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Last Time
 Dictionary data structures

 Tolerant retrieval
 Wildcards
 Spelling correction
 Soundex
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Today: Index construction
 How to make index construction scalable?

1.BSBI  (simple method)
2.SPIMI (more realistic)
3.Distributed Indexing

 How to handle changes to the index?
1.Dynamic Indexing

 Other indexing problems…

Ch. 4
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Hardware basics
Many design decisions in information retrieval are

based on the characteristics of hardware

Especially with respect to the bottleneck: 
Hard Drive Storage

 Seek Time – time to move to a random location
 Transfer Time – time to transfer a data block 

Sec. 4.1
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Hardware basics
 Access to data in memory is much faster than access 

to data on disk.
 Disk seeks: No data is transferred from disk while the 

disk head is being positioned.
 Therefore: Transferring one large chunk of data from 

disk to memory is faster than transferring many small 
chunks.

 Disk I/O is block-based: Reading and writing of entire 
blocks (as opposed to smaller chunks).

 Block sizes: 512 bytes to 8 KB (4KB typical)

Sec. 4.1
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Hardware basics
 Servers used in IR systems now typically have tens of 

GB of main memory. 
 Available disk space is several (2–3) orders of 

magnitude larger.

 Fault tolerance is very expensive: It’s much cheaper 
to use many regular machines rather than one fault 
tolerant machine.

Sec. 4.1
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Hardware assumptions
symbol statistic value
s average seek time 8 ms = 8 x 10−3 s
b transfer time per byte 0.006 μs = 6 x 10−9 s

processor’s clock rate 349 s−1 (Intel i7 6th gen)
p low-level operation 0.01 μs = 10−8 s

(e.g., compare & swap a word)

size of main memory 8 GB or more
size of disk space 1 TB or more

Sec. 4.1
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Hardware assumptions (Flash SSDs)
symbol statistic value
s average seek time .1 ms = 1 x 10−4 s
b transfer time per byte 0.002 μs = 2 x 10−9 s

Sec. 4.1
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100x faster seek, 
3x faster transfer time.

(But price 8x more per GB of storage)

WD 4 TB Black
S$ 311 (circa Jan 2016)

Samsung 850 Evo (1 TB)
S$ 630  (circa Jan 2016)

Seek and transfer 
time combined in 
another industry 
metric: IOPS

https://en.wikipedia.org/wiki/IOPS
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RCV1: Our collection for this lecture
 The successor to the Reuters-21578, which you used 

for your homework assignment.  Larger by 35 times.
 The collection we’ll use isn’t really large enough either, but 

it is publicly available and is a more plausible example.

 As an example for applying scalable index 
construction algorithms, we will use the Reuters 
RCV1 collection in lecture.

 This is one year of Reuters newswire 
(part of 1995 and 1996)

Sec. 4.2
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Reuters RCV1 statistics
symbol statistic value
N documents 800,000
L avg. # tokens per doc 200
M terms (= word types) 400,000

avg. # bytes per token 6
(incl. spaces/punct.)

avg. # bytes per token 4.5
(without spaces/punct.)

avg. # bytes per term 7.5
non-positional postings 100,000,000

4.5 bytes per 
word token 
vs. 7.5 bytes 
per term: 
why?

Sec. 4.2
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Where do all 
those extra 
terms come 
from if English 
vocabulary is 
only ~30K?
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Recap: Wk 2 index construction
 Documents are parsed to extract words, saved 

along with its Document ID.

I did enact Julius
Caesar I was killed 
i' the Capitol; 
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Sec. 4.2
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Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Key step

 After all documents have been 
parsed, the inverted file is 
sorted lexicographically, by its 
terms. 

We focus on this sort step.
We have 100M items to sort.

Sec. 4.2
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Scaling index construction
 In-memory index construction does not scale.
 How can we construct an index for very large 

collections?
 Taking into account the hardware constraints we just 

learned about . . .
 Memory, disk, speed, etc.

