Oracle Data Mining Java API Reference
10g Release 2 (10.2)

B14341-01


oracle.dmt.jdm.supervised.regression
Class OraRegressionApplySettings

java.lang.Object
  extended byoracle.dmt.jdm.OraDMObject
      extended byoracle.dmt.jdm.OraMiningObject
          extended byoracle.dmt.jdm.task.apply.OraApplySettings
              extended byoracle.dmt.jdm.supervised.regression.OraRegressionApplySettings

All Implemented Interfaces:
javax.datamining.task.apply.ApplySettings, javax.datamining.MiningObject, oracle.dmt.jdm.OraPLSQLConstants, javax.datamining.supervised.regression.RegressionApplySettings

public class OraRegressionApplySettings
extends oracle.dmt.jdm.task.apply.OraApplySettings
implements javax.datamining.supervised.regression.RegressionApplySettings

OraRegressionApplySettings provides set and get methods to specify the target attribute normalization details. If user specifies target attribute normalization details, it will be used to denormalize the prediction values in the apply operation.


Field Summary

Fields inherited from class oracle.dmt.jdm.task.apply.OraApplySettings
ALL_PREDICTIONS_APPLY_OUTPUT, DEFAULT_APPLY_OUTPUT, MULTIPLE_ROW_ALL, MULTIPLE_ROW_DEFAULT, MULTIPLE_ROW_RANKED, SINGLE_ROW_AS_SPECIFIED, TARGET_OR_CLUID_APPLY_OUTPUT, TOP_PREDICTION_APPLY_OUTPUT

Fields inherited from class oracle.dmt.jdm.OraMiningObject
DESCRIPTION_DELIMITER

Fields inherited from interface oracle.dmt.jdm.OraPLSQLConstants
abns_max_build_minutes, abns_max_nb_predictors, abns_max_predictors, abns_model_type, abns_multi_feature, abns_naive_bayes, abns_single_feature, algo_adaptive_bayes_network, algo_ai_mdl, algo_ai_mdl2, algo_apriori_association_rules, algo_decision_tree, algo_kmeans, algo_naive_bayes, algo_name, algo_nonnegative_matrix_factor, algo_ocluster, algo_predictor_variance, algo_support_vector_machines, apply_cost_content, apply_nodeid_content, apply_pred_value_content, apply_probability_content, asso_max_rule_length, asso_min_confidence, asso_min_support, association, association_in_model, attribute_importance, clas_cost_table_name, clas_priors_table_name, classification, clus_num_clusters, clustering, feat_num_features, feature_extraction, kmns_block_growth, kmns_conv_tolerance, kmns_cosine, kmns_distance, kmns_euclidean, kmns_fast_cosine, kmns_iterations, kmns_min_pct_attr_support, kmns_num_bins, kmns_size, kmns_split_criterion, kmns_variance, nabs_pairwise_threshold, nabs_singleton_threshold, nmfs_conv_tolerance, nmfs_num_iterations, nmfs_random_seed, ocluster_max_buffer, ocluster_sensitivity, operator_equal, operator_equal_v, operator_greater_or_equal, operator_greater_or_equal_v, operator_greater_than, operator_greater_than_v, operator_in, operator_in_v, operator_less_or_equal, operator_less_or_equal_v, operator_less_than, operator_less_than_v, operator_not_equal, operator_not_equal_v, operator_not_in, operator_not_in_v, oracle_char_type, oracle_dm_nested_categoricals, oracle_dm_nested_numericals, oracle_float_type, oracle_number_type, oracle_varchar2_type, regression, svms_active_learning, svms_al_disable, svms_al_enable, svms_complexity_factor, svms_conv_tolerance, svms_epsilon, svms_gaussian, svms_kernel_cache_size, svms_kernel_function, svms_linear, svms_outlier_rate, svms_std_dev, tree_impurity_entropy, tree_impurity_gini, tree_impurity_metric, tree_impurity_metric_default, tree_term_max_depth, tree_term_max_depth_default, tree_term_max_depth_max, tree_term_max_depth_min, tree_term_max_surrogates_max, tree_term_max_surrogates_min, tree_term_minpct_node, tree_term_minpct_node_default, tree_term_minpct_node_max, tree_term_minpct_split, tree_term_minpct_split_default, tree_term_minpct_split_max, tree_term_minrec_node, tree_term_minrec_node_default, tree_term_minrec_split, tree_term_minrec_split_default

Method Summary
java.lang.Double getTargetNormalizationScaleValue()
Returns the specified normalization scale value of the target column.
java.lang.Double getTargetNormalizationShiftValue()
Returns the specified normalization shift value of the target column.
void setTargetNormalizationDetails(java.lang.Double shiftValue, java.lang.Double scaleValue)
Sets the normalization details of the target columns.

Methods inherited from class oracle.dmt.jdm.task.apply.OraApplySettings
getAttributeNames, getContentAttrValue, getFunction, getMappedContentsEnums, getObjectType, getSourceDestinationMap, isInputObject, resetMapping, setSourceDestinationMap, verify

Methods inherited from class oracle.dmt.jdm.OraMiningObject
doBeforeStore, getCreationDate, getCreatorInfo, getDescription, getName, getObjectIdentifier, saveObjectInDatabase, setDescription

Methods inherited from class oracle.dmt.jdm.OraDMObject
createException, createException, createRuntimeException, createRuntimeException, getLocalizedMessage, isConnectionOpen, logInfo, logSevere, logTrace, logTrace, unsupported, unsupported

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Methods inherited from interface javax.datamining.task.apply.ApplySettings
getSourceDestinationMap, resetMapping, setSourceDestinationMap, verify

Methods inherited from interface javax.datamining.MiningObject
getCreationDate, getCreatorInfo, getDescription, getName, getObjectIdentifier, getObjectType, setDescription

Method Detail

setTargetNormalizationDetails

public void setTargetNormalizationDetails(java.lang.Double shiftValue,
                                          java.lang.Double scaleValue)
Sets the normalization details of the target columns. By default these values will be null. If the target column is normalized, then the predictions done by the apply operation will be normalized values. To automate the denormalization of the target values as part of the apply operation use this method. operation will be normalized.
Parameters:
shiftValue -
scaleValue -

getTargetNormalizationShiftValue

public java.lang.Double getTargetNormalizationShiftValue()
Returns the specified normalization shift value of the target column. It returns null value if it is not specified.
Returns:

getTargetNormalizationScaleValue

public java.lang.Double getTargetNormalizationScaleValue()
Returns the specified normalization scale value of the target column. It returns null value if it is not specified.
Returns:

Oracle Data Mining Java API Reference
10g Release 2 (10.2)

B14341-01


Copyright © 2005, Oracle. All rights reserved.