 A standard lexicon such as

 Merriam-Webster’s English Dictionary
 A domain-specific lexicon – often hand-maintained

 The lexicon of the indexed corpus
 E.g., all words on the web
 All names, acronyms, etc. (including misspellings)

Information Retrieval 26

Sec. 3.3.2
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Isolated word correction
 Given a lexicon and a character sequence Q, return 

the words in the lexicon closest to Q
 How do we define “closest”?
 We’ll study several alternatives

1. Edit distance (Levenshtein distance)
2. Weighted edit distance
3. ngram overlap

Information Retrieval 27

Sec. 3.3.2
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1. Edit distance
 Given two strings S1 and S2, the minimum number of 

operations to convert one to the other
 Fundamentally related to the longest common 

subsequence (LCS) problem you may already know

 Operations are typically character-level
 Insert, Delete, Replace, (Transposition)

 E.g., the edit distance from dof to dog is 1
 From cat to act is 2. (Just 1 with transpose)
 from cat to dog is 3.

 Generally found by dynamic programming
Information Retrieval 28

Sec. 3.3.3
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Dynamic Programming
Not dynamic and not programming

 Build up solutions of “simpler” instances from small 
to large
 Save results of solutions of “simpler” instances
 Use those solutions to solve larger problems

 Useful when problem can be solved using solution of 
two or more instances that are only slightly simpler 
than original instances

Information Retrieval
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Computing Edit Distance
Let’s diagram this as an array, with 

S1 (PAT) on the x-axis, 
S2 (APT) on the y-axis. 

Possible moves:
 Insert
 Delete
 Match or replace

Information Retrieval 30

_ P A T

_ 0 1 2 3

A 1 1 1 2

P 2 1 2 2

T 3 2 2 2

Store edit distance 
between substrings S1(1,i)

and S2(1,j) at entry i,j

E(i, j) = min{ E(i, j-1) + 1, where m = 1 if Pi ≠Tj, 
E(i-1, j) + 1, 0 otherwise
E(i-1, j-1) + m}

S1
S2
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Practice your edit distance
_ C H I C K E N

_ 0 1 2 3 4 5 6 7
C 1 0 1 2 3 4 5 6
H 2 1 0 1 2 3 4 5
E 3 2 1 1 2 3 3 4
E 4 3 2 2 2 3 4 4
K 5 4 3 3 3 2 3 4
Y 6 5 4 4 4 3 3 4

Edit Distance: 4

Blanks on slides, you may want to fill in

Information Retrieval
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Practice your edit distance
_ C H I C K E N

_ 0 1 2 3 4 5 6 7
C 1 0 1 2 3 4 5 6
H 2 1 0 1 2 3 4 5
E 3 2 1 1 ?

E
K
Y

Blanks on slides, you may want to fill in

Information Retrieval
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2. Weighted edit distance
 As above, but the weight of an operation depends on 

the character(s) involved
 Meant to capture OCR or keyboard errors, e.g. m more 

likely to be mis-typed as n than as q
 Therefore, replacing m by n is a smaller edit distance than 

by q
 This may be formulated as a probability model

 Requires a weighted matrix as input
 Modify dynamic programming to handle weights

Information Retrieval 33

Sec. 3.3.3
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Edit distance to all dictionary terms?

 Given a (misspelled) query – do we compute its edit 
distance to every dictionary term?
 Expensive and slow
 Alternative?

 How do we cut the set of candidate dictionary 
terms?
 One possibility is to use ngram overlap for this
 This can also be used by itself for spelling correction

Information Retrieval 34

Sec. 3.3.4
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3. Ngram overlap
 Enumerate all the ngrams in the query string as well 

as in the lexicon
 Use the ngram index (recall wildcard search) to 

retrieve all lexicon terms matching any of the query 
ngrams

 Threshold by number of matching ngrams
 Variants – weight by keyboard layout, assume initial letter 

correct, etc.

Information Retrieval 35

Sec. 3.3.4

Arocdnicg to rsceearch at Cmabrigde Uinervtisy, it deosn’t mttaer in waht oredr the ltteers in a wrod are, the olny iprmoatnt tihng is taht the 
frist and lsat ltteer are in the rghit pcale. The rset can be a toatl mses and you can sitll raed it wouthit pobelrm. Tihs is buseace the huamn 
mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe.

This story is actually an urban legend?  No such study was done at Cambridge
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Example with trigrams
 Suppose the text is november
 Trigrams are nov, ove, vem, emb, mbe, ber.

 The query is december
 Trigrams are dec, ece, cem, emb, mbe, ber.

 So 3 trigrams overlap (out of 6 in each term)

How can we turn this into a normalized measure of 
overlap?

Information Retrieval 36

Sec. 3.3.4
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One option – Jaccard coefficient
 A commonly-used measure of overlap
 Let X and Y be two sets; then the J.C. is

 Equals 1 when X and Y have the same 
elements and zero when they are disjoint

 X and Y don’t have to be of the same size
 Always assigns a number between 0 and 1
 Now threshold to decide if you have a match
 E.g., if Jaccard > 0.8, declare a match 

Information Retrieval 37

YXYX ∪∩ /

Sec. 3.3.4

A generally 
useful overlap 
measure, even 
outside of IR

“coefficient de 
communauté”
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Matching trigrams
 Consider the query lord – we wish to identify words 

matching 2 of its 3 bigrams (lo, or, rd)

Information Retrieval 38

lo

or

rd

alone lore sloth

lore morbid

border card

border

ardent

Standard postings “merge” enumerates hits

Adapt this to using Jaccard (or another) measure.

