
Introduction to Information Retrieval

CS3245

Information Retrieval

Lecture 8: A complete search system –
Scoring and results assembly

8

CS3245 – Information Retrieval

Last Time: tf-idf weighting

Information Retrieval 2

Ch. 6

 The tf-idf weight of a term is the product of its tf
weight and its idf weight.

 Best known weighting scheme in information
retrieval
 One of the easy but important things you should

remember for IR
 Increases with the number of occurrence within a

document
 Increases with the rarity of the term in the collection

CS3245 – Information Retrieval

 Key idea 1: represent both d and q as vectors
 Key idea 2: Rank documents according to their

proximity (similarity) to the query in this space

cos(q, d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.

Last Time: Vector Space Model

Information Retrieval 3

Ch. 6

CS3245 – Information Retrieval

Today
Goal
 Speeding up and shortcutting ranking

 Incorporating additional ranking information
into VSM

Recap:
 An overview of the complete search system

Information Retrieval 4

Ch. 7

CS3245 – Information Retrieval

Recap: Computing cosine scores

Information Retrieval 5

Sec. 6.3.3

Consider only the terms
that appear in both the
query and the document.

Normalize by the (pre-computed)
document length only.

CS3245 – Information Retrieval

Efficient cosine ranking

Information Retrieval 6

Sec. 7.1

 Find the K docs in the collection "nearest" to the
query  K largest query-doc cosines.

 Efficient ranking:
1. Computing a single cosine efficiently.
2. Choosing K largest cosine values efficiently.

CS3245 – Information Retrieval

Simpler case – unweighted queries

Information Retrieval 7

Sec. 7.1

 No weighting on query terms
 Assume each query term has weight 1
 i.e., wt,q = 1

(no tf, nor idf factor; just Boolean presence)

CS3245 – Information Retrieval

Faster cosine: unweighted query

Information Retrieval 8

Sec. 7.1

No expensive multiplication,
only addition

CS3245 – Information Retrieval

Efficient cosine ranking

Information Retrieval 9

Sec. 7.1

 Find the K docs in the collection "nearest" to the
query  K largest query-doc cosines.

 Efficient ranking:
1. Computing a single cosine efficiently.
2. Choosing K largest cosine values efficiently.

CS3245 – Information Retrieval

Information Retrieval 10

Sec. 7.1

 Typically we want to retrieve the top K docs (in the
cosine ranking for the query)
 Don't need total order for all docs

Can we pick off docs with K highest cosines?

 Formal Problem Specification:
Let J = number of docs with nonzero cosines.
Then we seek the K best of these J

CS3245 – Information Retrieval

Use heaps for selecting top K

Information Retrieval 11

1

.9 .3

.8.3

.1

.1

Sec. 7.1

 Heap = Binary tree in which
each node's value > the values of its children

 Takes O(J) operations to construct, then each of K
"winners" read off in O(logJ) steps

 For J = 1M, K = 100, this is
about 1% of the cost
of sorting

CS3245 – Information Retrieval

 Primary computational bottleneck in scoring: cosine
computation

 Can we avoid doing this computation for all docs?
 Yes, but may sometimes get it wrong…
 a doc not in the top K may creep into the list of K output

docs, and vice versa
 Is this such a bad thing?

Maybe not, cosine similarity is just a proxy for the actual
relevance

Bottlenecks

Information Retrieval 12

Sec. 7.1.1

Blanks on slides, you may want to fill in

CS3245 – Information Retrieval

Generic approach

Information Retrieval 13

Sec. 7.1.1

N
J

K

A

 Find a set A of contenders, with K < |A| << N
 A does not necessarily contain the top K, but has many

docs from among the top K
 Return the top K docs in A

 Think of A as pruning
non-contenders

 The same approach can
also be used for other
(non-cosine) scoring
functions.

CS3245 – Information Retrieval

 Basic algorithm: FastCosineScore of Fig 7.1 considers
docs containing at least one query term

 Extend this to a logical conclusion
A. Only consider high idf query terms
B. Only consider docs containing many query terms.

Heuristic 1: Index elimination

Information Retrieval 14

Sec. 7.1.2

CS3245 – Information Retrieval

 E.g., given a query such as catcher in the rye only
accumulate scores from catcher and rye

 Intuition: in and the contribution little to the scores
and so they don't alter rank-ordering much

 Benefit:
 Postings of low idf terms have many docs  these (many)

docs get eliminated from set A of contenders
 Similar in spirit to stop word removal

A. High-idf query terms only

Information Retrieval 15

Sec. 7.1.2

CS3245 – Information Retrieval

 Any doc with at least one query term is a candidate
from the top K output list, but …

 For multi-term queries, only compute scores for docs
containing several of the query terms
 Say, at least 3 out of 4
 Impose a "soft conjunction" on queries seen on web

search engines (early Google)

 Easy to implement in postings traversal

B. Docs containing many query terms

Information Retrieval 16

Sec. 7.1.2

CS3245 – Information Retrieval

Example: Requiring 3 of 4 query terms

Information Retrieval 17

Brutus

Caesar

Calpurnia

1 2 3 5 8 13 21 34

2 4 8 16 32 64128

13 16

Antony 3 4 8 16 32 64128

32

Scores only computed for docs 8, 16 and 32.

