
Introduction to Information Retrieval

CS3245

Information Retrieval

Lecture 6: Index Compression 6



CS3245 – Information Retrieval

Last Time: index construction
 Sort-based indexing
 Blocked Sort-Based Indexing

 Merge sort is effective for disk-based sorting (avoid seeks!)

 Single-Pass In-Memory Indexing
 No global dictionary - Generate separate dictionary for each block
 Don’t sort postings - Accumulate postings as they occur

 Distributed indexing using MapReduce
 Dynamic indexing: Multiple indices, logarithmic merge

Information Retrieval 2



CS3245 – Information Retrieval

Today: Cmprssn

 Collection statistics in more detail (with RCV1)
 How big will the dictionary and postings be?

 Dictionary compression
 Postings compression

Information Retrieval 3

Ch. 5



CS3245 – Information Retrieval

Vocabulary vs. collection size
 Heaps’ law: M = kTb

 M is the size of the vocabulary, T is the number of 
tokens in the collection

 Typical values: 30 ≤ k ≤ 100 and b ≈ 0.5

 In a log-log plot of vocabulary size M vs. T, Heaps’ 
law predicts a line with slope about ½
 It is the simplest possible relationship between the two in 

log-log space
 An empirical finding (“empirical law”)

Information Retrieval 4

Sec. 5.1



CS3245 – Information Retrieval

Heaps’ Law
For RCV1, the dashed line

log10M = 0.49 log10T + 1.64
is the best least squares fit.
Thus, M = 101.64T0.49 so k = 
101.64 ≈ 44 and b = 0.49.

Good empirical fit for 
Reuters RCV1 !

For first 1,000,020 tokens,
law predicts 38,323 terms;
actually, 38,365 terms

Information Retrieval 5

Sec. 5.1



CS3245 – Information Retrieval

Zipf’s law
 How about the relative frequencies of terms?
 In natural language, there are a few very frequent terms 

and very many very rare terms.

 Zipf’s law: The ith most frequent term has frequency 
proportional to 1/i .
 cfi ∝ 1/i = K/i where K is a normalizing constant
 cfi is collection frequency (not document frequency): the 

number of occurrences of the term ti in the collection.

Information Retrieval 6

Sec. 5.1



CS3245 – Information Retrieval

Zipf consequences
 If the most frequent term (the) occurs cf1 times 
 then the second most frequent term (of) occurs cf1/2 times
 the third most frequent term (and) occurs cf1/3 times … 

 Equivalent: cfi = K/i where K is a normalizing factor,
so log cfi = log K - log i
 Linear relationship between log cfi and log i
 Another power law relationship

Information Retrieval 7

Sec. 5.1



CS3245 – Information Retrieval

Zipf’s law for Reuters RCV1

Information Retrieval 8

Sec. 5.1



CS3245 – Information Retrieval

Why compression (in general)?
 Use less disk space
 Saves a little money

 Keep more data in memory
 Increases speed

 Increase speed of data transfer from disk to memory
 [read compressed data | decompress] is faster than     

[read uncompressed data]
 Premise: Decompression algorithms are fast

 True of the decompression algorithms we use

Information Retrieval 9

Ch. 5



CS3245 – Information Retrieval

Lossless vs. lossy compression
 Lossless compression: All information is preserved
 What we mostly do in IR.

 Lossy compression: Discard some information
 Several of the preprocessing steps can be viewed as 

lossy compression: case folding, stop words, 
stemming, number elimination

 Later: Prune postings entries that are unlikely to turn 
up in the top k list for any query
 Almost no loss quality for top k list

Information Retrieval 10

Sec. 5.1



CS3245 – Information Retrieval

DICTIONARY 
COMPRESSION

Information Retrieval 11

Sec. 5.2



CS3245 – Information Retrieval

Why compress the dictionary?
 Search begins with the dictionary
 We want to keep it in memory
 Memory footprint competition with other 

applications
 Embedded/mobile devices may have very little 

memory
 Even if the dictionary isn’t in memory, we want it to 

be small for a fast search startup time

Compressing the dictionary is important
Information Retrieval 12

Sec. 5.2



CS3245 – Information Retrieval

Dictionary storage - first cut
 Sorted array of fixed-width entries
 ~400,000 terms; 28 bytes/term = 11.2 MB.

Information Retrieval 13

Dictionary search
structure

20 bytes 4 bytes each

Sec. 5.2


		Terms

		Freq.

		Postings ptr.



		a

		656,265

		



		aachen

		65

		



		….

		….

		



		zulu

		221

		







CS3245 – Information Retrieval

Fixed-width terms are wasteful
 Most of the bytes in the Term column are wasted –

we allot 20 bytes for 1 letter terms.
 And we still can’t handle supercalifragilisticexpialidocious or 

hydrochlorofluorocarbons.

