
Introduction to Information Retrieval

CS3245

Information Retrieval

Lecture 4: Dictionaries and Tolerant Retrieval4

CS3245 – Information Retrieval

Last Time: Postings lists and Choosing terms
 Faster merging of posting lists
 Skip pointers

 Handling of phrase and proximity queries
 Biword indexes for phrase queries
 Positional indexes for phrase/proximity queries

 Steps in choosing terms for the dictionary
 Text extraction
 Granularity of indexing
 Tokenization
 Stop word removal
 Normalization
 Lemmatization and stemming

Information Retrieval 2

Ch. 2

CS3245 – Information Retrieval

Today: the dictionary and
tolerant retrieval

 Dictionary data structures

 “Tolerant” retrieval
 Wild-card queries
 Spelling correction
 Soundex

Information Retrieval 3

Ch. 3

CS3245 – Information Retrieval

Dictionary data structures for
inverted indexes
 The dictionary data structure stores the term

vocabulary, document frequency, pointers to each
postings list … in what data structure?

Information Retrieval 4

Sec. 3.1

CS3245 – Information Retrieval

A naïve dictionary
 An array of struct:

char[20] int Postings Pointer

20 bytes 4/8 bytes 4/8 bytes

Information Retrieval 5

Sec. 3.1

Quick Q: What’s wrong with using
this data structure?

CS3245 – Information Retrieval

A naïve dictionary

char[20] int Postings Pointer

20 bytes 4/8 bytes 4/8 bytes

Words can only be 20 chars long. Waste of space for some words, not enough
for others.

 How do we store a dictionary in memory efficiently?

Most important: Slow to access, linear scan needed!
 How do we quickly look up elements at query time?

Information Retrieval 6

Sec. 3.1

CS3245 – Information Retrieval

Dictionary data structures
 Two main choices:
 Hash table
 Tree

 Some IR systems use hashes, some trees

Information Retrieval 7

Sec. 3.1

To think about: what issues influence the choice
between these two data structures? (Hint: see IIR)

CS3245 – Information Retrieval

Hash Table
Each vocabulary term is hashed to an integer
 Pros:
 Lookup is faster than for a tree: O(1)

 Cons:
 No easy way to find minor variants:

 judgment/judgement

 No prefix search
 If vocabulary keeps growing, need to occasionally do the

expensive operation of rehashing everything

Information Retrieval 8

Sec. 3.1

Not very tolerant!

CS3245 – Information Retrieval

Root
a-m n-z

a-hu hy-m n-sh si-z

Tree: binary tree

Information Retrieval 9

Sec. 3.1

CS3245 – Information Retrieval

Tree: B-tree

 Definition: Every internal nodel has a number of children
in the interval [a,b] where a, b are appropriate natural
numbers, e.g., [2,4].

Information Retrieval 10

a-hu

hy-m

n-z

Sec. 3.1

CS3245 – Information Retrieval

Trees
 Simplest: binary tree
 More common: B-trees
 Trees require a standard ordering of characters and hence

strings … but we have one: lexicographical ordering
 Pros:
 Solves the prefix problem (e.g., terms starting with “hyp”)

 Cons:
 Slower: O(log M) [and this requires a balanced tree]
 Rebalancing binary trees is expensive

 B-trees mitigate the rebalancing problem

Information Retrieval 11

Sec. 3.1

CS3245 – Information Retrieval

WILDCARD QUERIES

Information Retrieval 12

CS3245 – Information Retrieval

Wildcard queries: *

 mon*: find all docs containing any word beginning
“mon”.

 Easy with binary tree (or B-tree) lexicon: retrieve all
words in range: mon ≤ w < moo

 *mon: find words ending in “mon”: need help!
 Maintain an additional B-tree for terms reversed
Can retrieve all words in range: nom ≤ w < non.

Information Retrieval 13

Quick Q2: from this, how can we enumerate all terms
meeting the wildcard query pro*cent ?

Sec. 3.2

Quick Q1: why would someone use this feature?

CS3245 – Information Retrieval

Intersection, redux
Answer: Use the forward part for “pro*”, and the

backward part for “*cent”, then intersect them.