Sec. 7.1.2

CS3245 – Information Retrieval

Heuristic 2: Champion lists

Information Retrieval 18

Sec. 7.1.3

Blanks on slides, you may want to fill in

 Precompute for each dictionary term t, the r docs of
highest weight in t's postings
 Call this the champion list for t

(a.k.a. fancy list or top docs for t)
 For tf-idf weighting this just means docs with highest tf

 Note that r has to be chosen at the indexing stage
 Thus, it's possible that r < K

 At query time, only compute scores for docs in the
champion list of some query term
 Pick the K top-scoring docs from amongst these

CS3245 – Information Retrieval

High and low lists

Information Retrieval 19

Sec. 7.1.4

 For each term, we maintain two postings lists called
high and low
 Think of high as the champion

 When traversing postings on a query, only traverse
high lists first
 If we get more than K docs, select the top K and stop
 Else proceed to get docs from the low lists

 Can be used even for simple cosine scores, without
global quality g(d)

 A means for segmenting index into two tiers

CS3245 – Information Retrieval

 Generalizing high-low lists into tiers
 Break postings up into a hierarchy of lists

Most important
…
Least important

 Inverted index thus broken up into tiers of decreasing
importance

 At query time, use only top tier unless insufficient to
get K docs
If so, drop to lower tiers

Tiered indexes

Information Retrieval 20

Sec. 7.2.1

CS3245 – Information Retrieval

Example tiered index

Information Retrieval 21

Sec. 7.2.1

To think about:
What information
would be useful to
use to determine
tiers?

CS3245 – Information Retrieval

Heuristic 3: Impact-ordered postings

Information Retrieval 22

Sec. 7.1.5

 We only want to compute scores for docs for which
wft,d is high enough

 We sort each postings list by wft,d

 Problem: not all postings in a common order!
(Concurrent traversal not possible)

 How do we compute scores in order to pick off top K?
Two ideas:
A. Early Termination
B. IDF Ordered Terms

CS3245 – Information Retrieval

A. Early termination

Information Retrieval 23

Sec. 7.1.5

 Sort t's postings by descending wft,d value

 When traversing t's postings, stop early after either
 a fixed number of r docs
 wft,d drops below some threshold

 Take the union of the resulting sets of docs
 One from the postings of each query term

 Compute only the scores for docs in this union

CS3245 – Information Retrieval

Information Retrieval 24

Sec. 7.1.5

 When considering the postings of query terms
 Look at them in order of decreasing idf
 High idf terms are likely to contribute most to score

 As we update score contribution from each query
term
 Stop if doc scores relatively unchanged

 Can apply to cosine weighting but also other net
scores

CS3245 – Information Retrieval

Heuristic 4:
Cluster pruning – preprocessing

Information Retrieval 25

Sec. 7.1.6

 Pick 𝑁𝑁 docs at random, call these leaders
 For other docs, pre-compute nearest leader
 Docs attached to a leader are its followers

 Likely: each leader has 𝑁𝑁 followers.

Why choose leaders at random?
 Fast
 Leaders reflect data distribution

CS3245 – Information Retrieval

Cluster pruning – query processing

Information Retrieval 26

Sec. 7.1.6

 Process a query as follows:
 Given a query Q, find its nearest leader L.
 Seek K nearest docs from among L's followers (and L itself).

CS3245 – Information Retrieval

Cluster pruning visualization

Information Retrieval 27

1. Offline: Choose 𝑁𝑁 leaders

CS3245 – Information Retrieval

Cluster pruning visualization

Information Retrieval 28

2. Associate documents to leaders to form clusters

CS3245 – Information Retrieval

Cluster pruning visualization

Information Retrieval 29

Q

3. Online: Associate query to a leader (cluster)

CS3245 – Information Retrieval

Clustering pruning variants

Information Retrieval 30

Sec. 7.1.6

To think about: How do these parameters affect the
retrieval results?

 Have each follower attached to b1 nearest leaders
 From query, find b2 nearest leaders and their

followers

 b1 affects preprocessing step at indexing time
 b2 affects query processing step at run time

CS3245 – Information Retrieval

 We want top-ranking documents to be both relevant
and authoritative
 Relevance is being modeled by cosine scores
 Authority is typically a query-independent property of a

document
 Examples of authority signals
 Wikipedia among websites
 Articles in certain newspapers
 A paper with many citations
 Many views, retweets, favs, bookmark saves
 PageRank score

Quantitative

Incorporating Additional
Information: Static quality scores

Information Retrieval 31

Sec. 7.1.4

CS3245 – Information Retrieval

Modeling authority

Information Retrieval 32

Sec. 7.1.4

 Assign to each document a query-independent
quality score in [0,1] to each document d
 Denote this by g(d)

 Thus, a quantity like the number of citations is scaled
into [0,1]

CS3245 – Information Retrieval

Net score

Information Retrieval 33

Sec. 7.1.4

 Consider a simple total score combining cosine
relevance and authority

net-score(q,d) = g(d) + cos(q, d)

 Can use some other linear combination than an equal
weighting

 Indeed, any function of the two "signals" of user happiness

 Now we seek the top K docs by net score

CS3245 – Information Retrieval

Top K by net score – fast methods

Information Retrieval 34

Sec. 7.1.4

Wait a second. We
previously said documents

need to be in order of docID
to be merged efficiently.

