
Introduction to Information Retrieval

CS3245

Information Retrieval

Lecture 5: Index Construction 5

CS3245 – Information Retrieval

Last Time
 Dictionary data structures

 Tolerant retrieval
 Wildcards
 Spelling correction
 Soundex

a-hu
hy-m

n-z

mo

on

among

$m mace

abandon

amortize

madden

among

2Information Retrieval

CS3245 – Information Retrieval

Today: Index construction
 How to make index construction scalable?

1.BSBI (simple method)
2.SPIMI (more realistic)
3.Distributed Indexing

 How to handle changes to the index?
1.Dynamic Indexing

 Other indexing problems…

Ch. 4

3Information Retrieval

CS3245 – Information Retrieval

Hardware basics
Many design decisions in information retrieval are

based on the characteristics of hardware

Especially with respect to the bottleneck:
Hard Drive Storage

 Seek Time – time to move to a random location
 Transfer Time – time to transfer a data block

Sec. 4.1

4Information Retrieval

CS3245 – Information Retrieval

Hardware basics
 Access to data in memory is much faster than access

to data on disk.
 Disk seeks: No data is transferred from disk while the

disk head is being positioned.
 Therefore: Transferring one large chunk of data from

disk to memory is faster than transferring many small
chunks.

 Disk I/O is block-based: Reading and writing of entire
blocks (as opposed to smaller chunks).

 Block sizes: 512 bytes to 8 KB (4KB typical)

Sec. 4.1

5Information Retrieval

CS3245 – Information Retrieval

Hardware basics
 Servers used in IR systems now typically have tens of

GB of main memory.
 Available disk space is several (2–3) orders of

magnitude larger.

 Fault tolerance is very expensive: It’s much cheaper
to use many regular machines rather than one fault
tolerant machine.

Sec. 4.1

6Information Retrieval

CS3245 – Information Retrieval

Hardware assumptions
symbol statistic value
s average seek time 8 ms = 8 x 10−3 s
b transfer time per byte 0.006 μs = 6 x 10−9 s

processor’s clock rate 349 s−1 (Intel i7 6th gen)
p low-level operation 0.01 μs = 10−8 s

(e.g., compare & swap a word)

size of main memory 8 GB or more
size of disk space 1 TB or more

Sec. 4.1

7Information Retrieval

Stats from a 2016 HP Z Z240
3.4GHz Black SFF i7-6700

CS3245 – Information Retrieval

Hardware assumptions (Flash SSDs)
symbol statistic value
s average seek time .1 ms = 1 x 10−4 s
b transfer time per byte 0.002 μs = 2 x 10−9 s

Sec. 4.1

8Information Retrieval

100x faster seek,
3x faster transfer time.

(But price 8x more per GB of storage)

WD 4 TB Black
S$ 311 (circa Jan 2016)

Samsung 850 Evo (1 TB)
S$ 630 (circa Jan 2016)

Seek and transfer
time combined in
another industry
metric: IOPS

https://en.wikipedia.org/wiki/IOPS

CS3245 – Information Retrieval

RCV1: Our collection for this lecture
 The successor to the Reuters-21578, which you used

for your homework assignment. Larger by 35 times.
 The collection we’ll use isn’t really large enough either, but

it is publicly available and is a more plausible example.

 As an example for applying scalable index
construction algorithms, we will use the Reuters
RCV1 collection in lecture.

 This is one year of Reuters newswire
(part of 1995 and 1996)

Sec. 4.2

9Information Retrieval

CS3245 – Information Retrieval

Reuters RCV1 statistics
symbol statistic value
N documents 800,000
L avg. # tokens per doc 200
M terms (= word types) 400,000

avg. # bytes per token 6
(incl. spaces/punct.)

avg. # bytes per token 4.5
(without spaces/punct.)

avg. # bytes per term 7.5
non-positional postings 100,000,000

4.5 bytes per
word token
vs. 7.5 bytes
per term:
why?

Sec. 4.2

10Information Retrieval

Where do all
those extra
terms come
from if English
vocabulary is
only ~30K?

CS3245 – Information Retrieval

Recap: Wk 2 index construction
 Documents are parsed to extract words, saved

along with its Document ID.

