CS3245
Information Retrieval

Lecture 6: Index Compression

CS3245 — Information Retrieval

Last Time: index construction

= Sort-based indexing

= Blocked Sort-Based Indexing
= Merge sort is effective for disk-based sorting (avoid seeks!)

= Single-Pass In-Memory Indexing
" No global dictionary - Generate separate dictionary for each block
= Don’t sort postings - Accumulate postings as they occur

= Distributed indexing using MapReduce
= Dynamic indexing: Multiple indices, logarithmic merge

Information Retrieval 2

CS3245 — Information Retrieval Ch. 5

Today: Cmprsshn

BRUTUS — 1| 2| 4| 11|31 |45 | 17/3 | 1/4

CAESAR — | 1| 2| 4 5| 6|16 | 57| 132

CALPURNIA | — | 2| 31 | 54 | 101

= Collection statistics in more detail (with RCV1)
= How big will the dictionary and postings be?

= Dictionary compression

= Postings compression

Information Retrieval 3

CS3245 — Information Retrieval Sec. 5.1

L
of Singapore

Vocabulary vs. collection size

= Heaps’ law: M = kT?

"= M is the size of the vocabulary, T is the number of
tokens in the collection

= Typical values: 30 £ k<100 and b=0.5

" |n alog-log plot of vocabulary size M vs. T, Heaps’
law predicts a line with slope about %

= |tis the simplest possible relationship between the two in
log-log space

= An empirical finding (“empirical law”)

Information Retrieval 4

CS3245 — Information Retrieval Sec. 5.1

B8 &

Heaps’ Law - -

For RCV1, the dashed line
log,,M =0.49 log,,T+1.64 ~ -
is the best least squares fit.

Thus, M = 101647049 g0 k =
101-64= 44 and b = 0.49. ol

Good empirical fit for -
Reuters RCV1 |

For first 1,000,020 tokens,
law predicts 38,323 terms;
actually, 38,365 terms

Information Retrieval 5

CS3245 — Information Retrieval Sec. 5.1

@ Mational University
o 5

f Singapore

Zipf's law

* How about the relative frequencies of terms?

" |n natural language, there are a few very frequent terms
and very many very rare terms.

= Zipf’s law: The ith most frequent term has frequency
proportional to 1/i .
= cf. < 1/i = K/i where K is a normalizing constant

= cf; is collection frequency (not document frequency): the
number of occurrences of the term t; in the collection.

Information Retrieval 6

CS3245 — Information Retrieval Sec. 5.1

Zipf consequences

= |f the most frequent term (the) occurs cf, times
= then the second most frequent term (of) occurs cf,/2 times
* the third most frequent term (and) occurs cf,/3 times ...

= Equivalent: cf, = K/i where K is a normalizing factor,
so log cf,=log K-logi
= Linear relationship between log cf, and log i
= Another power law relationship

Information Retrieval 7

of Singapore

log10 rank

CS3245 — Information Retrieval Ch. 5

s

Matio
of Singapore

Why compression (in general)?

= Use less disk space

= Saves a little money

= Keep more data in memory

" |ncreases speed

" |ncrease speed of data transfer from disk to memory

* [read compressed data | decompress] is faster than
[read uncompressed data]

" Premise: Decompression algorithms are fast

" True of the decompression algorithms we use

Information Retrieval 9

CS3245 — Information Retrieval Sec. 5.1

of Singapore

Lossless vs. lossy compression

" Lossless compression: All information is preserved
* What we mostly doin IR.

" Lossy compression: Discard some information

= Several of the preprocessing steps can be viewed as
lossy compression: case folding, stop words,
stemming, number elimination

= Later: Prune postings entries that are unlikely to turn
up in the top k list for any query
= Almost no loss quality for top k list

Information Retrieval 10

CS3245 — Information Retrieval Sec. 5.2

DICTIONARY
COMPRESSION

Information Retrieval 11

CS3245 — Information Retrieval Sec. 5.2

I
of Singapore

Why compress the dictionary?

= Search begins with the dictionary
= We want to keep it in memory

= Memory footprint competition with other
applications

= Embedded/mobile devices may have very little
memory

= Even if the dictionary isn’t in memory, we want it to
be small for a fast search startup time

Compressing the dictionary is important

Information Retrieval 12

Dictionary storage - first cut

ation
of Singapore

= Sorted array of fixed-width entries

= ~400,000 terms; 28 bytes/term = 11.2 MB.

Terms

Freq.

Postings
ptr.

a

656,265

e

aachen

65

0\'<....

=5 =

Dictionary search
structure

zulu

221

\

/

20 bytes

4 bytes each

Information Retrieval

13

		Terms

		Freq.

		Postings ptr.

		a

		656,265

		

		aachen

		65

		

		….