Information Retrieval 14

CS3245 – Information Retrieval

Handling general wildcard queries
 General wildcard queries: X*Y

 Look up X* in a normal B-tree AND *Y in a reverse B-
tree, and then intersect the two term sets
 Expensive

 The solution: transform wild-card queries so that the
*’s always occur at the end

 This gives rise to the Permuterm Index.
Information Retrieval 15

Sec. 3.2

CS3245 – Information Retrieval

Permuterm index
 For term hello, index under:
 hello$, ello$h, llohe, lohel, o$hell and $hello
where $ is a special symbol.

 Queries:
 X lookup on X$ X* lookup on $X*
 *X lookup on X$* *X* lookup on X*
 X*Y lookup on Y$X*

Information Retrieval 16

Sec. 3.2.1

Query = hel*o
X=hel, Y=o

Lookup o$hel*

Not so quick Q:
What about X*Y*Z?

CS3245 – Information Retrieval

Permuterm query processing
 Rotate query wild-card to the right
 Now use B-tree lookup as before

 Permuterm problem: lexicon size blows up,
proportional to average word length

Information Retrieval 17

Sec. 3.2.1

Is there any other solution?

CS3245 – Information Retrieval

Bigram (k-gram) index
 Enumerate all k-grams (sequence of k chars)

occurring in any term
 e.g., from text “April is the cruelest month” we get

the 2-grams (bigrams)

 As before “$” is a special word boundary symbol

 Maintain a second inverted index from bigrams to
dictionary terms that match each bigram.

Information Retrieval 18

a,ap,pr,ri,il,l,i,is,s,t,th,he,e,$c,cr,ru,
ue,el,le,es,st,t$,$m,mo,on,nt,h$

Sec. 3.2.2

CS3245 – Information Retrieval

Bigram index example
 The k-gram index finds terms based on a query

consisting of k-grams (here k=2).

Information Retrieval 19

mo

on

among

$m mace

among

amortize

madden

axon

Sec. 3.2.2

CS3245 – Information Retrieval

Bigram query processing
 Query mon* can now be run as
 $m AND mo AND on

 Gets terms that match AND version of our wildcard
query.

 Oops! We also included moon, a false positive!
 Must post-filter these terms against query.
 Surviving enumerated terms are then looked up in

the term-document inverted index.
 Fast, space efficient (compared to permuterm).

Information Retrieval 20

Sec. 3.2.2

CS3245 – Information Retrieval

Processing wildcard queries
 After getting the possible terms, we still need to

execute a Boolean query for each possible term.
 Wildcards can result in expensive query execution

(very large disjunctions…)
 pyth* AND prog*

 If you encourage laziness, people will respond!

Which web search engines allow wildcard queries?
Information Retrieval 21

Search
Type your search terms, use ‘*’ if you need to.
E.g., Alex* will match Alexander.

Sec. 3.2.2

CS3245 – Information Retrieval

SPELLING
CORRECTION

Information Retrieval 22

CS3245 – Information Retrieval

Spellling corektion
 Two principal uses:

1. Correcting document(s) being indexed
2. Correcting user queries to retrieve “right” answers

 Two main flavors:
 Isolated word

 Check each word on its own for misspelling
 Will not catch typos resulting in correctly spelled words

e.g., from → form

 Context-sensitive
 Look at surrounding words

e.g., I flew form Heathrow to Narita.
Information Retrieval 23

Sec. 3.3

CS3245 – Information Retrieval

Document correction
 Especially needed for OCR’ed documents
 Correction algorithms are tuned for common errors: rn/m
 Can use domain-specific knowledge

 E.g., OCR can confuse O and D more often than it would confuse O
and I (adjacent on the QWERTY keyboard, so more likely
interchanged in typing).

 But also: web pages and even printed material have
typos

 Goal: the dictionary contains fewer misspellings
 But often we don’t change the documents but aim to

fix the query-document mapping
Information Retrieval 24

Sec. 3.3

CS3245 – Information Retrieval

Query misspellings
 Our principal focus here
 E.g., the query Britiny Speares

 We can
 Return several suggested alternative queries with the

correct spelling
 “Did you mean … ?”