Sec. 4.2
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Sort-based index construction
 As we build the index, we parse docs one at a time.
 While building the index, we cannot easily exploit 

compression tricks  (you can, but more complex)

 The final postings for any term are incomplete until the end.
 At ~11.5 bytes per non-positional postings entry: ~7.5 bytes 

for term + 4 bytes for docID
 T = 100,000,000 in the case of RCV1
 So … we can do this easily in memory in 2016, but typical 

collections are much larger.  E.g. the New York Times 
provides an index of >150 years of newswire

 Thus, we need to store intermediate results on disk.

Sec. 4.2
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Re-using the same algorithm?
 Can we use the same index construction algorithm 

for larger collections, but by using disk space instead 
of memory?

 No: Sorting T = 100,000,000 records on disk is too 
slow – too many disk seeks.

 We need an external sorting algorithm.

Sec. 4.2
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Bottleneck
 Parse and build postings entries one doc at a time
 Now sort postings entries by term (then by doc 

within each term)
 Doing this with random disk seeks would be too slow 

– must sort T=100M records

Sec. 4.2
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BSBI: Blocked sort-based Indexing 
(Sorting with fewer disk seeks)
 8-byte (4+4) records (termID, docID).
 As terms are of variable length, create a dictionary to map 

terms to termIDs of 4 bytes.

 These are generated as we parse docs.
 Must now sort 100M 8-byte records by termID.
 Define a Block as ~ 10M such records
 Can easily fit a couple into memory.
 Will have 10 such blocks for our collection.

 Basic idea of algorithm:
 Accumulate postings for each block, sort, write to disk.
 Then merge the blocks into one long sorted order.

Sec. 4.2
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Bottleneck by 
complexity.

But in practice 
not the limiting 

factor.  Why?

Sec. 4.2
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Example of Merging in BSBI

Sec. 4.2

19Information Retrieval

(Note: For clarity purposes, 
the actual terms are shown 
instead of the termIDs.)
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Sorting 10 blocks of 10M records
 First, accumulate entries for a block, sort within and 

write to disk: 
 Quicksort takes N ln N expected steps
 In our case 10M ln 10M steps

 10 times this estimate – gives us 10 sorted runs of 
10M records each on disk.

Sec. 4.2
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How to merge the sorted runs?
 Can do binary merges, with a merge tree of log210 = 4 layers.
 During each layer, read into memory runs in blocks of 10M, 

merge, write back.

Disk

1

3 4

2
2

1

4

3

Runs being
merged

Merged run

Sec. 4.2
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How to merge the sorted runs?
Second method (better):
 It is more efficient to do a n-way merge, where you are 

reading from all blocks simultaneously
 Providing you read decent-sized chunks of each block into 

memory and then write out a decent-sized output chunk, 
then your efficiency isn't lost by disk seeks

Sec. 4.2
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Remaining problem with 
sort-based algorithm
 Our assumption was: we can keep the dictionary in 

memory.
 We need the dictionary (which grows dynamically) in 

order to keep the term to termID mapping.
 Actually, we could work with term, docID postings 

instead of termID, docID postings . . .
 . . . but then intermediate files become very large. 

(We would end up with a scalable, but very slow 
index construction method.)

Sec. 4.3
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SPIMI: 
Single-pass in-memory indexing

 Key idea 1: Generate separate dictionaries for each 
block – no need to maintain term-termID mapping 
across blocks.

 Key idea 2: Build the postings list in a single pass 
(Not at the end like BSBI, where a sort phase is 
needed).

 With these two ideas we can generate a complete inverted 
index for each block.

 These separate indices can then be merged into one big index.

Sec. 4.3
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SPIMI-Invert

 Merging of blocks is analogous to BSBI.

Sec. 4.3
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SPIMI: Compression
 Compression makes SPIMI even more efficient.
 Compression of terms
 Compression of postings

Sec. 4.3
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DISTRIBUTED
INDEXING

Information Retrieval 27



CS3245 – Information Retrieval

Distributed indexing
 For web-scale indexing (don’t try this at home!):

must use a distributed computing cluster

 Individual machines are fault-prone
Can unpredictably slow down or fail

How do we exploit such a pool of machines?