I did enact Julius
Caesar I was killed
i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Sec. 4.2

11Information Retrieval

slide 7

		Term		Doc #

		I		1

		did		1

		enact		1

		julius		1

		caesar		1

		I		1

		was		1

		killed		1

		i'		1

		the		1

		capitol		1

		brutus		1

		killed		1

		me		1

		so		2

		let		2

		it		2

		be		2

		with		2

		caesar		2

		the		2

		noble		2

		brutus		2

		hath		2

		told		2

		you		2

		caesar		2

		was		2

		ambitious		2

CS3245 – Information Retrieval

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Key step

 After all documents have been
parsed, the inverted file is
sorted lexicographically, by its
terms.

We focus on this sort step.
We have 100M items to sort.

Sec. 4.2

12Information Retrieval

slide 8.1

		Term		Doc #

		I		1

		did		1

		enact		1

		julius		1

		caesar		1

		I		1

		was		1

		killed		1

		i'		1

		the		1

		capitol		1

		brutus		1

		killed		1

		me		1

		so		2

		let		2

		it		2

		be		2

		with		2

		caesar		2

		the		2

		noble		2

		brutus		2

		hath		2

		told		2

		you		2

		caesar		2

		was		2

		ambitious		2

Sheet2

		

Sheet3

		

slide 8.1

		Term		Doc #

		I		1

		did		1

		enact		1

		julius		1

		caesar		1

		I		1

		was		1

		killed		1

		i'		1

		the		1

		capitol		1

		brutus		1

		killed		1

		me		1

		so		1

		let		1

		it		2

		be		2

		with		2

		caesar		2

		the		2

		noble		2

		brutus		2

		hath		2

		told		2

		you		2

		caesar		2

		was		2

		ambitious		2

slide 8.2

		Term		Doc #

		ambitious		2

		be		2

		brutus		1

		brutus		2

		capitol		1

		caesar		1

		caesar		2

		caesar		2

		did		1

		enact		1

		hath		1

		I		1

		I		1

		i'		1

		it		2

		julius		1

		killed		1

		killed		1

		let		2

		me		1

		noble		2

		so		2

		the		1

		the		2

		told		2

		you		2

		was		1

		was		2

		with		2

CS3245 – Information Retrieval

Scaling index construction
 In-memory index construction does not scale.
 How can we construct an index for very large

collections?
 Taking into account the hardware constraints we just

learned about . . .
 Memory, disk, speed, etc.

Sec. 4.2

13Information Retrieval

CS3245 – Information Retrieval

Sort-based index construction
 As we build the index, we parse docs one at a time.
 While building the index, we cannot easily exploit

compression tricks (you can, but more complex)

 The final postings for any term are incomplete until the end.
 At ~11.5 bytes per non-positional postings entry: ~7.5 bytes

for term + 4 bytes for docID
 T = 100,000,000 in the case of RCV1
 So … we can do this easily in memory in 2016, but typical

collections are much larger. E.g. the New York Times
provides an index of >150 years of newswire

 Thus, we need to store intermediate results on disk.

Sec. 4.2

14Information Retrieval

CS3245 – Information Retrieval

Re-using the same algorithm?
 Can we use the same index construction algorithm

for larger collections, but by using disk space instead
of memory?

 No: Sorting T = 100,000,000 records on disk is too
slow – too many disk seeks.

 We need an external sorting algorithm.

Sec. 4.2

15Information Retrieval

Blanks on slides, you may want to fill in

CS3245 – Information Retrieval

Bottleneck
 Parse and build postings entries one doc at a time
 Now sort postings entries by term (then by doc

within each term)
 Doing this with random disk seeks would be too slow

– must sort T=100M records

Sec. 4.2

16Information Retrieval

CS3245 – Information Retrieval

BSBI: Blocked sort-based Indexing
(Sorting with fewer disk seeks)
 8-byte (4+4) records (termID, docID).
 As terms are of variable length, create a dictionary to map

terms to termIDs of 4 bytes.

 These are generated as we parse docs.
 Must now sort 100M 8-byte records by termID.
 Define a Block as ~ 10M such records
 Can easily fit a couple into memory.
 Will have 10 such blocks for our collection.

 Basic idea of algorithm:
 Accumulate postings for each block, sort, write to disk.
 Then merge the blocks into one long sorted order.

Sec. 4.2

17Information Retrieval

CS3245 – Information Retrieval

Bottleneck by
complexity.

But in practice
not the limiting

factor. Why?

Sec. 4.2

18Information Retrieval

Blanks on slides, you may want to fill in

CS3245 – Information Retrieval

Example of Merging in BSBI

Sec. 4.2

19Information Retrieval

(Note: For clarity purposes,
the actual terms are shown
instead of the termIDs.)