 Retrieve documents indexed by the correct spelling

Information Retrieval 25

Sec. 3.3

CS3245 – Information Retrieval

Isolated word correction
 Fundamental premise – there is a lexicon from which

the correct spellings come
 Two basic choices for this
 A standard lexicon such as

 Merriam-Webster’s English Dictionary
 A domain-specific lexicon – often hand-maintained

 The lexicon of the indexed corpus
 E.g., all words on the web
 All names, acronyms, etc. (including misspellings)

Information Retrieval 26

Sec. 3.3.2

CS3245 – Information Retrieval

Isolated word correction
 Given a lexicon and a character sequence Q, return

the words in the lexicon closest to Q
 How do we define “closest”?
 We’ll study several alternatives

1. Edit distance (Levenshtein distance)
2. Weighted edit distance
3. ngram overlap

Information Retrieval 27

Sec. 3.3.2

CS3245 – Information Retrieval

1. Edit distance
 Given two strings S1 and S2, the minimum number of

operations to convert one to the other
 Fundamentally related to the longest common

subsequence (LCS) problem you may already know

 Operations are typically character-level
 Insert, Delete, Replace, (Transposition)

 E.g., the edit distance from dof to dog is 1
 From cat to act is 2. (Just 1 with transpose)
 from cat to dog is 3.

 Generally found by dynamic programming
Information Retrieval 28

Sec. 3.3.3

CS3245 – Information Retrieval

Dynamic Programming
Not dynamic and not programming

 Build up solutions of “simpler” instances from small
to large
 Save results of solutions of “simpler” instances
 Use those solutions to solve larger problems

 Useful when problem can be solved using solution of
two or more instances that are only slightly simpler
than original instances

Information Retrieval

CS3245 – Information Retrieval

Computing Edit Distance
Let’s diagram this as an array, with

S1 (PAT) on the x-axis,
S2 (APT) on the y-axis.

Possible moves:
 Insert
 Delete
 Match or replace

Information Retrieval 30

_ P A T

_ 0 1 2 3

A 1 1 1 2

P 2 1 2 2

T 3 2 2 2

Store edit distance
between substrings S1(1,i)

and S2(1,j) at entry i,j

E(i, j) = min{ E(i, j-1) + 1, where m = 1 if Pi ≠Tj,
E(i-1, j) + 1, 0 otherwise
E(i-1, j-1) + m}

S1
S2

CS3245 – Information Retrieval

Practice your edit distance
_ C H I C K E N

_ 0 1 2 3 4 5 6 7
C 1 0 1 2 3 4 5 6
H 2 1 0 1 2 3 4 5
E 3 2 1 1 2 3 3 4
E 4 3 2 2 2 3 4 4
K 5 4 3 3 3 2 3 4
Y 6 5 4 4 4 3 3 4

Edit Distance: 4

Blanks on slides, you may want to fill in

Information Retrieval

CS3245 – Information Retrieval

Practice your edit distance
_ C H I C K E N

_ 0 1 2 3 4 5 6 7
C 1 0 1 2 3 4 5 6
H 2 1 0 1 2 3 4 5
E 3 2 1 1 ?

E
K
Y

Blanks on slides, you may want to fill in

Information Retrieval

CS3245 – Information Retrieval

2. Weighted edit distance
 As above, but the weight of an operation depends on

the character(s) involved
 Meant to capture OCR or keyboard errors, e.g. m more

likely to be mis-typed as n than as q
 Therefore, replacing m by n is a smaller edit distance than

by q
 This may be formulated as a probability model

 Requires a weighted matrix as input
 Modify dynamic programming to handle weights

Information Retrieval 33

Sec. 3.3.3

CS3245 – Information Retrieval

Edit distance to all dictionary terms?

 Given a (misspelled) query – do we compute its edit
distance to every dictionary term?
 Expensive and slow
 Alternative?

 How do we cut the set of candidate dictionary
terms?
 One possibility is to use ngram overlap for this
 This can also be used by itself for spelling correction

Information Retrieval 34

Sec. 3.3.4

CS3245 – Information Retrieval

3. Ngram overlap
 Enumerate all the ngrams in the query string as well

as in the lexicon
 Use the ngram index (recall wildcard search) to

retrieve all lexicon terms matching any of the query
ngrams

 Threshold by number of matching ngrams
 Variants – weight by keyboard layout, assume initial letter

correct, etc.