Sec. 4.4
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Google Data Centers
 Google data centers mainly contain 

commodity machines, and are 
distributed worldwide.

• One here in Jurong West (~200K 
servers back in 2011) 

• Must be fault tolerant.  Even with 
99.9+% uptime, there often will be one 
or more machines down in a data 
center.

• As of 2001, they have fit their entire 
web index in-memory (RAM; of course, 
spread over many machines)

Sec. 4.4
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https://www.youtube.com/watch?v=zRw
PSFpLX8I

http://www.gizmodo.com.au/2010/04/
googles-insane-number-of-servers-
visualised/

http://www.google.com/about/datacent
ers/inside/streetview/

http://www.straitstimes.com/business/
10-things-you-should-know-about-
google-data-centre-in-jurong

http://www.gizmodo.com.au/2010/04/googles-insane-number-of-servers-visualised/
http://www.gizmodo.com.au/2010/04/googles-insane-number-of-servers-visualised/
http://www.google.com/about/datacenters/inside/streetview/
http://www.straitstimes.com/business/10-things-you-should-know-about-google-data-centre-in-jurong
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Distributed indexing
 Maintain a master machine directing the indexing job 

– considered “safe”.
 Master nodes can fail too!

 Break up indexing into sets of (parallel) tasks.
 Master machine assigns each task to an idle worker

machine from a pool.

Sec. 4.4
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Index! Woof 
(ok)!
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Parallel tasks
 We will use two sets of parallel tasks
 Parsers
 Inverters

 Break the input document collection into splits
 Each split is a subset of documents (corresponding to 

blocks in BSBI/SPIMI)

Sec. 4.4
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Parsers
 Master assigns a split to an idle parser machine
 Parser reads a document at a time and emits (term, 

doc) pairs
 Parser writes pairs into j partitions
 Each partition is for a range of terms’ first letters
 (e.g., a-f, g-p, q-z) – here j = 3.
 (e.g., a-b, c-d, …, y-z) – here j = 13.

 Now to complete the index inversion

Sec. 4.4
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Inverters
 An inverter collects all (term,doc) pairs (= postings) 

for one term-partition.
 Sorts and writes to postings lists

Sec. 4.4
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Data flow

Information Retrieval 34

…

Master
Parsers

a-b c-d y-z…
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MapReduce
 The index construction algorithm we just described is 

an instance of MapReduce.
 MapReduce (Dean and Ghemawat 2004) is a robust 

and conceptually simple framework for distributed 
computing 
… without having to write code for the distribution 
part.

 They describe the Google indexing system (ca. 2002) 
as consisting of a number of phases, each 
implemented in MapReduce.

Sec. 4.4
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MapReduce
 Index construction was just one phase.
 Another phase: transforming a term-partitioned 

index into a document-partitioned index.
 Term-partitioned: one machine handles a subrange of 

terms
 Document-partitioned: one machine handles a subrange of 

documents

 Most search engines use a document-partitioned 
index … better load balancing and other properties

Sec. 4.4
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MapReduce schema for indexing
Schema of map and reduce functions
 map: input → list(k, v)     reduce: (k, list(v)) → output

Instantiation of the schema for index construction
 map: web collection → list(termID, docID)
 reduce: (<termID1, list(docID)>, <termID2, list(docID)>, …) → 

(postings list1, postings list2, …)

Sec. 4.4
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Example for index construction

 map: d1 : Caesar came, Caesar conquered. d2 : Caesar 
died. → (<Caesar, d2>, <died,d2>, <Caesar,d1>, <came,d1>, 
<Caesar,d1>, <conquered, d1>)

 reduce: (<Caesar,(d2,d1,d1)>, <died,(d2)>, <came,(d1)>, 
<conquered,(d1)>) →  (<Caesar,(d1:2,d2:1)>, <died,(d2:1)>, 
<came,(d1:1)>, <conquered,(d1:1)>)

Information Retrieval 38
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DYNAMIC
INDEXING

Information Retrieval 39
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Dynamic indexing
 Up to now, we have assumed that collections are 

static.
 In practice, they rarely are!
 Documents come in over time and need to be inserted.
 Documents are deleted and modified.

