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Today: Index construction
 How to make index construction scalable?

1.BSBI  (simple method)
2.SPIMI (more realistic)
3.Distributed Indexing

 How to handle changes to the index?
1.Dynamic Indexing

 Other indexing problems…

Ch. 4
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Hardware basics
Many design decisions in information retrieval are

based on the characteristics of hardware

Especially with respect to the bottleneck: 
Hard Drive Storage

 Seek Time – time to move to a random location
 Transfer Time – time to transfer a data block 

Sec. 4.1
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Hardware basics
 Access to data in memory is much faster than access 

to data on disk.
 Disk seeks: No data is transferred from disk while the 

disk head is being positioned.
 Therefore: Transferring one large chunk of data from 

disk to memory is faster than transferring many small 
chunks.

 Disk I/O is block-based: Reading and writing of entire 
blocks (as opposed to smaller chunks).

 Block sizes: 512 bytes to 8 KB (4KB typical)

Sec. 4.1
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Hardware basics
 Servers used in IR systems now typically have tens of 

GB of main memory. 
 Available disk space is several (2–3) orders of 

magnitude larger.

 Fault tolerance is very expensive: It’s much cheaper 
to use many regular machines rather than one fault 
tolerant machine.

Sec. 4.1
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Hardware assumptions
symbol statistic value
s average seek time 8 ms = 8 x 10−3 s
b transfer time per byte 0.006 μs = 6 x 10−9 s

processor’s clock rate 349 s−1 (Intel i7 6th gen)
p low-level operation 0.01 μs = 10−8 s

(e.g., compare & swap a word)

size of main memory 8 GB or more
size of disk space 1 TB or more

Sec. 4.1
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Hardware assumptions (Flash SSDs)
symbol statistic value
s average seek time .1 ms = 1 x 10−4 s
b transfer time per byte 0.002 μs = 2 x 10−9 s

Sec. 4.1
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100x faster seek, 
3x faster transfer time.

(But price 8x more per GB of storage)

WD 4 TB Black
S$ 311 (circa Jan 2016)

Samsung 850 Evo (1 TB)
S$ 630  (circa Jan 2016)

Seek and transfer 
time combined in 
another industry 
metric: IOPS

https://en.wikipedia.org/wiki/IOPS
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RCV1: Our collection for this lecture
 The successor to the Reuters-21578, which you used 

for your homework assignment.  Larger by 35 times.
 The collection we’ll use isn’t really large enough either, but 

it is publicly available and is a more plausible example.

 As an example for applying scalable index 
construction algorithms, we will use the Reuters 
RCV1 collection in lecture.

 This is one year of Reuters newswire 
(part of 1995 and 1996)

Sec. 4.2
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Reuters RCV1 statistics
symbol statistic value
N documents 800,000
L avg. # tokens per doc 200
M terms (= word types) 400,000

avg. # bytes per token 6
(incl. spaces/punct.)

avg. # bytes per token 4.5
(without spaces/punct.)

avg. # bytes per term 7.5
non-positional postings 100,000,000

4.5 bytes per 
word token 
vs. 7.5 bytes 
per term: 
why?

Sec. 4.2
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Where do all 
those extra 
terms come 
from if English 
vocabulary is 
only ~30K?
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Recap: Wk 2 index construction
 Documents are parsed to extract words, saved 

along with its Document ID.

I did enact Julius
Caesar I was killed 
i' the Capitol; 
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Sec. 4.2
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Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Key step

 After all documents have been 
parsed, the inverted file is 
sorted lexicographically, by its 
terms. 

We focus on this sort step.
We have 100M items to sort.

Sec. 4.2
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Scaling index construction
 In-memory index construction does not scale.
 How can we construct an index for very large 

collections?
 Taking into account the hardware constraints we just 

learned about . . .
 Memory, disk, speed, etc.