Information Retrieval 35

Sec. 3.3.4

Arocdnicg to rsceearch at Cmabrigde Uinervtisy, it deosn’t mttaer in waht oredr the ltteers in a wrod are, the olny iprmoatnt tihng is taht the
frist and lsat ltteer are in the rghit pcale. The rset can be a toatl mses and you can sitll raed it wouthit pobelrm. Tihs is buseace the huamn
mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe.

This story is actually an urban legend? No such study was done at Cambridge

CS3245 – Information Retrieval

Example with trigrams
 Suppose the text is november
 Trigrams are nov, ove, vem, emb, mbe, ber.

 The query is december
 Trigrams are dec, ece, cem, emb, mbe, ber.

 So 3 trigrams overlap (out of 6 in each term)

How can we turn this into a normalized measure of
overlap?

Information Retrieval 36

Sec. 3.3.4

CS3245 – Information Retrieval

One option – Jaccard coefficient
 A commonly-used measure of overlap
 Let X and Y be two sets; then the J.C. is

 Equals 1 when X and Y have the same
elements and zero when they are disjoint

 X and Y don’t have to be of the same size
 Always assigns a number between 0 and 1
 Now threshold to decide if you have a match
 E.g., if Jaccard > 0.8, declare a match

Information Retrieval 37

YXYX ∪∩ /

Sec. 3.3.4

A generally
useful overlap
measure, even
outside of IR

“coefficient de
communauté”

CS3245 – Information Retrieval

Matching trigrams
 Consider the query lord – we wish to identify words

matching 2 of its 3 bigrams (lo, or, rd)

Information Retrieval 38

lo

or

rd

alone lore sloth

lore morbid

border card

border

ardent

Standard postings “merge” enumerates hits

Adapt this to using Jaccard (or another) measure.

Sec. 3.3.4

CS3245 – Information Retrieval

Context-sensitive spelling correction
 Text: I flew from Heathrow to Narita.
 Consider the phrase query “flew form Heathrow”

 We’d like to respond
Did you mean “flew from Heathrow”?

because no docs matched the query phrase.

Information Retrieval 39

Sec. 3.3.5

CS3245 – Information Retrieval

Context-sensitive correction
 Need surrounding context to catch this.
 Retrieve dictionary terms close (in weighted edit

distance) to each query term
 Now try all possible resulting phrases with one word

“corrected” at a time
 flew from Heathrow
 fled form Heathrow
 flea form Heathrow

 Hit-based spelling correction:
Suggest the alternative
with most hits (in queries
or documents)

Information Retrieval 40

Sec. 3.3.5

The hit-based paradigm is
applied in many other

places too!

The correct query “flew
from Heathrow” has the

most hits

CS3245 – Information Retrieval

Another approach
 Break phrase queries into conjunctions of biwords.
 Look for biwords that need only one term corrected.
 E.g., “flew from”, “from Heathrow”, “flea form”

 Enumerate phrase matches and … rank them!

Information Retrieval 41

Sec. 3.3.5

More on
this later

CS3245 – Information Retrieval

General issues in spelling correction
 We enumerate multiple possible corrections for

“Did you mean?”
but we need to decide which to present to the user

 Use heuristics
 The correction with most hits
 Query log analysis + tweaking

 For especially popular, topical queries

Information Retrieval 42

Sec. 3.3.5

CS3245 – Information Retrieval

General issues in spelling correction
 Alternatively, we can automatically search for
 all possible corrections in our inverted index and return all

docs … slow
 a single most likely correction

 The alternatives disempower the user, but may save
a round of interaction with the user

 Spelling correction is computationally expensive
 Avoid running routinely on every query?
 Run only on queries that matched few docs

Information Retrieval 43

Sec. 3.3.5

CS3245 – Information Retrieval

SOUNDEX

Information Retrieval 44

CS3245 – Information Retrieval

Soundex
 Class of heuristics to expand a query into phonetic

equivalents
 Language specific – mainly for names
 E.g., chebyshev → tchebycheff

 Invented for the U.S. census … in 1918

 We’ll explore this just in the context of English

Information Retrieval 45

Sec. 3.4

Blanks on slides, you may want to fill in

To think about: what other languages
does it make sense for?