		….

		

		zulu

		221

		

CS3245 — Information Retrieval Sec. 5.2

Fixed-width terms are wasteful

= Most of the bytes in the Term column are wasted —
we allot 20 bytes for 1 letter terms.

= And we still can’t handle supercalifragilisticexpialidocious or
hydrochlorofluorocarbons.

= Written English averages ~4.5 characters/word.
= Short words dominate token counts but not type average.

= Average dictionary word in English: ~¥8 characters

* How do we use ~8 characters per dictionary term?

Information Retrieval 14

Compressing the term list: N US
Dictionary-as-a-String)

= Store dictionary as a (long) string of characters:

= Pointer to next word shows end of current word
= Hope to save up to 60% of dictionary space.

....systilesyzygeticsyzygialsyzygyszaibelyiteszczeci.. ..

A

j - =

Freq. Postings Term ptr. .
ptr. Total string length =
33 — 400K x 8B = 3.2MB
29
44 _
196 Pointers resolve 3.2M
<:: positions: log,3.2M =
22bits = 3bytes

Information Retrieval 15

CS3245 — Information Retrieval Sec. 5.2

!\IUS
Space for dictionary as a string -
= 4 bytes per term for frequency
] Now avg. 11
= 4 bytes per term for pointer to postings | bytes/term,
= 3 bytes per term pointer J not 20.

= Avg. 8 bytes per term in term string

= 400K terms X 19 = 7.6 MB (against 11.2MB for
fixed width)

Information Retrieva 16

CS3245 — Information Retrieval Sec. 5.2

Blocking

= Store pointers to every kth term string.

= Example below: k=4.

" Need to store term lengths (1 extra byte)

....1systile9syzygetic8syzygial6syzygy11szaibelyite ...

AN

Freq. Postings Term ptr. Lose 4 bytes on
Pt term lengths.

33
29
44

126

Save 9 bytes
on 3 pointers.

{

Information Retrieval 17

of Singapore

Net Result

= Example for block size k=4

= Where we used 3 bytes/pointer without blocking
" 3x4 =12 bytes,

now we use 3 + 4 =7 bytes.

Shaved another ~0.5MB. This reduces the size of the
dictionary from 7.6 MB to 7.1 MB.
We can save more with larger k.

Why not go with a larger k?

Information Retrieval 18

CS3245 — Information Retrieval Sec. 5.2

EE@;DJ*JE;

nnnnnnnnnnn
oooooooooo

Dictionary search without blocking

= Assume that each dictionary
term equally likely in query
(not true in practice!)

1@ Level 1
2@ Level 2

Level 4

= Average number of
comparisons = (1 + (2*2) +
(4*3) + 4)/8
=~2.6

Information Retrieval 19

CS3245 — Information Retrieval Sec. 5.2

= Binary search down to 4-term block;

* Then linear search through terms in block.

= Blocks of 4 (binary tree), average =
(1+(2*%2) +(2*3) + (2*4) + 5)/8 = 3 compares

Information Retrieval 20

CS3245 — Information Retrieval Sec. 5.2

Front coding

= Sorted words commonly have long common prefix —
store differences only

= Used for last k-1 terms in a block of k
S8automata38automateSautomaticlOautomation

—s8automat:al ¢el2dic30ion

Extra length
beyond automat.

Encodes automat

Begins to resemble general string compression

Information Retrieval 21

CS3245 — Information Retrieval Sec. 5.2

W

Fixed width
Dictionary-as-String with pointers to every term 7.6
Also, blocking k=4 7.1

Also, Blocking + front coding 5.9

Information Retrieval 22

CS3245 — Information Retrieval Sec. 5.3

POSTINGS
COMPRESSION

Information Retrieval 23

CS3245 — Information Retrieval Sec. 5.3

of Singapore

Postings compression

* The postings file is much larger than the dictionary,
factor of at least 10.

= Key desideratum: store each posting compactly.
= A posting for our purposes is a doclD.

= For Reuters (800,000 documents), we would use 32
bits per doclD when using 4-byte integers.

= Alternatively, we can use log, 800,000 = 20 bits per
doclID.

= Qur goal: use a lot less than 20 bits per doclID.

Information Retrieval 24

CS3245 — Information Retrieval Sec. 5.3

of Singapore

Postings: two conflicting forces

= A term like arachnocentric occurs in maybe one doc
out of a million — we would like to store this posting
using log, 1M ~ 20 bits.

= A term like the occurs in virtually every doc, so 20
bits/posting is too expensive.

= Prefer 0/1 bitmap vector in this case

Information Retrieval 25

CS3245 — Information Retrieval Sec. 5.3

of Singapore

Postings file entry

= We store the list of docs containing a term in
increasing order of doclD.