 Written English averages ~4.5 characters/word.
 Short words dominate token counts but not type average.

 Average dictionary word in English: ~8 characters
 How do we use ~8 characters per dictionary term?

Information Retrieval 14

Sec. 5.2



CS3245 – Information Retrieval

Compressing the term list: 
Dictionary-as-a-String
 Store dictionary as a (long) string of characters:

 Pointer to next word shows end of current word
 Hope to save up to 60% of dictionary space.

Information Retrieval 15

….systilesyzygeticsyzygialsyzygyszaibelyiteszczeci….

Total string length =
400K × 8B = 3.2MB

Pointers resolve 3.2M
positions: log23.2M =

22bits = 3bytes

Sec. 5.2



CS3245 – Information Retrieval

Space for dictionary as a string
 4 bytes per term for frequency
 4 bytes per term for pointer to postings
 3 bytes per term pointer
 Avg. 8 bytes per term in term string
 400K terms × 19 ⇒ 7.6 MB (against 11.2MB for 

fixed width)

Information Retrieval 16

 Now avg. 11
 bytes/term,
 not 20.

Sec. 5.2



CS3245 – Information Retrieval

Blocking
 Store pointers to every kth term string.
 Example below: k=4.

 Need to store term lengths (1 extra byte)

Information Retrieval 17

….7systile9syzygetic8syzygial6syzygy11szaibelyite …

Sec. 5.2

Save 9 bytes
on 3 pointers.

Lose 4 bytes on
term lengths.



CS3245 – Information Retrieval

Net Result
 Example for block size k = 4
 Where we used 3 bytes/pointer without blocking
 3 x 4 = 12 bytes,

now we use 3 + 4 = 7 bytes.

Information Retrieval 18

Shaved another ~0.5MB. This reduces the size of the 
dictionary from 7.6 MB to 7.1 MB.
We can save more with larger k.

Why not go with a larger k?

Sec. 5.2



CS3245 – Information Retrieval

Dictionary search without blocking

Information Retrieval 19

 Assume that each dictionary 
term equally likely in query 
(not true in practice!)

 Average number of 
comparisons = (1 + (2*2) + 
(4*3) + 4)/8 
= ~2.6

Sec. 5.2

1
@

 L
ev

el
 1

2
@

 L
ev

el
 2 4
@

Le
ve

l 
3

1
@

Le
ve

l 
4



CS3245 – Information Retrieval

Dictionary search with blocking

 Binary search down to 4-term block;
 Then linear search through terms in block.

 Blocks of 4 (binary tree), average = 
(1 + (2*2) + (2*3) + (2*4) + 5)/8 = 3 compares

Information Retrieval 20

Sec. 5.2



CS3245 – Information Retrieval

Front coding
 Sorted words commonly have long common prefix –

store differences only
 Used for last k-1 terms in a block of k
8automata8automate9automatic10automation

Information Retrieval 21

→8automat*a1◊e2◊ic3◊ion

Encodes automat Extra length
beyond automat.

Begins to resemble general string compression

Sec. 5.2



CS3245 – Information Retrieval

RCV1 dictionary compression summary

Technique Size in MB

Fixed width 11.2

Dictionary-as-String with pointers to every term 7.6

Also, blocking k = 4 7.1

Also, Blocking + front coding 5.9

Information Retrieval 22

Sec. 5.2



CS3245 – Information Retrieval

POSTINGS 
COMPRESSION

Information Retrieval 23

Sec. 5.3



CS3245 – Information Retrieval

Postings compression
 The postings file is much larger than the dictionary, 

factor of at least 10.
 Key desideratum: store each posting compactly.
 A posting for our purposes is a docID.
 For Reuters (800,000 documents), we would use 32 

bits per docID when using 4-byte integers.
 Alternatively, we can use log2 800,000 ≈ 20 bits per 

docID.
 Our goal: use a lot less than 20 bits per docID.

Information Retrieval 24

Sec. 5.3



CS3245 – Information Retrieval

Postings: two conflicting forces
 A term like arachnocentric occurs in maybe one doc 

out of a million – we would like to store this posting 
using log2 1M ~ 20 bits.

 A term like the occurs in virtually every doc, so 20 
bits/posting is too expensive.
 Prefer 0/1 bitmap vector in this case 

Information Retrieval 25

Sec. 5.3



CS3245 – Information Retrieval

Postings file entry
 We store the list of docs containing a term in 

increasing order of docID.
 computer: 33,47,154,159,202 …

 Consequence: it suffices to store gaps.
 33,14,107,5,43 …

 Hope: most gaps can be encoded/stored with far 
fewer than 20 bits.