Why does this not violate it?

 First idea: Order all postings by g(d)

 Key: this is a common ordering
for all postings

 Thus, can concurrently traverse query terms'
postings for
 Postings intersection
 Cosine score computation

CS3245 – Information Retrieval

Information Retrieval 35

Sec. 7.1.4

 Under g(d)-ordering, top-scoring docs are likely to
appear early in postings traversal

 In time-bound applications (say, we have to return
whatever search results we can in 50ms), this allows
us to stop postings traversal early
 Short of computing scores for all docs in postings

CS3245 – Information Retrieval

Information Retrieval 36

Sec. 7.1.4

 Can combine champion lists with g(d)-ordering

 Maintain for each term a champion list of the r docs
with highest g(d) + tf-idft,d instead of just tf-idft,d

 Seek top-K results from only the docs in these
champion lists

CS3245 – Information Retrieval

Parametric and zone indexes
(From Chapter 6.1 skipped last week [Week 7, slide 3])

Thus far, a doc has been a sequence of terms.
Documents often have multiple parts, with different

semantics:
 Author, Title, Date of publication, etc.

These constitute the metadata about a document.
We sometimes wish to search by these metadata.
 E.g., find docs authored by T.S. Raffles in the year 1818,

containing Dutch East India Company
Information Retrieval 37

Sec. 6.1

CS3245 – Information Retrieval

Fields
 Year = 1818 is an example of a field
 Also, author last name = Raffles, etc
 with a finite set of possible values

 Field or parametric index
 Postings for each field value
 Sometimes build range (B-tree) trees (e.g., for dates)

 Field query typically treated as conjunction
 (doc must be authored by Raffles)

Information Retrieval 38

Sec. 6.1

CS3245 – Information Retrieval

Zone
 A zone is a region of the doc that can contain an

arbitrary amount of text e.g.,
 Title
 Abstract
 References …

 Build inverted indexes on zones as well to permit
querying

 E.g., “find docs with merchant in the title zone and
matching the query gentle rain”

Information Retrieval 39

Sec. 6.1

CS3245 – Information Retrieval

Two methods for zone indexing

Information Retrieval 40

Encode zones in dictionary vs. postings.

Sec. 6.1

Alternative 1:

Alternative 2:

CS3245 – Information Retrieval

Query term proximity

Information Retrieval 41

Sec. 7.2.2

 Free text queries: just a set of terms typed into the
query box – common on the web

 Users prefer docs where the query terms occur close
to each other

 Let w be the smallest window in a doc containing all
query terms, e.g.,
 For the query open day, the smallest window in the doc

Special open box promo day is 4.

CS3245 – Information Retrieval

Query parsers

Information Retrieval 42

Sec. 7.2.3

 Free text query from user may spawn one or more
queries to the indexes, e.g., NUS open day
1. Run the query as a phrase query
2. If < K docs contain the phrase NUS open day, run the two

phrase queries NUS open and open day
3. If we still have < K docs, run the vector space query NUS

open day
4. Rank matching docs by vector space scoring

 This sequence is issued by a query parser

CS3245 – Information Retrieval

Putting it all together

Information Retrieval 43

Sec. 7.2.4

Won’t be covering these
blue modules in this course

CS3245 – Information Retrieval

Summary
Making the Vector Space Model more effective and

efficient to compute
 Incorporating other ranking information g(d)
 Approximating the actual correct results
 Skipping unnecessary documents
In actual data: dealing with zones and fields, query

term proximity

Resources for today
 IIR 7, 6.1

Information Retrieval 44

	Slide Number 1
	Last Time: tf-idf weighting
	Last Time: Vector Space Model
	Today
	Recap: Computing cosine scores
	Efficient cosine ranking
	Simpler case – unweighted queries
	Faster cosine: unweighted query
	Efficient cosine ranking
	
	Use heaps for selecting top K
	Bottlenecks
	Generic approach
	Heuristic 1: Index elimination
	A. High-idf query terms only
	B. Docs containing many query terms
	Example: Requiring 3 of 4 query terms
	Heuristic 2: Champion lists
	High and low lists
	Tiered indexes
	Example tiered index
	Heuristic 3: Impact-ordered postings
	A. Early termination
	
	Heuristic 4:�Cluster pruning – preprocessing
	 Cluster pruning – query processing
	Cluster pruning visualization
	Cluster pruning visualization
	Cluster pruning visualization
	Clustering pruning variants
	Incorporating Additional �Information: Static quality scores
	Modeling authority
	Net score
	Top K by net score – fast methods
	
	
	Parametric and zone indexes
	Fields
	Zone
	Two methods for zone indexing
	Query term proximity
	Query parsers
	Putting it all together
	Summary