= computer: 33,47,154,159,202 ...

= Consequence: it-suffices to store gaps.
= 33,14,107,5/43 ...

= Hope: most gaps can be encoded/stored with far
fewer than 20 bits.

Information Retrieval 26

CS3245 — Information Retrieval Sec. 5.3

Three postings entries

the doclDs 283042 283043 283044 283045
gaps 1 1 1

computer doclDs 2803047 283154 283159 283202
gaps 107 5 43

arachno- doclDs 25200 500100

centric gone 25200 248100

Information Retrieval 27

CS3245 — Information Retrieval Sec. 5.3

of Singapore

Variable length encoding

= Aim:
= For arachnocentric, we will use ~20 bits/gap entry.
= For the, we will use ~1 bit/gap entry.

= |f the average gap for a term is G, we want to use
~log,G bits/gap entry.

= Key challenge: encode every integer (gap) with about
as few bits as needed for that integer.

= This requires variable length encoding

= Variable length codes achieve this by using short
codes for small numbers

Information Retrieval 28

CS3245 — Information Retrieval Sec. 5.3

Variable Byte (VB) codes

of Singapore

For a gap value G, we want to use close to the fewest
bytes needed to hold log, G bits

Begin with one byte to store G and dedicate 1 bit in it
to be a continuation bit ¢

If G <127, binary-encode it in the 7 available bits and
setc=1

Else encode G’s lower-order 7 bits and then use
additional bytes to encode the higher order bits
using the same algorithm

At the end set the continuation bit of the last byte to
1 (c =1) — and for the other bytes c = 0.

Information Retrieval 29

BNUS
Example
gaps 214577
VB code 00000110 10000101 00001101

10111000 00001100

10110001

512+256+32+16+8 = 824

Postings stored as the byte concatenation
00000110 10111000 10000101 OO00T110T1 OO0OOTT100 10110001

O

Key property: VB-encoded postings are
uniquely prefix-decodable.

For a small gap (5), VB uses a whole byte.

Information Retrieval 30

CS3245 — Information Retrieval Sec. 5.3

of Singapore

Other variable unit codes

= Instead of bytes, we can also use a different “unit of
alignment’: 32 bits (words), 16 bits, 4 bits (nibbles).

= Variable byte alignment wastes space if you have
many small gaps — nibbles do better in such cases.

= Variable byte codes:
= Used by many commercial/research systems

* Good blend of variable-length coding and sensitivity to
computer memory alignment

Information Retrieval 31

CS3245 — Information Retrieval Sec. 5.3

RCV1 compression

Data structure m

dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
with blocking, k =4 7.1
with blocking & front coding 5.9
collection (text, xml markup etc) 3,600.0

collection (text) 960.0

postings, uncompressed (32-bit words)

postings, uncompressed (20 bits)
postings, variable byte encoded

Information Retrieval 32

CS3245 — Information Retrieval Sec. 5.3

Summary: Index compression

= We can now create an index for highly efficient
Boolean retrieval that is very space efficient

= Use the sorted nature of the data to compress
= Variable sized storage
* Encode common prefixes only once
* Encode gaps to reduce size of numbers

* However, here we didn’t encode positional
information

= But techniques for dealing with postings are similar

Information Retrieval 33

CS3245 — Information Retrieval Ch. 5

ZINUS
Resources for today’s lecture h
* IIR5
= MG 3.3, 3.4.

= F. Scholer, H.E. Williams and J. Zobel. 2002.
Compression of Inverted Indexes For Fast Query
Evaluation. Proc. ACM-SIGIR 2002.

= Variable byte codes

= V. N. Anh and A. Moffat. 2005. Inverted Index
Compression Using Word-Aligned Binary Codes.
Information Retrieval 8: 151-166.

* Word aligned codes

Information Retrieval 34

	Slide Number 1
	Last Time: index construction
	Today: Cmprssn
	Vocabulary vs. collection size
	Heaps’ Law
	Zipf’s law
	Zipf consequences
	Zipf’s law for Reuters RCV1
	Why compression (in general)?
	Lossless vs. lossy compression
	DICTIONARY �COMPRESSION
	Why compress the dictionary?
	Dictionary storage - first cut
	Fixed-width terms are wasteful
	Compressing the term list: �Dictionary-as-a-String
	Space for dictionary as a string
	Blocking
	Net Result
	Dictionary search without blocking
	Dictionary search with blocking
	Front coding
	RCV1 dictionary compression summary
	POSTINGS �COMPRESSION
	Postings compression
	Postings: two conflicting forces
	Postings file entry
	Three postings entries
	Variable length encoding
	Variable Byte (VB) codes
	Example
	Other variable unit codes
	RCV1 compression
	Summary: Index compression
	Resources for today’s lecture

