In Homework 3, you will be implementing ranked retrieval described in Lectures 7 and 8.
The indexing and query commands will use an identical input format to Homework 2, so that you need not modify any of your code to deal with command line processing. To recap:
Indexing: $ python index.py -i directory-of-documents
-d dictionary-file -p
postings-file
Searching: $ python search.py -d dictionary-file -p
postings-file -q
file-of-queries -o output-file-of-results
We will also again use the Reuters training data set provided by
NLTK. Depending on where you specified the directory for NLTK data
whenyou first installed the NLTK data (recall that the installation is
triggered by nltk.download()), this data set is located under a path
like: .../nltk_data/corpora/reuters/training/
.
As in Homework 2, your search process must not keep the postings file in memory in answering queries, but instead use a file cursor to randomly access parts of the postings file. However, there is no such restriction for the indexer (you are not asked to implement BSBI or SPIMI). Also, you should continue to employ Porter stemming in your submission, both for document indexing as well as query processing.
To implement the VSM, you may choose to implement (you can
can do it differently) your dictionary and postings lists in the
following format. The only difference between this format and that in
Figure 1.4 in the textbook, is that you encode term frequencies in the
postings for the purpose of computing tf×idf. The tuple in each
posting represents (doc ID, term freq).
term | doc freq (df) | → |
postings lists |
ambitious | 5 | → | (1, 5)→ (7,2) → (21, 7) → ... |
... | ... | ... |
In the searching step, you will need to rank documents by cosine similarity based on tf×idf. In terms of SMART notation of ddd.qqq, you will need to implement the lnn.ltc ranking scheme (i.e., log tf and no idf for documents, and log tf and idf for queries. Only the query component needs to be cosine normalized). Compute cosine similarity between the query and each document, with the weights follow the tf×idf calculation, where term freq = 1 + log(tf) and inverse document frequency idf = log(N/df) (for queries). That is,
tf-idf = (1 + log(tf)) * log(N/df).
It's suggested that you use log base 10 for your logarithm
calculations (i.e., math.log(x, 10)
, but be careful of
cases like math.log(0, 10)
). The queries we provide are
now free text queries, i.e., you don't need to use query operators
like AND, OR, NOT and parentheses, and there will be no phrasal
queries. These free text queries are similar to those you type in a
web search engine's search bar.
Your searcher should output a list of up to 10 most relevant (less if there are fewer than ten documents that have matching stems to the query) docIDs in response to the query. These documents need to be ordered by relevance, with the first document being most relevant. For those with marked with the same relevance, further sort them by the increasing order of the docIDs.
index.py
,
search.py
, dictionary.txt
, and
postings.txt
. Please do
not include the Reuters data.You are also asked to answer the following essay questions. These are to test your understanding of the lecture materials. Note that these are open-ended questions and do not have gold standard answers. A paragraph or two are usually sufficient for each question. You may receive a small amount of extra credit if you can support your answers with experimental results.
You are allowed to do this assignment individually or as a team of two. There will be no difference in grading criteria if you do the assignment as a team or individually. For the submission information below, simply replace any mention of a matric number with the two matric numbers concatenated with a separating dash (e.g., U000000X-U000001Y).
For us to grade this assignment in a timely manner, we need you to adhere strictly to the following submission guidelines. They will help me grade the assignment in an appropriate manner. You will be penalized if you do not follow these instructions. Your matric number in all of the following statements should not have any spaces and any letters should be in CAPITALS. You are to turn in the following files:
README.txt
: this is
a text only file that describes any information you want me to know
about your submission. You should
not include any identifiable information about your
assignment (your name, phone number, etc.) except your matric number
and email (we need the email to contact you about your grade, please
use your u*******@nus.edu.sg address, not your email alias). This is
to help you get an objective grade in your assignment, as we won't
associate matric numbers with student names.ESSAY.txt
that contains your
answers to the essay questions.These files will need to be suitably zipped in a single file called
<matric number>.zip
. Please use a zip archive and
not tar.gz, bzip, rar or cab files. Make sure when the archive unzips
that all of the necessary files are found in a directory called
<matric number>. Upload the resulting zip file to the IVLE
workbin by the due date: 18 March 2013,
11:59:59 pm SGT. There will absolutely be no extensions to the
deadline of this assignment. Read the late policy if you're not sure
about grade penalties for
lateness.
The grading criteria for the assignment is tentatively:
Disclaimer: percentage weights may vary without prior notice.
seek()
, rewind()
,
tell()
and read()
. Another Python module to look at is linecache
. Please look
through the documentation or web pages for these.-i
) are correctly
interpreted (add trailing slash if needed). Check that your
output is in the correct format (docIDs separated by single
spaces, no quotations, no tabs).<
for
<
) but you can safely ignore them; you do not
have to process these in any special way for this
assignment.