Sec. 4.2
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Sort-based index construction
 As we build the index, we parse docs one at a time.
 While building the index, we cannot easily exploit 

compression tricks  (you can, but more complex)

 The final postings for any term are incomplete until the end.
 At ~11.5 bytes per non-positional postings entry: ~7.5 bytes 

for term + 4 bytes for docID
 T = 100,000,000 in the case of RCV1
 So … we can do this easily in memory in 2016, but typical 

collections are much larger.  E.g. the New York Times 
provides an index of >150 years of newswire

 Thus, we need to store intermediate results on disk.

Sec. 4.2
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CS3245 – Information Retrieval

Re-using the same algorithm?
 Can we use the same index construction algorithm 

for larger collections, but by using disk space instead 
of memory?

 No: Sorting T = 100,000,000 records on disk is too 
slow – too many disk seeks.

 We need an external sorting algorithm.

Sec. 4.2
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Bottleneck
 Parse and build postings entries one doc at a time
 Now sort postings entries by term (then by doc 

within each term)
 Doing this with random disk seeks would be too slow 

– must sort T=100M records

Sec. 4.2
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BSBI: Blocked sort-based Indexing 
(Sorting with fewer disk seeks)
 8-byte (4+4) records (termID, docID).
 As terms are of variable length, create a dictionary to map 

terms to termIDs of 4 bytes.

 These are generated as we parse docs.
 Must now sort 100M 8-byte records by termID.
 Define a Block as ~ 10M such records
 Can easily fit a couple into memory.
 Will have 10 such blocks for our collection.

 Basic idea of algorithm:
 Accumulate postings for each block, sort, write to disk.
 Then merge the blocks into one long sorted order.

Sec. 4.2
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Bottleneck by 
complexity.

But in practice 
not the limiting 

factor.  Why?

Sec. 4.2
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Example of Merging in BSBI

Sec. 4.2

19Information Retrieval

(Note: For clarity purposes, 
the actual terms are shown 
instead of the termIDs.)
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Sorting 10 blocks of 10M records
 First, accumulate entries for a block, sort within and 

write to disk: 
 Quicksort takes N ln N expected steps
 In our case 10M ln 10M steps

 10 times this estimate – gives us 10 sorted runs of 
10M records each on disk.

Sec. 4.2
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How to merge the sorted runs?
 Can do binary merges, with a merge tree of log210 = 4 layers.
 During each layer, read into memory runs in blocks of 10M, 

merge, write back.

Disk

1

3 4

2
2

1

4

3

Runs being
merged

Merged run

Sec. 4.2
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How to merge the sorted runs?
Second method (better):
 It is more efficient to do a n-way merge, where you are 

reading from all blocks simultaneously
 Providing you read decent-sized chunks of each block into 

memory and then write out a decent-sized output chunk, 
then your efficiency isn't lost by disk seeks

Sec. 4.2
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Remaining problem with 
sort-based algorithm
 Our assumption was: we can keep the dictionary in 

memory.
 We need the dictionary (which grows dynamically) in 

order to keep the term to termID mapping.
 Actually, we could work with term, docID postings 

instead of termID, docID postings . . .
 . . . but then intermediate files become very large. 

(We would end up with a scalable, but very slow 
index construction method.)

Sec. 4.3
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SPIMI: 
Single-pass in-memory indexing

 Key idea 1: Generate separate dictionaries for each 
block – no need to maintain term-termID mapping 
across blocks.

 Key idea 2: Build the postings list in a single pass 
(Not at the end like BSBI, where a sort phase is 
needed).

 With these two ideas we can generate a complete inverted 
index for each block.

 These separate indices can then be merged into one big index.

Sec. 4.3
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SPIMI-Invert

 Merging of blocks is analogous to BSBI.

Sec. 4.3
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Blanks on slides, you may want to fill in
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SPIMI: Compression
 Compression makes SPIMI even more efficient.
 Compression of terms
 Compression of postings

Sec. 4.3
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DISTRIBUTED
INDEXING

Information Retrieval 27
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Distributed indexing
 For web-scale indexing (don’t try this at home!):

must use a distributed computing cluster

 Individual machines are fault-prone
Can unpredictably slow down or fail

How do we exploit such a pool of machines?

Sec. 4.4
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Google Data Centers
 Google data centers mainly contain 

commodity machines, and are 
distributed worldwide.