Sec. 3.3.4
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Context-sensitive spelling correction
 Text: I flew from Heathrow to Narita.
 Consider the phrase query “flew form Heathrow”

 We’d like to respond
Did you mean “flew from Heathrow”?

because no docs matched the query phrase.

Information Retrieval 39

Sec. 3.3.5
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Context-sensitive correction
 Need surrounding context to catch this.
 Retrieve dictionary terms close (in weighted edit 

distance) to each query term
 Now try all possible resulting phrases with one word 

“corrected” at a time
 flew from Heathrow 
 fled form Heathrow
 flea form Heathrow

 Hit-based spelling correction: 
Suggest the alternative 
with most hits (in queries 
or documents)

Information Retrieval 40

Sec. 3.3.5

The hit-based paradigm is 
applied in many other 

places too!

The correct query “flew 
from Heathrow” has the 

most hits
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Another approach
 Break phrase queries into conjunctions of biwords.
 Look for biwords that need only one term corrected.
 E.g., “flew from”, “from Heathrow”, “flea form”

 Enumerate phrase matches and … rank them!

Information Retrieval 41

Sec. 3.3.5

More on 
this later
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General issues in spelling correction
 We enumerate multiple possible corrections for 

“Did you mean?”
but we need to decide which to present to the user

 Use heuristics
 The correction with most hits
 Query log analysis + tweaking

 For especially popular, topical queries

Information Retrieval 42

Sec. 3.3.5
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General issues in spelling correction
 Alternatively, we can automatically search for
 all possible corrections in our inverted index and return all 

docs … slow
 a single most likely correction

 The alternatives disempower the user, but may save 
a round of interaction with the user

 Spelling correction is computationally expensive
 Avoid running routinely on every query?
 Run only on queries that matched few docs

Information Retrieval 43

Sec. 3.3.5
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SOUNDEX

Information Retrieval 44
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Soundex
 Class of heuristics to expand a query into phonetic

equivalents
 Language specific – mainly for names
 E.g., chebyshev → tchebycheff

 Invented for the U.S. census … in 1918

 We’ll explore this just in the context of English

Information Retrieval 45

Sec. 3.4

Blanks on slides, you may want to fill in

To think about: what other languages 
does it make sense for?
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Soundex – typical algorithm
 Turn every token to be indexed into a 4-character 

reduced form
 Do the same with query terms
 Build and search an index on the reduced forms

(when the query calls for a Soundex match)

 See Wikipedia’s entry:
https://en.wikipedia.org/wiki/Soundex

Information Retrieval 46

Sec. 3.4

https://en.wikipedia.org/wiki/Soundex


CS3245 – Information Retrieval

Soundex – typical algorithm
1. Retain the first letter of the word. 
2. Change all occurrences of the following letters to '0' 

(zero):
'A', E', 'I', 'O', 'U', 'H', 'W', 'Y'. 

3. Change letters to digits as follows: 
 B, F, P, V → 1
 C, G, J, K, Q, S, X, Z → 2
 D,T → 3
 L → 4
 M, N → 5
 R → 6

Information Retrieval 47

Sec. 3.4
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Soundex continued
4. Repeatedly remove one out of each pair of 

consecutive identical digits
5. Remove all zeros from the resulting string.
6. Pad the resulting string with trailing zeros and 

return the first four positions, which will be of the 
form <uppercase letter> <digit> <digit> <digit>. 

E.g., Herman becomes H655.

Information Retrieval 48

Will hermann generate the same code?

Sec. 3.4
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Soundex
 Soundex is the classic algorithm, provided by most 

databases (Oracle, Microsoft, …)

How useful is Soundex?
 Not very – for general IR, spelling correction
 Okay for “high recall” tasks (e.g., Interpol), though 

biased to names of certain nationalities
 Sucks for Chinese names: Xin (Pinyin) and Hsin (Wade-

Giles) mapped completely different

Information Retrieval 49

Sec. 3.4
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Now what queries can we process?
 We have
 Positional inverted index with skip pointers
 Wildcard index
 Spelling correction
 Soundex

 Queries such as
(SPELL(moriset) /3 toron*to) OR SOUNDEX(chaikofski)

Information Retrieval 50



CS3245 – Information Retrieval

Summary
 Data Structures for the 

Dictionary
 Hash
 Trees

 Learning to be tolerant
1. Wildcards
 General Trees
 Permuterm
 Ngrams, redux

2. Spelling Correction
 Edit Distance
 Ngrams, re-redux

3. Phonetic – Soundex 

Information Retrieval 51
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Resources
 IIR 3, MG 4.2
 Efficient spelling retrieval:

 K. Kukich. Techniques for automatically correcting words in text. ACM 
Computing Surveys 24(4), Dec 1992.

 J. Zobel and P. Dart. Finding approximate matches in large 
lexicons. Software - practice and experience 25(3), March 1995. 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.3856&rep=rep1&type=p
df

 Mikael Tillenius: Efficient Generation and Ranking of Spelling Error 
Corrections. Master’s thesis at Sweden’s Royal Institute of Technology. 
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.1392

 Nice, easy reading on spelling correction:
 Peter Norvig: How to write a spelling corrector 
http://norvig.com/spell-correct.html

Information Retrieval 52

Sec. 3.5

It’s in 
python!

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.3856&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.1392
http://norvig.com/spell-correct.html
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