CS3245 – Information Retrieval

Sorting 10 blocks of 10M records
 First, accumulate entries for a block, sort within and

write to disk:
 Quicksort takes N ln N expected steps
 In our case 10M ln 10M steps

 10 times this estimate – gives us 10 sorted runs of
10M records each on disk.

Sec. 4.2

20Information Retrieval

CS3245 – Information Retrieval

How to merge the sorted runs?
 Can do binary merges, with a merge tree of log210 = 4 layers.
 During each layer, read into memory runs in blocks of 10M,

merge, write back.

Disk

1

3 4

2
2

1

4

3

Runs being
merged

Merged run

Sec. 4.2

21Information Retrieval

CS3245 – Information Retrieval

How to merge the sorted runs?
Second method (better):
 It is more efficient to do a n-way merge, where you are

reading from all blocks simultaneously
 Providing you read decent-sized chunks of each block into

memory and then write out a decent-sized output chunk,
then your efficiency isn't lost by disk seeks

Sec. 4.2

22Information Retrieval

Disk

… … … ……
In

memory
readers

…

In
memory

writer

CS3245 – Information Retrieval

Remaining problem with
sort-based algorithm
 Our assumption was: we can keep the dictionary in

memory.
 We need the dictionary (which grows dynamically) in

order to keep the term to termID mapping.
 Actually, we could work with term, docID postings

instead of termID, docID postings . . .
 . . . but then intermediate files become very large.

(We would end up with a scalable, but very slow
index construction method.)

Sec. 4.3

23Information Retrieval

CS3245 – Information Retrieval

SPIMI:
Single-pass in-memory indexing

 Key idea 1: Generate separate dictionaries for each
block – no need to maintain term-termID mapping
across blocks.

 Key idea 2: Build the postings list in a single pass
(Not at the end like BSBI, where a sort phase is
needed).

 With these two ideas we can generate a complete inverted
index for each block.

 These separate indices can then be merged into one big index.

Sec. 4.3

24Information Retrieval

CS3245 – Information Retrieval

SPIMI-Invert

 Merging of blocks is analogous to BSBI.

Sec. 4.3

25Information Retrieval

Blanks on slides, you may want to fill in

CS3245 – Information Retrieval

SPIMI: Compression
 Compression makes SPIMI even more efficient.
 Compression of terms
 Compression of postings

Sec. 4.3

26Information Retrieval

CS3245 – Information Retrieval

DISTRIBUTED
INDEXING

Information Retrieval 27

CS3245 – Information Retrieval

Distributed indexing
 For web-scale indexing (don’t try this at home!):

must use a distributed computing cluster

 Individual machines are fault-prone
Can unpredictably slow down or fail

How do we exploit such a pool of machines?

Sec. 4.4

28Information Retrieval

CS3245 – Information Retrieval

Google Data Centers
 Google data centers mainly contain

commodity machines, and are
distributed worldwide.

• One here in Jurong West (~200K
servers back in 2011)

• Must be fault tolerant. Even with
99.9+% uptime, there often will be one
or more machines down in a data
center.

• As of 2001, they have fit their entire
web index in-memory (RAM; of course,
spread over many machines)

Sec. 4.4

29Information Retrieval

https://www.youtube.com/watch?v=zRw
PSFpLX8I

http://www.gizmodo.com.au/2010/04/
googles-insane-number-of-servers-
visualised/

http://www.google.com/about/datacent
ers/inside/streetview/

http://www.straitstimes.com/business/
10-things-you-should-know-about-
google-data-centre-in-jurong

http://www.gizmodo.com.au/2010/04/googles-insane-number-of-servers-visualised/
http://www.gizmodo.com.au/2010/04/googles-insane-number-of-servers-visualised/
http://www.google.com/about/datacenters/inside/streetview/
http://www.straitstimes.com/business/10-things-you-should-know-about-google-data-centre-in-jurong

CS3245 – Information Retrieval

Distributed indexing
 Maintain a master machine directing the indexing job

– considered “safe”.
 Master nodes can fail too!

 Break up indexing into sets of (parallel) tasks.
 Master machine assigns each task to an idle worker

machine from a pool.

Sec. 4.4

30Information Retrieval

Index! Woof
(ok)!

CS3245 – Information Retrieval

Parallel tasks
 We will use two sets of parallel tasks
 Parsers
 Inverters

 Break the input document collection into splits
 Each split is a subset of documents (corresponding to

blocks in BSBI/SPIMI)

Sec. 4.4

31Information Retrieval

CS3245 – Information Retrieval

Parsers
 Master assigns a split to an idle parser machine
 Parser reads a document at a time and emits (term,

doc) pairs
 Parser writes pairs into j partitions
 Each partition is for a range of terms’ first letters
 (e.g., a-f, g-p, q-z) – here j = 3.
 (e.g., a-b, c-d, …, y-z) – here j = 13.