• One here in Jurong West (~200K 
servers back in 2011) 

• Must be fault tolerant.  Even with 
99.9+% uptime, there often will be one 
or more machines down in a data 
center.

• As of 2001, they have fit their entire 
web index in-memory (RAM; of course, 
spread over many machines)

Sec. 4.4
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https://www.youtube.com/watch?v=zRw
PSFpLX8I

http://www.gizmodo.com.au/2010/04/
googles-insane-number-of-servers-
visualised/

http://www.google.com/about/datacent
ers/inside/streetview/

http://www.straitstimes.com/business/
10-things-you-should-know-about-
google-data-centre-in-jurong

http://www.gizmodo.com.au/2010/04/googles-insane-number-of-servers-visualised/
http://www.gizmodo.com.au/2010/04/googles-insane-number-of-servers-visualised/
http://www.google.com/about/datacenters/inside/streetview/
http://www.straitstimes.com/business/10-things-you-should-know-about-google-data-centre-in-jurong
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Distributed indexing
 Maintain a master machine directing the indexing job 

– considered “safe”.
 Master nodes can fail too!

 Break up indexing into sets of (parallel) tasks.
 Master machine assigns each task to an idle worker

machine from a pool.

Sec. 4.4

30Information Retrieval

Index! Woof 
(ok)!
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Parallel tasks
 We will use two sets of parallel tasks
 Parsers
 Inverters

 Break the input document collection into splits
 Each split is a subset of documents (corresponding to 

blocks in BSBI/SPIMI)

Sec. 4.4
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Parsers
 Master assigns a split to an idle parser machine
 Parser reads a document at a time and emits (term, 

doc) pairs
 Parser writes pairs into j partitions
 Each partition is for a range of terms’ first letters
 (e.g., a-f, g-p, q-z) – here j = 3.
 (e.g., a-b, c-d, …, y-z) – here j = 13.

 Now to complete the index inversion

Sec. 4.4
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Inverters
 An inverter collects all (term,doc) pairs (= postings) 

for one term-partition.
 Sorts and writes to postings lists

Sec. 4.4
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Data flow

Information Retrieval 34

…

Master
Parsers

a-b c-d y-z…

a-b c-d y-z…

a-b c-d y-z…

Inverters

Map phase Reduce phaseSegment files
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MapReduce
 The index construction algorithm we just described is 

an instance of MapReduce.
 MapReduce (Dean and Ghemawat 2004) is a robust 

and conceptually simple framework for distributed 
computing 
… without having to write code for the distribution 
part.

 They describe the Google indexing system (ca. 2002) 
as consisting of a number of phases, each 
implemented in MapReduce.

Sec. 4.4
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MapReduce
 Index construction was just one phase.
 Another phase: transforming a term-partitioned 

index into a document-partitioned index.
 Term-partitioned: one machine handles a subrange of 

terms
 Document-partitioned: one machine handles a subrange of 

documents

 Most search engines use a document-partitioned 
index … better load balancing and other properties

Sec. 4.4
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MapReduce schema for indexing
Schema of map and reduce functions
 map: input → list(k, v)     reduce: (k, list(v)) → output

Instantiation of the schema for index construction
 map: web collection → list(termID, docID)
 reduce: (<termID1, list(docID)>, <termID2, list(docID)>, …) → 

(postings list1, postings list2, …)

Sec. 4.4
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Example for index construction

 map: d1 : Caesar came, Caesar conquered. d2 : Caesar 
died. → (<Caesar, d2>, <died,d2>, <Caesar,d1>, <came,d1>, 
<Caesar,d1>, <conquered, d1>)

 reduce: (<Caesar,(d2,d1,d1)>, <died,(d2)>, <came,(d1)>, 
<conquered,(d1)>) →  (<Caesar,(d1:2,d2:1)>, <died,(d2:1)>, 
<came,(d1:1)>, <conquered,(d1:1)>)

Information Retrieval 38
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DYNAMIC
INDEXING

Information Retrieval 39
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Dynamic indexing
 Up to now, we have assumed that collections are 

static.
 In practice, they rarely are!
 Documents come in over time and need to be inserted.
 Documents are deleted and modified.