CS3245 – Information Retrieval

Soundex – typical algorithm
 Turn every token to be indexed into a 4-character

reduced form
 Do the same with query terms
 Build and search an index on the reduced forms

(when the query calls for a Soundex match)

 See Wikipedia’s entry:
https://en.wikipedia.org/wiki/Soundex

Information Retrieval 46

Sec. 3.4

https://en.wikipedia.org/wiki/Soundex

CS3245 – Information Retrieval

Soundex – typical algorithm
1. Retain the first letter of the word.
2. Change all occurrences of the following letters to '0'

(zero):
'A', E', 'I', 'O', 'U', 'H', 'W', 'Y'.

3. Change letters to digits as follows:
 B, F, P, V → 1
 C, G, J, K, Q, S, X, Z → 2
 D,T → 3
 L → 4
 M, N → 5
 R → 6

Information Retrieval 47

Sec. 3.4

CS3245 – Information Retrieval

Soundex continued
4. Repeatedly remove one out of each pair of

consecutive identical digits
5. Remove all zeros from the resulting string.
6. Pad the resulting string with trailing zeros and

return the first four positions, which will be of the
form <uppercase letter> <digit> <digit> <digit>.

E.g., Herman becomes H655.

Information Retrieval 48

Will hermann generate the same code?

Sec. 3.4

CS3245 – Information Retrieval

Soundex
 Soundex is the classic algorithm, provided by most

databases (Oracle, Microsoft, …)

How useful is Soundex?
 Not very – for general IR, spelling correction
 Okay for “high recall” tasks (e.g., Interpol), though

biased to names of certain nationalities
 Sucks for Chinese names: Xin (Pinyin) and Hsin (Wade-

Giles) mapped completely different

Information Retrieval 49

Sec. 3.4

CS3245 – Information Retrieval

Now what queries can we process?
 We have
 Positional inverted index with skip pointers
 Wildcard index
 Spelling correction
 Soundex

 Queries such as
(SPELL(moriset) /3 toron*to) OR SOUNDEX(chaikofski)

Information Retrieval 50

CS3245 – Information Retrieval

Summary
 Data Structures for the

Dictionary
 Hash
 Trees

 Learning to be tolerant
1. Wildcards
 General Trees
 Permuterm
 Ngrams, redux

2. Spelling Correction
 Edit Distance
 Ngrams, re-redux

3. Phonetic – Soundex

Information Retrieval 51

CS3245 – Information Retrieval

Resources
 IIR 3, MG 4.2
 Efficient spelling retrieval:

 K. Kukich. Techniques for automatically correcting words in text. ACM
Computing Surveys 24(4), Dec 1992.

 J. Zobel and P. Dart. Finding approximate matches in large
lexicons. Software - practice and experience 25(3), March 1995.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.3856&rep=rep1&type=p
df

 Mikael Tillenius: Efficient Generation and Ranking of Spelling Error
Corrections. Master’s thesis at Sweden’s Royal Institute of Technology.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.1392

 Nice, easy reading on spelling correction:
 Peter Norvig: How to write a spelling corrector
http://norvig.com/spell-correct.html

Information Retrieval 52

Sec. 3.5

It’s in
python!

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.3856&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.1392
http://norvig.com/spell-correct.html

	幻灯片编号 1
	Last Time: Postings lists and Choosing terms
	Today: the dictionary and �tolerant retrieval
	Dictionary data structures for �inverted indexes
	A naïve dictionary
	A naïve dictionary
	Dictionary data structures
	Hash Table
	Tree: binary tree
	Tree: B-tree
	Trees
	Wildcard queries
	Wildcard queries: *
	Intersection, redux
	Handling general wildcard queries
	Permuterm index
	Permuterm query processing
	Bigram (k-gram) index
	Bigram index example
	Bigram query processing
	Processing wildcard queries
	Spelling �correction
	Spellling corektion
	Document correction
	Query misspellings
	Isolated word correction
	Isolated word correction
	1. Edit distance
	Dynamic Programming
	Computing Edit Distance
	Practice your edit distance
	Practice your edit distance
	2. Weighted edit distance
	Edit distance to all dictionary terms?
	3. Ngram overlap
	Example with trigrams
	One option – Jaccard coefficient
	Matching trigrams
	Context-sensitive spelling correction
	Context-sensitive correction
	Another approach
	General issues in spelling correction
	General issues in spelling correction
	Soundex
	Soundex
	Soundex – typical algorithm
	Soundex – typical algorithm
	Soundex continued
	Soundex
	Now what queries can we process?
	Summary
	Resources