Information Retrieval 26

Sec. 5.3



CS3245 – Information Retrieval

Three postings entries

Information Retrieval 27

Sec. 5.3

Encoding Postings List

the docIDs … 283042 283043 283044 283045 …

gaps 1 1 1

computer docIDs … 2803047 283154 283159 283202 …

gaps 107 5 43

arachno-
centric

docIDs 25200 500100

gaps 25200 248100



CS3245 – Information Retrieval

Variable length encoding
 Aim:
 For arachnocentric, we will use ~20 bits/gap entry.
 For the, we will use ~1 bit/gap entry.

 If the average gap for a term is G, we want to use 
~log2G bits/gap entry.

 Key challenge: encode every integer (gap) with about 
as few bits as needed for that integer.

 This requires variable length encoding
 Variable length codes achieve this by using short 

codes for small numbers
Information Retrieval 28

Sec. 5.3



CS3245 – Information Retrieval

Variable Byte (VB) codes
 For a gap value G, we want to use close to the fewest 

bytes needed to hold log2 G bits
 Begin with one byte to store G and dedicate 1 bit in it 

to be a continuation bit c
 If G ≤127, binary-encode it in the 7 available bits and 

set c =1
 Else encode G’s lower-order 7 bits and then use 

additional bytes to encode the higher order bits 
using the same algorithm

 At the end set the continuation bit of the last byte to 
1 (c =1) – and for the other bytes c = 0.

Information Retrieval 29

Sec. 5.3



CS3245 – Information Retrieval

Example
docIDs 824 829 215406
gaps 5 214577
VB code 00000110 

10111000 
10000101 00001101 

00001100 
10110001

Information Retrieval 30

Postings stored as the byte concatenation
00000110 10111000 10000101 00001101 00001100 10110001

Key property: VB-encoded postings are
uniquely prefix-decodable.

For a small gap (5), VB uses a whole byte.

Sec. 5.3

512+256+32+16+8 = 824



CS3245 – Information Retrieval

Other variable unit codes
 Instead of bytes, we can also use a different “unit of 

alignment”: 32 bits (words), 16 bits, 4 bits (nibbles).
 Variable byte alignment wastes space if you have 

many small gaps – nibbles do better in such cases.
 Variable byte codes:
 Used by many commercial/research systems
 Good blend of variable-length coding and sensitivity to 

computer memory alignment

Information Retrieval 31

Sec. 5.3



CS3245 – Information Retrieval

RCV1 compression
Data structure Size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
with blocking, k = 4 7.1
with blocking & front coding 5.9
collection (text, xml markup etc) 3,600.0
collection (text) 960.0
Term-doc incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0

Information Retrieval 32

Sec. 5.3



CS3245 – Information Retrieval

Summary: Index compression
 We can now create an index for highly efficient 

Boolean retrieval that is very space efficient
 Use the sorted nature of the data to compress
 Variable sized storage
 Encode common prefixes only once
 Encode gaps to reduce size of numbers

 However, here we didn’t encode positional 
information
 But techniques for dealing with postings are similar

Information Retrieval 33

Sec. 5.3



CS3245 – Information Retrieval

Resources for today’s lecture
 IIR 5
 MG 3.3, 3.4.
 F. Scholer, H.E. Williams and J. Zobel. 2002. 

Compression of Inverted Indexes For Fast Query 
Evaluation. Proc. ACM-SIGIR 2002.
 Variable byte codes

 V. N. Anh and A. Moffat. 2005. Inverted Index 
Compression Using Word-Aligned Binary Codes. 
Information Retrieval 8: 151–166.  
 Word aligned codes

Information Retrieval 34

Ch. 5


	Slide Number 1
	Last Time: index construction
	Today: Cmprssn
	Vocabulary vs. collection size
	Heaps’ Law
	Zipf’s law
	Zipf consequences
	Zipf’s law for Reuters RCV1
	Why compression (in general)?
	Lossless vs. lossy compression
	DICTIONARY �COMPRESSION
	Why compress the dictionary?
	Dictionary storage - first cut
	Fixed-width terms are wasteful
	Compressing the term list: �Dictionary-as-a-String
	Space for dictionary as a string
	Blocking
	Net Result
	Dictionary search without blocking
	Dictionary search with blocking
	Front coding
	RCV1 dictionary compression summary
	POSTINGS �COMPRESSION
	Postings compression
	Postings: two conflicting forces
	Postings file entry
	Three postings entries
	Variable length encoding
	Variable Byte (VB) codes
	Example
	Other variable unit codes
	RCV1 compression
	Summary: Index compression
	Resources for today’s lecture