 This means that the dictionary and postings lists have 
to be modified:
 Postings updates for terms already in dictionary
 New terms added to dictionary

Sec. 4.5
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2nd simplest approach
 Maintain “big” main index
 New docs go into “small” (in memory) auxiliary index
 Search across both, merge results
 Deletions
 Invalidation bit-vector for deleted docs
 Filter docs output on a search result by this invalidation 

bit-vector

 Periodically, re-index into one main index
 Assuming T total # of postings and n as size of auxiliary 

index, we touch each posting up to floor(T/n) times.

Sec. 4.5
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Issues with main and auxiliary indexes
 Problem of frequent merges – modify lots of files, inefficient
 Poor performance during merge
 Actually:

 Merging of the auxiliary index into the main index is efficient if we 
keep a separate file for each postings list (for the main index).

 Then merge is the same as an append.
 But then we would need a lot of files – inefficient for O/S.

 We’ll deal with the index (postings-file) as one big file.
 In reality: Use a scheme somewhere in between (e.g., split 

very large postings lists, collect postings lists of length 1 in one 
file etc.)

Sec. 4.5
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Logarithmic merge
 Idea: maintain a series of indexes, each twice as large 

as the previous one.
 Keep smallest (Z0) in memory
 Larger ones (I0, I1, …) on disk
 If Z0 gets too big (> n), write to disk as I0

or merge with I0 (if I0 already exists) as Z1

 Either write merge Z1 to disk as I1 (if no I1)
Or merge with I1 to form Z2

… etc.

Sec. 4.5
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Logarithmic merge
 Now: Logarithmic merge: Each posting is merged O(log T) 

times, so complexity is O(T log T)
 Before: Auxiliary and main index: index construction time is 

a + 2a + 3a + 4a + . . . + na = a n(n+1)/2 ≈ O(T2), 
as each posting needs to be touched in each merge.

 So logarithmic merge is much more efficient for index 
construction

 But query processing now requires the merging of 
O(log T) indices
 Whereas it is O(1) if you just have a main and auxiliary index

Sec. 4.5
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Further issues with multiple indexes
 Collection-wide statistics are hard to maintain
 E.g., when we spoke of spelling correction:

Which of several corrected alternatives do we present to 
the user?

 We said: pick the one with the most hits

 How do we maintain the top ones with multiple 
indexes and invalidation bit vectors?
 One possibility: ignore everything but the main index for 

such ordering

 Will see more such statistics used in results ranking

Sec. 4.5
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Dynamic indexing at search engines
 All the large search engines now do dynamic 

indexing
 Their indices have frequent incremental changes
 News items, blogs, new topical web pages

 Zika, Donald Trump, Miley Cyrus,  …

 But (sometimes) they also periodically reconstruct 
the index from scratch
 Query processing is then switched to the new index, and 

the old index is then deleted

Sec. 4.5
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Other Indexing Problems
 Positional indexes
 Same sort of sorting problem … just larger

 Building character n-gram indices:
 As text is parsed, enumerate n-grams. 
 For each n-gram, need pointers to all dictionary terms 

containing it – the “postings”.
 User access rights
 In intranet search, certain users have privilege to see and 

search only certain documents
 Implement using access control list, intersect with search 

results, just like bit-vector invalidation for deletions
 Impacts collection level statistics

Why?

Sec. 4.5
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Summary
 Indexing
 Both basic as well as important variants

 BSBI – sort key values to merge, needs dictionary
 SPIMI – build mini indices and merge them, no dictionary

 Distributed
 Described MapReduce architecture – a good illustration of 

distributed computing

 Dynamic
 Tradeoff between querying and indexing complexity

Information Retrieval 50
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Resources for today’s lecture
 Chapter 4 of IIR
 MG Chapter 5
 Original publication on MapReduce: Dean and 

Ghemawat (2004)
 Original publication on SPIMI: Heinz and Zobel (2003)

Ch. 4
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