 Now to complete the index inversion

Sec. 4.4

32Information Retrieval

CS3245 – Information Retrieval

Inverters
 An inverter collects all (term,doc) pairs (= postings)

for one term-partition.
 Sorts and writes to postings lists

Sec. 4.4

33Information Retrieval

CS3245 – Information Retrieval

Data flow

Information Retrieval 34

…

Master
Parsers

a-b c-d y-z…

a-b c-d y-z…

a-b c-d y-z…

Inverters

Map phase Reduce phaseSegment files

a-b

c-d

y-z

Postings

…
 s

h
u
ff

le
 …

CS3245 – Information Retrieval

MapReduce
 The index construction algorithm we just described is

an instance of MapReduce.
 MapReduce (Dean and Ghemawat 2004) is a robust

and conceptually simple framework for distributed
computing
… without having to write code for the distribution
part.

 They describe the Google indexing system (ca. 2002)
as consisting of a number of phases, each
implemented in MapReduce.

Sec. 4.4

35Information Retrieval

CS3245 – Information Retrieval

MapReduce
 Index construction was just one phase.
 Another phase: transforming a term-partitioned

index into a document-partitioned index.
 Term-partitioned: one machine handles a subrange of

terms
 Document-partitioned: one machine handles a subrange of

documents

 Most search engines use a document-partitioned
index … better load balancing and other properties

Sec. 4.4

36Information Retrieval

CS3245 – Information Retrieval

MapReduce schema for indexing
Schema of map and reduce functions
 map: input → list(k, v) reduce: (k, list(v)) → output

Instantiation of the schema for index construction
 map: web collection → list(termID, docID)
 reduce: (<termID1, list(docID)>, <termID2, list(docID)>, …) →

(postings list1, postings list2, …)

Sec. 4.4

37Information Retrieval

CS3245 – Information Retrieval

Example for index construction

 map: d1 : Caesar came, Caesar conquered. d2 : Caesar
died. → (<Caesar, d2>, <died,d2>, <Caesar,d1>, <came,d1>,
<Caesar,d1>, <conquered, d1>)

 reduce: (<Caesar,(d2,d1,d1)>, <died,(d2)>, <came,(d1)>,
<conquered,(d1)>) → (<Caesar,(d1:2,d2:1)>, <died,(d2:1)>,
<came,(d1:1)>, <conquered,(d1:1)>)

Information Retrieval 38

CS3245 – Information Retrieval

DYNAMIC
INDEXING

Information Retrieval 39

CS3245 – Information Retrieval

Dynamic indexing
 Up to now, we have assumed that collections are

static.
 In practice, they rarely are!
 Documents come in over time and need to be inserted.
 Documents are deleted and modified.

 This means that the dictionary and postings lists have
to be modified:
 Postings updates for terms already in dictionary
 New terms added to dictionary

Sec. 4.5

40Information Retrieval

CS3245 – Information Retrieval

2nd simplest approach
 Maintain “big” main index
 New docs go into “small” (in memory) auxiliary index
 Search across both, merge results
 Deletions
 Invalidation bit-vector for deleted docs
 Filter docs output on a search result by this invalidation

bit-vector

 Periodically, re-index into one main index
 Assuming T total # of postings and n as size of auxiliary

index, we touch each posting up to floor(T/n) times.

Sec. 4.5

41Information Retrieval

CS3245 – Information Retrieval

Issues with main and auxiliary indexes
 Problem of frequent merges – modify lots of files, inefficient
 Poor performance during merge
 Actually:

 Merging of the auxiliary index into the main index is efficient if we
keep a separate file for each postings list (for the main index).

 Then merge is the same as an append.
 But then we would need a lot of files – inefficient for O/S.

 We’ll deal with the index (postings-file) as one big file.
 In reality: Use a scheme somewhere in between (e.g., split

very large postings lists, collect postings lists of length 1 in one
file etc.)

Sec. 4.5

42Information Retrieval

CS3245 – Information Retrieval

Logarithmic merge
 Idea: maintain a series of indexes, each twice as large

as the previous one.
 Keep smallest (Z0) in memory
 Larger ones (I0, I1, …) on disk
 If Z0 gets too big (> n), write to disk as I0

or merge with I0 (if I0 already exists) as Z1

 Either write merge Z1 to disk as I1 (if no I1)
Or merge with I1 to form Z2

… etc.