 This means that the dictionary and postings lists have 
to be modified:
 Postings updates for terms already in dictionary
 New terms added to dictionary

Sec. 4.5
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2nd simplest approach
 Maintain “big” main index
 New docs go into “small” (in memory) auxiliary index
 Search across both, merge results
 Deletions
 Invalidation bit-vector for deleted docs
 Filter docs output on a search result by this invalidation 

bit-vector

 Periodically, re-index into one main index
 Assuming T total # of postings and n as size of auxiliary 

index, we touch each posting up to floor(T/n) times.

Sec. 4.5
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Issues with main and auxiliary indexes
 Problem of frequent merges – modify lots of files, inefficient
 Poor performance during merge
 Actually:

 Merging of the auxiliary index into the main index is efficient if we 
keep a separate file for each postings list (for the main index).

 Then merge is the same as an append.
 But then we would need a lot of files – inefficient for O/S.

 We’ll deal with the index (postings-file) as one big file.
 In reality: Use a scheme somewhere in between (e.g., split 

very large postings lists, collect postings lists of length 1 in one 
file etc.)

Sec. 4.5
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Logarithmic merge
 Idea: maintain a series of indexes, each twice as large 

as the previous one.
 Keep smallest (Z0) in memory
 Larger ones (I0, I1, …) on disk
 If Z0 gets too big (> n), write to disk as I0

or merge with I0 (if I0 already exists) as Z1

 Either write merge Z1 to disk as I1 (if no I1)
Or merge with I1 to form Z2

… etc.

Sec. 4.5
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Logarithmic merge
 Now: Logarithmic merge: Each posting is merged O(log T) 

times, so complexity is O(T log T)
 Before: Auxiliary and main index: index construction time is 

a + 2a + 3a + 4a + . . . + na = a n(n+1)/2 ≈ O(T2), 
as each posting needs to be touched in each merge.

 So logarithmic merge is much more efficient for index 
construction

 But query processing now requires the merging of 
O(log T) indices
 Whereas it is O(1) if you just have a main and auxiliary index

Sec. 4.5
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Further issues with multiple indexes
 Collection-wide statistics are hard to maintain
 E.g., when we spoke of spelling correction:

Which of several corrected alternatives do we present to 
the user?

 We said: pick the one with the most hits

 How do we maintain the top ones with multiple 
indexes and invalidation bit vectors?
 One possibility: ignore everything but the main index for 

such ordering

 Will see more such statistics used in results ranking

Sec. 4.5
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Dynamic indexing at search engines
 All the large search engines now do dynamic 

indexing
 Their indices have frequent incremental changes
 News items, blogs, new topical web pages

 Zika, Donald Trump, Miley Cyrus,  …

 But (sometimes) they also periodically reconstruct 
the index from scratch
 Query processing is then switched to the new index, and 

the old index is then deleted

Sec. 4.5
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Other Indexing Problems
 Positional indexes
 Same sort of sorting problem … just larger

 Building character n-gram indices:
 As text is parsed, enumerate n-grams. 
 For each n-gram, need pointers to all dictionary terms 

containing it – the “postings”.
 User access rights
 In intranet search, certain users have privilege to see and 

search only certain documents
 Implement using access control list, intersect with search 

results, just like bit-vector invalidation for deletions
 Impacts collection level statistics

Why?

Sec. 4.5
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Summary
 Indexing
 Both basic as well as important variants

 BSBI – sort key values to merge, needs dictionary
 SPIMI – build mini indices and merge them, no dictionary

 Distributed
 Described MapReduce architecture – a good illustration of 

distributed computing

 Dynamic
 Tradeoff between querying and indexing complexity

Information Retrieval 50
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Resources for today’s lecture
 Chapter 4 of IIR
 MG Chapter 5
 Original publication on MapReduce: Dean and 

Ghemawat (2004)
 Original publication on SPIMI: Heinz and Zobel (2003)

Ch. 4

51Information Retrieval
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