Sec. 4.5

43Information Retrieval

Lo
o
p

 f
o
r

lo
g
 l
ev

el
s

CS3245 – Information Retrieval Sec. 4.5

44Information Retrieval

CS3245 – Information Retrieval

Logarithmic merge
 Now: Logarithmic merge: Each posting is merged O(log T)

times, so complexity is O(T log T)
 Before: Auxiliary and main index: index construction time is

a + 2a + 3a + 4a + . . . + na = a n(n+1)/2 ≈ O(T2),
as each posting needs to be touched in each merge.

 So logarithmic merge is much more efficient for index
construction

 But query processing now requires the merging of
O(log T) indices
 Whereas it is O(1) if you just have a main and auxiliary index

Sec. 4.5

45Information Retrieval

CS3245 – Information Retrieval

Further issues with multiple indexes
 Collection-wide statistics are hard to maintain
 E.g., when we spoke of spelling correction:

Which of several corrected alternatives do we present to
the user?

 We said: pick the one with the most hits

 How do we maintain the top ones with multiple
indexes and invalidation bit vectors?
 One possibility: ignore everything but the main index for

such ordering

 Will see more such statistics used in results ranking

Sec. 4.5

46Information Retrieval

CS3245 – Information Retrieval

Dynamic indexing at search engines
 All the large search engines now do dynamic

indexing
 Their indices have frequent incremental changes
 News items, blogs, new topical web pages

 Zika, Donald Trump, Miley Cyrus, …

 But (sometimes) they also periodically reconstruct
the index from scratch
 Query processing is then switched to the new index, and

the old index is then deleted

Sec. 4.5

47Information Retrieval

CS3245 – Information Retrieval Sec. 4.5

48Information Retrieval

CS3245 – Information Retrieval

Other Indexing Problems
 Positional indexes
 Same sort of sorting problem … just larger

 Building character n-gram indices:
 As text is parsed, enumerate n-grams.
 For each n-gram, need pointers to all dictionary terms

containing it – the “postings”.
 User access rights
 In intranet search, certain users have privilege to see and

search only certain documents
 Implement using access control list, intersect with search

results, just like bit-vector invalidation for deletions
 Impacts collection level statistics

Why?

Sec. 4.5

49Information Retrieval

CS3245 – Information Retrieval

Summary
 Indexing
 Both basic as well as important variants

 BSBI – sort key values to merge, needs dictionary
 SPIMI – build mini indices and merge them, no dictionary

 Distributed
 Described MapReduce architecture – a good illustration of

distributed computing

 Dynamic
 Tradeoff between querying and indexing complexity

Information Retrieval 50

CS3245 – Information Retrieval

Resources for today’s lecture
 Chapter 4 of IIR
 MG Chapter 5
 Original publication on MapReduce: Dean and

Ghemawat (2004)
 Original publication on SPIMI: Heinz and Zobel (2003)

Ch. 4

51Information Retrieval

	Slide Number 1
	Last Time
	Today: Index construction
	Hardware basics
	Hardware basics
	Hardware basics
	Hardware assumptions
	Hardware assumptions (Flash SSDs)
	RCV1: Our collection for this lecture
	Reuters RCV1 statistics
	Recap: Wk 2 index construction
	 Key step
	Scaling index construction
	Sort-based index construction
	Re-using the same algorithm?
	Bottleneck
	BSBI: Blocked sort-based Indexing (Sorting with fewer disk seeks)
	Slide Number 18
	Example of Merging in BSBI
	Sorting 10 blocks of 10M records
	How to merge the sorted runs?
	How to merge the sorted runs?
	Remaining problem with �sort-based algorithm
	SPIMI: �Single-pass in-memory indexing
	�SPIMI-Invert
	SPIMI: Compression
	Distributed�Indexing
	Distributed indexing
	Google Data Centers
	Distributed indexing
	Parallel tasks
	Parsers
	Inverters
	Data flow
	MapReduce
	MapReduce
	MapReduce schema for indexing
	Example for index construction
	Dynamic�Indexing
	Dynamic indexing
	2nd simplest approach
	Issues with main and auxiliary indexes
	Logarithmic merge
	Slide Number 44
	Logarithmic merge
	Further issues with multiple indexes
	Dynamic indexing at search engines
	Slide Number 48
	Other Indexing Problems
	Summary
	Resources for today’s lecture

